
This is a post-peer-review, pre-copyedit version of the article published in

Empirical Software Engineering. The final authenticated version is available

online at https://doi.org/10.1007/s10664-018-9672-z

Using Bug Descriptions to Reformulate Queries
during Text-Retrieval-based Bug Localization

Oscar Chaparro ·
Juan Manuel Florez ·
Andrian Marcus

Received: date / Accepted: date

Abstract Text Retrieval (TR)-based approaches for bug localization rely on
formulating an initial query based on the full text of a bug report. When the
query fails to retrieve the buggy code artifacts, developers can reformulate
the query and retrieve more candidate code documents. Existing research on
query reformulation focuses mostly on leveraging relevance feedback from the
user or on expanding the original query with additional information. We hy-
pothesize that the title of the bug reports, the observed behavior, expected
behavior, steps to reproduce, and code snippets provided by the users in bug
descriptions, contain the most relevant information for retrieving the buggy
code artifacts, and that other parts of the descriptions contain more irrele-
vant terms, which hinder retrieval. This paper proposes and evaluates a set of
query reformulation strategies based on the selection of existing information in
bug descriptions, and the removal of irrelevant parts from the original query.
The results show that selecting the bug report title and the observed behavior
is the strategy that performs best across various TR-based bug localization
approaches and code granularities, as it leads to retrieving the buggy code
artifacts within the top-N results for 25.6% more queries (on average) than
without query reformulation. This strategy is highly applicable and consistent
across different thresholds N. Selecting the steps to reproduce or the expected
behavior (when provided in the bug reports) along with the bug title and
the observed behavior leads to higher performance (i.e., between 31.4% and
41.7% more queries) and comparable consistency, yet it is applicable in fewer
cases. These reformulation strategies are easy to use and are independent of
the underlying retrieval technique.

O. Chaparro, J. M. Florez, and A. Marcus
Department of Computer Science
The University of Texas at Dallas
Richardson, TX, USA
E-mail: {ojchaparroa, jflorez, amarcus}@utdallas.edu

2 Oscar Chaparro et al.

Keywords Bug Descriptions · Query Reformulation · Bug Localization ·
Text Retrieval

1 Introduction

Text Retrieval (TR) has been widely used by researchers to support develop-
ers during bug localization in source code (Saha et al., 2013; Wang and Lo,
2014; Wang et al., 2014a; Le et al., 2015; Nguyen et al., 2011; Nichols, 2010;
Rao and Kak, 2011; Sisman and Kak, 2012; Wang and Lo, 2016; Wong et al.,
2014; Ye et al., 2016b,a; Youm et al., 2017; Zhou et al., 2012; Wen et al., 2016;
Zhang et al., 2016; Le et al., 2014; Eddy et al., 2018)1. TR-based bug local-
ization (TRBL) techniques address bug localization as a document retrieval
problem where an initial query, formulated from the information provided in a
bug report, is used to retrieve a ranked list of candidate code artifacts (a.k.a.
code documents, such as files, classes, or methods) that are likely to contain
the bug. In the general TRBL process (Marcus and Haiduc, 2013; Dit et al.,
2012; De Lucia et al., 2012), once the TRBL technique produces the list of
candidates, the developer proceeds to check the top-N (say, top-5) candidates,
one at a time, and determine whether or not they contain the bug. The de-
veloper performs this process by inspecting each candidate’s name as well as
its internal code. Deciding how relevant each candidate is (i.e., whether it is
buggy or not) with respect to the bug report, is determined largely on the de-
veloper’s knowledge of the system (Marcus et al., 2004). Once one buggy code
document is found, the process ends successfully (i.e., the query is success-
ful). If the top-N candidates are not deemed buggy, the developer has three
main options: (1) inspect additional candidates (say, N more) in the result list;
(2) reformulate the initial query, run the reformulated query with the TRBL
technique at hand, and inspect the returned candidate code documents; or (3)
switch to other strategies for localizing the buggy code such as, navigating
program dependencies.

Traditionally, TRBL approaches use the full textual information from bug
reports (i.e., bug descriptions) as queries. In many cases, the queries fail to
return the buggy code artifacts within the top-N results (i.e., the queries are
unsuccessful) and the developer requires following any of the options described
above for locating the buggy code. Exiting research on TRBL has focused on
improving the ranking produced by the initial query, primarily by combining
various types of software information, such as code dependencies (Wang and
Lo, 2014; Saha et al., 2013; Wang and Lo, 2016; Youm et al., 2017; Ali et al.,
2012; Takahashi et al., 2018), execution traces from the bug report (Moreno
et al., 2014; Wong et al., 2014; Wang and Lo, 2016; Youm et al., 2017; Sisman
et al., 2016), past bug reports and code changes (Zhou et al., 2012; Wang and
Lo, 2014, 2016; Youm et al., 2017; Saha et al., 2013; Davies et al., 2012; Wong
et al., 2014; Rath et al., 2018; Sisman and Kak, 2012), etc. Other research has

1 See Section 6 for details

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 3

focused on techniques to reformulate the initial query, mostly by leveraging
relevance feedback from the user (Gay et al., 2009), pseudo-relevance feedback
based on previous search results (Haiduc et al., 2013), or additional informa-
tion to replace or expand the query (e.g., adding synonyms) (Shepherd et al.,
2007; Rahman and Roy, 2016; Marcus et al., 2004). However, in many cases,
the bug description contains terms that are irrelevant for code retrieval, that is,
they act as noise and result in the retrieval of irrelevant (i.e., non-buggy) code
artifacts. This is because reporters do not write bug descriptions as queries for
a text retrieval engine, instead, they write them to communicate the software
problem to the developers. Previous research (Chaparro and Marcus, 2016;
Mills et al., 2018) showed that removing the irrelevant terms from the queries
(i.e., query reduction) leads to substantial improvement in code retrieval. Un-
fortunately, little research has focused on identifying parts of bug descriptions
that contain irrelevant terms with respect to code retrieval (Rahman and Roy,
2016, 2017a, 2018; Haiduc et al., 2013; Chaparro and Marcus, 2016; Chaparro
et al., 2017a).

This paper proposes and investigates the effectiveness of several query re-
duction strategies, based on the structure of bug descriptions, which are easy
to apply when using TRBL approaches. Such reformulation techniques can
be used when the initial query does not retrieve the relevant code artifacts
within the top-N results and the users choose to investigate more retrieved
documents after reformulation. Typically, bug reports are composed of three
major parts: the title, the description, and bug meta information. The title is
a summary of the software problem, the description is a detailed account of
the problem, and the meta information includes other data about the bug such
as software version affected, operating system, bug severity, etc. The descrip-
tion may contain technical information such as code snippets (i.e., CODE)
or stack traces. More importantly, the description contains the user’s account
of the software (mis)behavior (i.e., the Observed Behavior or OB), the steps
to trigger the (mis)behavior (i.e., the Steps to Reproduce or S2R), and the
expected software behavior (i.e., EB) (Zimmermann et al., 2010; Davies and
Roper, 2014; Chaparro et al., 2017a,b). Both, the title and description, i.e.,
the textual account of the problem written by the reporter, is what we call
bug description. We hypothesize that the TITLE of the bug reports, the OB,
EB, and S2R, as well as any CODE present in the bug description, contain the
most relevant information with respect to TRBL. Conversely, we argue that
other parts of the bug descriptions contain more irrelevant terms, which lead
to false positives (i.e., the retrieval of non-buggy code artifacts). We propose
leveraging these parts of the bug description for query reformulation.

This paper introduces and empirically evaluates 31 different reformula-
tion strategies, which reduce the initial query to parts that correspond to the
TITLE, OB, EB, S2R, and/or CODE of the bug report. The reformulation
strategies are independent of any TRBL approach and were used with five dif-
ferent techniques, namely Lucene (Hatcher and Gospodnetic, 2004), Lobster
(Moreno et al., 2014), BugLocator (Zhou et al., 2012), BRTracer (Wong et al.,
2014), and Locus (Wen et al., 2016), which retrieve code artifacts at different

4 Oscar Chaparro et al.

code granularities (i.e., file, class, and method). Using existing TRBL datasets
(Zhou et al., 2012; Wong et al., 2014; Moreno et al., 2014; Mills et al., 2017;
Chaparro et al., 2017a; Lee et al., 2018), we randomly sampled a set of 1,221
queries that fail to retrieve the buggy code artifacts within the top-N results
when using the TRBL techniques. We compared the performance achieved by
the five TRBL approaches at three code granularities when using the complete
bug reports as queries versus a reduced version produced by each reformula-
tion strategy. The results indicate that the combination of TITLE+OB is the
strategy that performs best across the five TRBL approaches, as it returns
the buggy code artifacts within the top-N results for 25.6% more queries (on
average) than without query reformulation. This strategy is highly-applicable
and highly-consistent across different thresholds N. Combining the TITLE
and the OB with the S2R (when present in the bug reports) leads to higher
performance (i.e., for 31.4% more queries with respect to no reformulation)
and comparable consistency, yet it is applicable in fewer cases. Likewise, us-
ing the EB (when available) along with the OB and TITLE leads to higher
performance (i.e., 41.7% more queries with respect to no reformulation) and
comparable consistency, yet its low applicability makes it less practical. The
results support our hypothesis, which means that developers can reformulate
an initial query by simply selecting the part that describes the TITLE, OB,
and S2R/EB (when present), and expect better retrieval results.

We envision a straightforward usage scenario for reformulation, where de-
velopers use the entire content of a bug report as initial query (i.e., both
title/summary and description), and optionally other information leveraged
by the used TRBL technique, which is the typical TRBL scenario (Dit et al.,
2012). If none of the buggy code documents are found in the top-N candidates
(by inspecting each candidate’s name and/or source code), then the developer
selects the TITLE, OB, and S2R/EB (if present) from the bug report and uses
their combination as the new query, hoping to locate the buggy code artifacts.
This reformulation approach is independent of the underlying TRBL tech-
nique and does not depend on the returned results or any information from
other bug reports and external sources. In other words, it is easy to use by
any potential user and should work with any existing TRBL technique based
on bug descriptions.

This paper is a substantial extension of our previous research on using OB
to reformulate queries for TRBL (Chaparro et al., 2017a). We extend our prior
work in four major ways:

– We investigate how specific types of information from bug descriptions
(i.e., EB, S2R, TITLE, and CODE) can be used to reformulate the initial
query in TRBL application. One of the main findings of this research is
that using OB only (as we reported in the previous work) is not the best
query reformulation strategy in this application.

– Our empirical study investigates the effect of query reformulation on TRBL
by using nearly three times more queries than in our prior work, which
were collected from a total of 30 open source software projects (i.e., nine

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 5

more projects than in our prior work). The number of queries and projects
strengthens the external validity of our conclusions.

– In addition to the four TRBL techniques used in our prior research, the
evaluation presented in this paper includes one additional state-of-the-art
TRBL technique, called Locus (Wen et al., 2016), which further strengthens
the external validity of our research.

– The evaluation of the strategies focuses on HITS@N, a measure of the
proportion of queries that return at least one buggy code document within
the top-N results. We contend that this metric, compared to traditional
metrics such as MRR or MAP, approximates better an actual reformulation
usage scenario given a TRBL tool. The user is likely to inspect only the top-
N results to find the relevant code documents, before switching strategies.
The ranks of the relevant documents, outside top-N, is less relevant to the
user. In other words, we consider a reformulation strategy to be effective
when it improves HITS@N, rather than MRR or MAP.

We provide an online replication package (Chaparro et al., 2019) for our
empirical study. The package includes code corpora, initial and reformulated
queries, gold sets (i.e., buggy code documents for each query), and additional
material that enable the reproducibility of our study. The package also con-
tains details and additional empirical results of our evaluation, which are not
included in the paper.

The rest of this paper is structured as follows. Section 2 explains in detail
the proposed reformulation strategies. Section 3 describes the design of the
empirical study for the evaluation of the reformulation strategies, and Section
4 presents and discusses the empirical results. Section 5 discusses the threats
to validity we identified, followed by the related work in Section 6. Finally, we
present our conclusions in Section 7.

2 Query Reformulation Strategies

We propose a user-driven query reformulation approach based on the structure
of bug descriptions, with a two-step scenario for bug localization in mind. In
the first step, the developer issues an initial query (manually or automatically)
from the full text of the bug report and inspects the top-N code candidates
returned by the TRBL technique at hand. Sophisticated TRBL techniques
may require extra information to the bug report such as execution traces or
past bug report data. In this case, the developer collects and provides such
information to the TRBL technique, either manually or automatically. If any
of the returned candidates is deemed buggy (i.e., the query is successful), the
bug localization process ends and the developer proceeds to fix the bug. Con-
versely, if none of the candidates are buggy (i.e., the query is unsuccessful), the
developer reformulates the initial query in the second step (via the proposed
reformulation strategies - see below), runs it with the TRBL approach, and
investigates additional N retrieved code artifacts. The N results retrieved in
the second step should not include the N results returned by the initial query,
as they were deemed non-buggy. If a buggy code artifact is found within the

6 Oscar Chaparro et al.

new result list (i.e., the reformulated query is successful), then the bug local-
ization process ends and the developer proceeds to fix the bug. Otherwise (i.e.,
the reformulated query is unsuccessful), the developer may refine the query or
switch to other methods for localizing the buggy code (e.g., navigating code
dependencies).

We contend that the following five parts of a bug description contain the
most relevant terms for locating the buggy code:

– The bug title (a.k.a. TITLE): it is the summary of the software problem
found by the user. Our assumption is that users carefully write the titles to
include the most relevant terms. The title is found in all bug reports, hence
it can be easily used for query reformulation. Some existing approaches
(Wang and Lo, 2014; Saha et al., 2013; Wang and Lo, 2016; Youm et al.,
2017; Ali et al., 2012) treat the bug title as an individual field, but unlike
our reformulation approach, they use it along with the full description.

– Observed behavior (a.k.a. OB): it describes the software (mis)behavior ob-
served by the user, which is typically deemed to be incorrect or unexpected.
Our prior work (Chaparro et al., 2017a) found that the OB contains rele-
vant information that helps locate the buggy code, more than other parts
of the bug description.

– Expected behavior (a.k.a. EB): it describes the normal or regular software
behavior expected by the user. As the EB describes the opposite to the
OB, we hypothesize that it contains relevant terms with respect to code
retrieval.

– Steps to reproduce (a.k.a. S2R): it describes the steps that the user fol-
lowed to trigger the OB. The S2R may contain terms that point to software
features, hence it is also a good candidate for query reformulation.

– Code snippets (a.k.a. CODE): in many cases, especially for software li-
braries or frameworks, users provide code snippets that help developers
better understand and reproduce the software problem. Code snippets are
likely to reference places in the source code related to the bug.

Figure 1 shows an example of a bug report containing each one of these parts.
We propose 31 different reformulation strategies based on the combination

of the five types of information described above: TITLE, OB, EB, S2R, and
CODE. We denote their combination by using a plus sign (+) between them.
For example, the strategy using OB and CODE is denoted as OB+CODE,
and the strategy using EB, S2R, and TITLE is denoted as EB+S2R+TITLE.
When using such a reformulation strategy, the user simply needs to select and
concatenate the parts of the text corresponding to the types of information
used by the strategy from the title and bug description, and remove the rest of
the textual description. It is important to note that the strategy only applies if
the bug contains all the types of information. As an example, reformulating the
(initial) query from the bug report shown in Figure 1, by using the OB+TITLE
strategy, will result in the following query: “[code assist] the caret position is
wrong after code assist The result is: addWindowListene< POSITION OF
THE CARET>rListener”.

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 7

Fig. 1: Bug report #89621 from Eclipse. The highlighted text corresponds to
the title (TITLE), code snippets (CODE), observed behavior (OB), expected
behavior (EB), and steps to reproduce (S2R).

Bug report title:
[code assist] the caret position is wrong after code assist [TITLE]

Bug report description:
Using 20030330-0500, I got this weird behavior.

import java.awt.Frame;
import java.awt.event.WindowAdapter;

public class Foo extends Frame {

public void bar() {
addWindow<CODE ASSIST HERE>Listener(new WindowAdapter());

}
} [CODE]

Select addWindowListener in the list of proposal. [S2R]

The result is:
addWindowListene<POSITION OF THE CARET>rListener [OB]

I would expect:
addWindowListener<POSITION OF THE CARET>Listener [EB]

This is pretty annoying and seems to occur only for method name proposal.

Legend: TITLE CODE OB EB S2R

Bug report found at https://bugs.eclipse.org/bugs/show_bug.cgi?id=89621

3 Empirical Evaluation

We conducted an empirical evaluation to assess the effectiveness of the pro-
posed reformulation strategies. The evaluation aims at answering the following
research question (RQ):

Which query reformulation strategies help TRBL approaches retrieve more
buggy documents within the top-N results when compared to the case in which

query reformulation is not used?

This section describes the procedure we followed to answer our research
question, while Section 4 discusses the evaluation results. We used five TRBL
techniques (Sections 3.1 and 3.2) to locate the buggy code artifacts for a large
set of queries/bug reports (Section 3.3). Then, for a subset of the queries for
which the tools failed to retrieve the buggy code documents within the top-N
results (Section 3.4), we manually identified the structure of the corresponding
bug descriptions (Section 3.5). We used the 31 strategies to reformulate the
queries (based on the identified structure) and compared how many more

8 Oscar Chaparro et al.

buggy code artifacts are retrieved among the next-N candidates with and
without reformulation (Sections 3.6 and 3.7).

3.1 TRBL Techniques

We used five TRBL techniques to perform our empirical evaluation on both
initial and reformulated queries, namely Lucene (Hatcher and Gospodnetic,
2004), Lobster (Moreno et al., 2014), BugLocator (Zhou et al., 2012), BR-
Tracer (Wong et al., 2014), and Locus (Wen et al., 2016). We were interested
in finding out whether the reformulation strategies are equally effective on
different TBRL techniques.

Lucene (Hatcher and Gospodnetic, 2004) is a retrieval technique imple-
mented in the open source library of the same name (Lucene, 2017). Lucene
combines the standard information retrieval Boolean model and the Vector
Space Model (VSM), based on the TF-IDF representation (Salton et al., 1975),
to compute the similarity between a bug report (i.e., the query) and a code
document (e.g., a file, class, or method). Lucene relies only on textual infor-
mation to retrieve the relevant (buggy) documents, independently of the code
granularity. Typically, a Lucene query is created by concatenating the bug
report’s title and description, including any information embedded in these
sources (e.g., code snippets).

The remaining four techniques also rely on textual similarity to rank the
buggy code artifacts. However, they include additional information to boost
the similarity score of the documents.

Lobster (Moreno et al., 2014) is a TRBL technique that leverages stack
traces found in bug reports. It boosts the classes that appear in these traces
and also their related classes by using the system’s call graph. Lobster works at
class-level granularity and only makes a difference on bug reports that contain
stack traces.

BugLocator (Zhou et al., 2012) is a TRBL approach that combines infor-
mation from bug fix history and file length to boost certain corpus documents.
This approach uses a record of previously-fixed bug reports to boost the cor-
responding fixed files, according to the textual similarity of these reports to
the query. Additionally, it boosts all corpus source files based on their length
(i.e., number of terms). BugLocator works at file-level granularity.

BRTracer (Wong et al., 2014) is an extension of BugLocator, which uses
stack trace information from bug reports and source file segmentation to boost
source code files retrieved by BugLocator. Similar to Lobster, this technique
boosts the source code files that appear in the traces, and other files (or classes)
that are used in their corresponding source code. In addition, the files are
segmented into smaller documents, and the highest textual similarity between
the segments and the query is used as the similarity of the whole file.

Locus (Wen et al., 2016) is a TRBL technique that leverages textual and
additional information from past code changes to identify the buggy code
documents for a bug report/query. This technique segments source code files

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 9

into code hunks, i.e., small code segments, product of code changes throughout
the project history. This means that this technique is able to retrieve code
hunks and also entire source files. Locus utilizes textual similarity between
bug reports and code hunks (including their corresponding commit messages),
using two corpus extraction strategies, one that uses the whole textual content,
and one that uses only the code entities referenced in the text (i.e., package
names, classes, and methods). The approach also increases the suspiciousness
degree of a source file based on how many times the file was changed, and
boosts the score of a hunk based on how recent it was applied in the code with
respect to the current bug report.

3.2 Implementation of the TRBL Techniques

In our evaluation, we used Apache Lucene v5.3.0 with the default similarity
measure and parameters, and the original implementation of Lobster, provided
by its authors (Moreno et al., 2014).

Regarding Locus, we used the implementation provided in Bench4BL (Lee
et al., 2018). However, we did not use Bench4BL’s scripts to execute Locus’
implementation because we identified two issues.

The first issue relates to the corpus preprocessing. As the bug reports in
Bench4BL are stored in XML files, some characters are escaped into their
corresponding character entity reference (e.g., ‘&’ or ‘<’ would be escaped
to ‘&’ or ‘<’, respectively). However, when running Locus using the
Bench4BL’s scripts, such characters are not unescaped correctly. The queries
would contain the text corresponding to the entity references (i.e., ‘amp’ or
‘lt’), even after they are preprocessed (e.g., using special-character removal).
We confirmed that this issue leads to different TRBL results, compared to
correct unescaping, which change the set of unsuccessful queries that require
reformulation (see Section 3.4 for more details). Therefore, we implemented
our own scripts for running Locus.

The second issue stems from Locus calling the Git executable as a sub-
process to retrieve and read the project’s commit history via the subprocess’
standard streams. Note that Locus is implemented in Java. Due to Java’s han-
dling of subprocesses, reading the subprocess’ output has to be done in sep-
arate threads – see ExecCommand.exec(String command, String[]
envp, String workpath) in Locus’ original implementation2. Reading
the standard output on a separate thread would cause the read data (i.e., the
commits log) to be randomly truncated. This would cause the tool to behave
unpredictably, sometimes producing different results on different runs with the
same data, and sometimes crashing during the execution. We fixed the bug
by reading the standard output on the main thread while letting the standard
error to be read on a different thread, as this output was being ignored by
the original implementation anyway. Our replication package (Chaparro et al.,

2 https://tinyurl.com/ybye2zhc

10 Oscar Chaparro et al.

2019) contains the fix to Locus’ issue, as well as the code we used to run our
experiments.

We used our own implementation of BugLocator (Zhou et al., 2012) and
BRTracer (Wong et al., 2014), based on the description provided in their cor-
responding publications. We obtained the implementations of BugLocator and
BRTracer made available by their authors, along with the experimental data
they used (Zhou et al., 2012; Wong et al., 2014), and attempted to replicate the
results of the empirical studies reported in each paper. However, for BugLoca-
tor, we could only replicate the results for two of the four systems: Eclipse and
SWT (Wong et al., 2014). The tool failed to complete the evaluation on the
AspectJ system and it was not possible to acquire the source code for the ZX-
ing system, because it was not provided by the authors and the corresponding
system version is no longer available online. However, the results on Eclipse
and SWT matched those reported in the paper.

Since we could not completely replicate the experimental results, we de-
cided to implement our own version of the tool. Our implementation also failed
to exactly replicate the experimental results reported in the mentioned study
(Zhou et al., 2012). Since the source code for the authors’ implementation was
not available at the time, we examined the bytecode of the original implemen-
tation and compared it with our own code. We discovered two key differences
between the approach detailed in the paper and the implementation provided
by its authors:

1. The paper proposes a normalization function for a source code file length
x as part of its rVSM model, which is defined as:

N(x) =
x− xmin

xmax − xmin

However, after examining the bytecode of the original implementation, we
found that it is actually being computed in the following manner:

N(x) =

0.5 if x < bl
1 if x > bu
x− bl
bu − bl

otherwise

Where bl and bu correspond to a lower and upper bound, respectively, and
are calculated as follows:

bl =

{
µ− 3σ if µ− 3σ ≥ 0
0 if µ− 3σ < 0

bu = µ+ 3σ

With µ and σ being the average length and standard deviation of document
lengths in the code corpus, respectively.

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 11

Table 1: Performance differences between our implementation (Our impl.) of
BugLocator and the original implementation (Original impl.) provided by its
authors (Zhou et al., 2012).

System
MRR MAP

Original Our
Diff.

Original Our
Diff.

impl. impl. impl. impl.
AspectJ v1.5.3 41% 35% -6% 22% 18% -4%

Eclipse v3.1 41% 25% -16% 30% 19% -11%
SWT v3.1 53% 33% -20% 45% 30% -15%

2. As part of the rVSM model, the authors propose a length score for a source
code file, defined in the paper as:

g(#terms) =
1

1 + e−N(#terms)

However, an examination of the implementation revealed that what is being
computed is:

g(#terms) =
e6N(#terms)

1 + e6N(#terms)

We decided to test these findings by modifying our implementation to im-
itate the original implementation. After testing it on the Eclipse system with
the same preprocessing used by the original tool, we were able to replicate the
results reported in the paper, with minor differences. We considered that our
implementation is fit for experimentation. The differences between the perfor-
mance of our implementation and the performance reported by the authors
are presented in Table 1. The difference cast a threat to the validity of our
findings for Buglocator, which we may address in the future.

A similar situation happened when replicating the results of the empirical
study on the BRTracer tool (Wong et al., 2014). We replicated the results
reported in the paper using the tool provided by the authors, but we decided
to use our own version to facilitate our process. After re-implementing the
tool on top of our version of BugLocator, we found discrepancies when trying
to replicate the study results. Since the source code of the authors’ version is
readily available, we compared it with the description of the approach in the
paper.

This is a non-exhaustive list of findings:

1. The bugs for the evaluation are sorted by resolution date, however, their
submission date is not checked. The paper states that for a bug report to be
considered “previously fixed” for the current bug being located, both the
submission and resolution dates must happen before the current bug’s sub-
mission date. However, in the way that the tool is implemented, some bugs
are considered previously fixed when their submission date happens after
the current bug’s submission date. This results in an unrealistic evaluation,
i.e., future bugs are used as previously fixed bugs.

12 Oscar Chaparro et al.

Table 2: Performance differences between our implementation (Our impl.) of
BRTracer and the original implementation (Original impl.) provided by its
authors (Wong et al., 2014).

System
MRR MAP

Original Our
Diff.

Original Our
Diff.

impl. impl. impl. impl.
AspectJ v1.5.3 49% 53% 4% 29% 30% 2%

Eclipse v3.1 43% 40% -3% 33% 31% -2%
SWT v3.1 60% 64% 5% 53% 56% 3%

2. The calculation of the SimiScore (the score boost of source files according
to previously fixed bugs) is done against file segments, instead of whole
files, as it is explained in the paper.

3. The BoostScore (the score boost to files found in stack traces or related to
these files) is formulated in the paper as:

BoostScore(x) =

1

rank
if x ∈ D and rank ≤ 10

0.1 if x ∈ D and rank > 10
0.1 if x ∈ C
0 otherwise

Where D is the set of source files appearing in stack traces in the bug
report, and C is the set of files used in import statements by the files in
D. However, the implementation assigns a constant value of 0.5 for files in
D and 0.2 for files in C.

We decided to use our implementation, which works as described in the
paper. Table 2 contains a comparison between the results reported by the
authors and the ones achieved by our implementation. It can be observed that,
even though the underlying BugLocator implementation achieves somewhat
different results compared to the original, our implementation of BRTracer
achieves nearly identical results to ones provided by the authors.

Finally, we executed BugLocator and BRTRacer with the parameter α =
0.2. This value leads to the best TRBL performance, according to the respec-
tive evaluation results (Wong et al., 2014; Wen et al., 2016).

3.3 TRBL Data

We compiled three TRBL data sets from existing TRBL data (see Table 3).
Each data set contains corpora at a different code granularity, namely class-,
method-, and file-level granularity. We aim to assess the effectiveness of the
query reformulation strategies across these code granularities. The data sets
we collected are the following:

– The class-level data set (i.e., CDS) is based on Moreno et al.’s bug lo-
calization data (Moreno et al., 2014) from 16 versions of 13 open source

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 13

Table 3: Statistics of the TRBL data sets used in the evaluation.

Data set
Code # of # of code # of # of buggy

granularity systemsa documentsb queries code documentsc

CDS Class 13 (16) 2,366.9 815 2 (3.4)
FDS File 11 (172) 1,669.2 4,429 2 (3.1)
MDS Method 14 (65) 16,704.9 360 1 (5.9)

Total 30 (248) 7,523.5 5,604 2 (3.3)
aIn parenthesis, # of system versions. bAverage values across system versions.

cMedian (avg.) values across queries.

projects (e.g., ArgoUML v0.22 or OpenJPA v2.0.1). This data set accounts
for 815 queries.

– The file-level data set (i.e., FDS) is based on Wong et al.’s bug localization
data (Wong et al., 2014) and on data from the Bench4BL TRBL benchmark
(Lee et al., 2018). From Wong et al.’s data, we used two projects, namely
Eclipse v3.1 and SWT v3.1, and from Bench4BL, we used nine projects
(e.g., Commons IO, Jboss Wildfly Core, and Spring Data MongoDB). This
data set accounts for 4,429 queries from 172 versions from 11 software
projects.

– The method-level data set (i.e., MDS) is based on Mills et al.’s data on
query quality assessment (Mills et al., 2017), and on Chaparro et al.’s
adaptation (Chaparro et al., 2017a) of Just et al.’s Defects4J data (Just
et al., 2014) for TRBL. Both existing data sets account for 360 queries from
65 versions of 14 open source projects (e.g., Apache Lang and JEdit v4.2).

We built the three data sets from the data set we collected in our prior
work (Chaparro et al., 2017a). However, we expanded the FDS data set3 with
nine systems from the Bench4BL benchmark, which span different domains
across three open source ecosystems (i.e., Apache, Spring, and Jboss). The
total number of queries for these systems is 1,340.

As the data sources we used to compile our three data sets were built
independently, some projects and versions are used in more than one data
set. This is the case of Apache Derby v10.9.1.0, which belongs to the MDS
and CDS data sets. The total number of systems and versions without this
overlap is shown in Table 3. Given the overlap, our whole data set contains
98 queries from five projects that belong to both the MDS and CDS data
sets (i.e., they are duplicated). In addition to these cases, our whole data set
includes extra duplicated queries. Since a bug can affect multiple versions of
a software system, it is possible to have the same queries for multiple system
versions. Our data set contains a subset of these cases, i.e., 6 queries that
belong to two different versions of three projects (one from MDS and two
from CDS). In addition, the FDS data set contains 98 additional queries that
belong to both Eclipse and SWT. These queries are originally duplicated in
Wong et al.’s data (Wong et al., 2014). The duplication stems from the fact
that SWT is a subproject of Eclipse. In any case, the code corpus for both

3 This data set is called BRT in our prior work (Chaparro et al., 2017a).

14 Oscar Chaparro et al.

systems is different. In total, 202 queries in our whole data set are duplicated.
We decided to keep these queries because they are likely to behave differently
across different granularities, system versions, and code corpora. A query can
fail to retrieve the buggy method(s) while succeeding at retrieving the buggy
class(es). Likewise, a query can fail to retrieve the buggy code documents for
one system version (or code corpus), while succeeding for another one. This
means that, in some sense, they can be treated as different queries. Also,
removing them from our data set would imply a lower number of queries,
which is undesirable (especially for MDS and CDS). Our replication package
includes the full list of projects, versions, and queries, including the duplicated
ones (Chaparro et al., 2019).

We were not able to use all the queries from the Bench4BL data (Lee et al.,
2018) for the nine systems we selected because, for several queries, the gold set
files did not exist in the code corpus. We decided to discard these cases, which
amount to 84 queries (out of 1,340 queries for the selected nine Bench4BL
systems). In addition, we re-formatted the remaining 1,256 queries because of
the XML-character-escaping problem we described in section 3.2 and also so
that we could use our existing code for running the queries with the file-level
TRBL approaches (i.e., Lucene, BugLocator, BRTracer, and Locus). See our
replication package for the list of discarded queries as well as the reformatted
query set (Chaparro et al., 2019).

All three data sets include: (1) a set of queries generated from the bug
reports submitted on the projects’ issue tracker; (2) the corresponding fixed
(a.k.a. buggy) code artifacts that represent the gold set; and (3) the source
code corpora which represent the document search space for bug localization.
In total, our data sets amount to 5,604 queries from 248 versions of 30 open
source projects written in Java, which vary in size and domain (e.g., software
development, databases, bibliography management, or text edition), and span
different software types (e.g., desktop, web, libraries, or frameworks). The full
list of projects for each data set and their TRBL data is included in our online
replication package (Chaparro et al., 2019).

We created a document corpus from the source code of each software ver-
sion (i.e., one corpus per version) according to the granularity of each data
set. The corpus was created by extracting the identifiers, comments, and string
literals present in the source code. All Java files (i.e., test and production Java
files) within each project were included in the corresponding corpus. All doc-
uments in the code corpus and the queries were normalized using standard
preprocessing for text retrieval, such as identifier splitting based on the camel
case and underscore formats (e.g., CodeIdentifier or code identifier would split
into code and identifier), special characters removal (e.g., # or $), common
English stop words and Java keywords removal (e.g., for, while, at, with, etc.),
and stemming based on Porter’s algorithm (Porter, 1980). We implemented
and executed this preprocessing before running the TRBL techniques, except
for Locus. This is because Locus incorporates the preprocessing by default in
its implementation, which is similar to the preprocessing we just described
– see (Wen et al., 2016) for more details. The full set of stop words, bug re-

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 15

ports, queries, gold sets, and preprocessing code are available in our replication
package (Chaparro et al., 2019).

3.4 Low-quality Queries

As mentioned in Section 2, our reformulation approach follows the scenario in
which the developer issues the initial query and inspects the top-N code candi-
dates returned by the TRBL technique. If none of the candidates are deemed
buggy, the developer reformulates the query (via the reformulation strategies)
and inspects additional N candidates. In this scenario, the developer would
inspect a total of 2N candidates. Large N values (say 20 and beyond) would
mean that our approach is impractical because, in the worst case scenario,
it would imply inspecting 40 results total, which could demand a significant
effort from the developer. It is likely that developers will change strategies be-
fore investing so much in retrieval. Very small N values (say less than 5) would
imply an unrealistic scenario. If the developers find the buggy code within the
top-5 results, then they do not need a reformulation. According to existing
research on code search4 (Rahman et al., 2018; Sim et al., 2011), developers
inspect (on average) between 10 and 13 results within a single search session,
i.e., issuing a query and inspecting the results. We contend that inspecting
between 5 and 10 documents (i.e., 10 to 20 documents total, following refor-
mulation) is a realistic scenario for TRBL. In other words, if a query retrieves
the buggy code in top-5, then it is likely that no reformulation is needed. Sim-
ilar thresholds have been used in prior TRBL research (Mills et al., 2017; Lee
et al., 2018; Marcus and Haiduc, 2013; Dit et al., 2012; Wang and Lo, 2014;
Zhou et al., 2012; Moreno et al., 2014; Wong et al., 2014; Chaparro et al.,
2017a). Given that there is no specific research on user behavior during query
reformulation for TRBL (to the best of our knowledge), we do not want to
limit the evaluation only to the thresholds we consider most realistic. Hence,
in this paper, we include results for the threshold set N={5, 6, 7, ..., 30}, which
amounts to 26 thresholds total. The replication package includes the results
for high-quality queries (i.e., for N={1, 2, 3, 4}).

Our reformulation strategies focus on queries that fail to retrieve the buggy
code artifacts within the top-N results (i.e., low-quality queries). Therefore,
in order to determine the set of low-quality queries, we executed each of the
TRBL techniques with the initial queries (generated from the entire text of
the bug report’s title and description) and checked if none of the buggy code
artifacts were retrieved in the top-N results, for N={5, 6, 7, ..., 30}.

As some TRBL techniques do not support all code granularities, we ex-
ecuted the techniques on the data corresponding to their granularity. Since
Lucene does not depend on the granularity, we used it on all three data sets.
Lobster was used only on the CDS data set, while BugLocator, BRTracer, and
Locus were executed on the FDS data set. We executed Locus using all queries

4 Code search is a task similar but more general than TRBL.

16 Oscar Chaparro et al.

Table 4: Number (and proportion) of queries for which the TRBL techniques
fail to retrieve the buggy code documents within the top-5 results.

Data set Lucene Lobster BRTracer BugLocator Locus
CDS 305 (37.4%) 49 (6.0%) - - -
FDS 1,768 (39.9%) - 1,721 (38.9%) 2,583 (58.3%) 715 (16.1%)
MDS 199 (55.3%) - - - -
Total 2,272 (40.5%) 49 (0.9%) 1,721 (30.7%) 2,583 (46.1%) 715 (12.8%)
All proportions are computed with respect to the total number of queries for each data set,

i.e., the values from column “# of queries” in Table 3.

for all FDS projects, except for Eclipse. For this project, we used the queries
that correspond to the Eclipse sub-projects JDT and PDE. The reason is that
the Eclipse code repository, which is required for running Locus’ implementa-
tion, is nowadays managed separately into sub-projects (i.e., each sub-project
has its own code repository), and JDT and PDE are among the largest sub-
projects within Eclipse. In this way, we maximized the number of queries when
running the four file-level TRBL techniques used in the evaluation. Note that
these two sub-projects are also used in Bench4BL (Lee et al., 2018) and in
Locus’ original evaluation (Wen et al., 2016), as opposed to the entire Eclipse
project. Finally, we executed the queries on the corpus of their specific system
version; in other words, we adopted a “multiple version matching” strategy
(Lee et al., 2018).

Table 4 shows the proportion of the queries for which each one of the TRBL
techniques fail to retrieve the buggy code documents within the top-5 results
(which contain the query subsets for larger N values). Except for Lobster and
Locus, there is a large proportion of low-quality queries (from 37.4% to 58.3%)
across TRBL techniques. The main reason for having fewer low-quality queries
for Lobster is that this technique works only on bug reports that contain stack
traces (i.e., on 139 reports from the CDS data set). This means that the 49
low-quality queries for Lobster represent, in fact, 35.3% of the CDS queries.
Similarly, for Locus, we obtained 715 low-quality queries because, as mentioned
before, Locus was executed on two Eclipse sub-projects (i.e., JDT and PDE)
and not on the entire Eclipse project, so in total, Locus executed 2,261 queries
of the FDS data set. Hence, the 715 low-quality queries represent 31.6% of the
queries. These results motivate our research on reformulating the low-quality
queries to improve TRBL.

We found that 658 (i.e., 19.2%) queries consistently fail to retrieve the
buggy code artifacts within the top-5 results across all TRBL techniques. In
total, 3,431 (i.e., 61.2%), 2,833 (i.e., 50.6%), 2,474 (i.e., 44.1%), 2,249 (i.e.,
40.1%) , 2,065 (i.e., 36.8%), and 1,916 (i.e., 34.2%) queries are low-quality for
at least one of the TRBL techniques, when the top-5, -10, -15, -20, -25, and
-30 results are inspected, respectively (see Table 5).

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 17

Table 5: Number (and proportion) of queries for which the TRBL techniques
fail to retrieve the buggy code documents within the top-N results.

Data set Top-5 Top-10 Top-15
CDS 307 (37.7%) 231 (28.3%) 202 (24.8%)
FDS 2,925 (66.0%) 2,427 (54.8%) 2,115 (47.8%)
MDS 199 (55.3%) 175 (48.6%) 157 (43.6%)
Total 3,431 (61.2%) 2,833 (50.6%) 2,474 (44.1%)

Data set Top-20 Top-25 Top-30
CDS 176 (21.6%) 161 (19.8%) 139 (17.1%)
FDS 1,926 (43.5%) 1,773 (40.0%) 1,653 (37.3%)
MDS 147 (40.8%) 131 (36.4%) 124 (34.4%)
Total 2,249 (40.1%) 2,065 (36.8%) 1,916 (34.2%)

Size of the union set of queries across all TRBL techniques.

Proportions with respect to the total # of queries for each data set.

3.5 Structure Identification in Bug Descriptions

In order to answer our research question, we need to manually identify the
terms corresponding to the system’s observed behavior (OB), the expected
behavior (EB), and the steps to reproduce (S2R) in the bug reports that
require reformulation (i.e., the ones that are low-quality queries), just as a
potential user would do. We also need to identify the code snippets (CODE)
in the bug reports. The bug title (TITLE) is present as a separate field within
the bug report and its identification is trivial.

3.5.1 Bug Report Sampling

As shown in Table 5, the number of bug reports in the CDS and MDS data
sets is manageable for manual identification (i.e., 307 and 199 bug reports for
N=5, respectively). This is not the case for the FDS data set, which contains
2,925 low-quality reports/queries for N=5. Therefore, we took a random sam-
ple of the FDS bug reports (for N=5), and selected all the reports from the
other two data sets, manually excluding the ones referring to new features and
enhancements (i.e., non-bugs). We sampled a set of 792 (out of 2,925, i.e.,
27.1%) FDS bug reports, ensuring that the sample includes reports for each
project in the FDS data set (see Table 6).

In total, our sample includes 1,221 bug reports used as queries (i.e., 792
FDS + 270 CDS + 159 MDS bug reports), which fail to retrieve the buggy
code artifacts within the top-5 results when using the TRBL techniques (see
Table 6). This represents 35.6% of the 3,431 low-quality queries for N=5. This
query set also contains a subsample of the queries that fail to retrieve to buggy
code in top-10 (i.e., 1,058 or 30.8% of the queries), in top-15 (i.e., 958 or 27.9%
of the queries), in top-20 (i.e., 895 or 26.1% of the queries), in top-25 (i.e., 837
or 24.4% of the queries), and in top-30 (i.e., 785 or 22.9% of the queries) – see
Table 6. It is important to note that while we experimented with top-N results
for N={5, 6, ... , 30}, our reformulation strategies and their evaluation can be

18 Oscar Chaparro et al.

Table 6: Number (and proportion) of sampled queries for which the TRBL
techniques fail to retrieve the buggy code documents within the top-N results.

Data set Top-5 Top-10 Top-15
CDS 270 (87.9%) 205 (66.8%) 181 (59.0%)
FDS 792 (27.1%) 715 (24.4%) 653 (22.3%)
MDS 159 (79.9%) 138 (69.3%) 124 (62.3%)
Total 1,221 (35.6%) 1,058 (30.8%) 958 (27.9%)

Data set Top-20 Top-25 Top-30
CDS 159 (51.8%) 145 (47.2%) 123 (40.1%)
FDS 619 (21.2%) 587 (20.1%) 562 (19.2%)
MDS 117 (58.8%) 105 (52.8%) 100 (50.3%)
Total 895 (26.1%) 837 (24.4%) 785 (22.9%)

Size of the union query set across TRBL techniques. Proportions with

respect to the total # of low-quality queries (for N=5) for each data set.

Table 7: Number (and proportion) of sampled queries for which the TRBL
techniques fail to retrieve the buggy code documents within the top-5 results.

Data set Lucene Lobster BRTracer BugLocator Locus
CDS 268 (87.3%) 49 (16.0%) - - -
FDS 653 (22.3%) - 630 (21.5%) 728 (24.9%) 332 (11.4%)
MDS 159 (79.9%) - - - -
Total 1,080 (31.5%) 49 (1.4%) 630 (18.4%) 728 (21.2%) 332 (9.7%)

Proportions with respect to the total # of low-quality queries for each data set (for N=5).

done for any threshold N. Table 7 shows the distribution of the sampled queries
across TRBL techniques. The number of low-quality reports/queries in our
sample varies from technique to technique because some queries are not low-
quality when given as input to one or more techniques. Also, the total number
of sampled queries for CDS and MDS shown in Table 5 is lower than the total
number of low-quality queries shown in Table 6. The difference between these
values represents the number of reports that we discarded manually (i.e., new
feature and enhancement requests, rather than bug reports).

As mentioned in Section 3.3, a small subset of queries are duplicated across
the three data sets and projects versions. Likewise, our sample contains 16
queries that belong to both MDS and CDS, one additional duplicated query
for different versions of Derby in CDS, and 9 extra queries that are duplicated
across Eclipse and SWT in FDS. We kept these (26) queries in our sample
because their respective code corpus (and granularity) is different, hence, they
can be treated as different queries. In any case, given the small proportion of
these queries (i.e., 4.3% total), we believe that their impact in the results is
minimal.

3.5.2 Identification of OB, EB, and S2R

The first two authors of this paper and one master student conducted the iden-
tification of OB, EB, and S2R in the 1,221 sampled bug reports. The reports

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 19

were distributed evenly among the coders in such a way that one report was
coded by one person. The three coders conducted sentence-level qualitative
coding (Seaman, 1999) on the bug reports using the coding framework and
criteria defined in our prior work (Chaparro et al., 2017b,a). The coders’ job
was to tag the sentences in the title and description of the reports that corre-
sponded to OB, EB, and S2R. This task was performed using a web-based text
annotation tool called BRAT5, in combination with one of our own tools that
splits the text into sentences and paragraphs, based on the Stanford CoreNLP
toolkit (Manning et al., 2014) and heuristics (e.g., using punctuation).

We summarize the most important criteria used by the coders to tag the
OB, EB, and S2R in the bug descriptions. The full list can be found in our
replication package (Chaparro et al., 2019).

OB Coding Criteria.

– The coding of OB focused only on natural language content written by the
reporters, ignoring code snippets, stack traces, or program logs. However,
the natural language referencing this information may indicate OB. Such
cases were allowed for coding. An example of this case is: “When I click
the File menu, I get the following error and stack trace: ...”.

– Internal behavior of the system, described by the reporters, was also al-
lowed for coding, for example: “The open() method in the class FileMenu
reads the menu options from the XML file...”.

– Descriptions of graphical user interface issues can be considered as OB, for
example: “The menu’s color is too light, it should be darker”.

– Uninformative sentences, such as “The File menu does not work” are in-
sufficient to be considered OB. There must be a clear description of the
software’s OB, e.g., “The File menu doesn’t open when I click on it”.

– Explanations of attached code to the bug reports are not considered OB,
for example: “The attached code defines the openMenu() method, which
iterates on the menu options...”.

EB Coding Criteria.

– Only sentences written by the reporters corresponding to the expected
software behavior were allowed for coding.

– Like for OB, uninformative sentences, such as “The File menu should work”
are insufficient to be considered EB. Only sentences with a clear description
of the EB were allowed for coding, for instance: “The File menu should open
when I click on it”.

– Solutions or recommendations to solve the bug are not considered EB,
hence they were not allowed for coding. An example of these cases is: “You
should refactor the FileMenu class...”

– Imperative sentences that do not describe S2R may convey EB, for exam-
ple: “Make the File menu not to open automatically when I hover over it”.
However, often times, imperative sentences describe tasks that should be
completed by developers, instead of describing EB (Chaparro et al., 2017a).

5 http://brat.nlplab.org/

20 Oscar Chaparro et al.

S2R Coding Criteria.

– One or more sentences in a bug report can express steps to reproduce. The
sentences may form a complete paragraph or be part of one. A paragraph
describing S2R may contain OB or EB sentences. In such cases, the OB/E-
B/S2R sentences must be tagged accordingly. In any case, only the S2R
text written by users is allowed for coding. This means that source code,
commands, or attachments to the bug report are excluded from coding.
The natural language referencing this information may indicate S2R and
was allowed for coding. An example of this case is: “When I execute the
script attached, I get the following error: ...”.

– Some S2R may be labeled with phrases such as “to reproduce:” or “steps
to reproduce”. The label per se cannot be considered S2R, only the natural
language content that such phrases are labeling must be coded as S2R. An
example of these cases is shown in Figure 2.

– Imperative and conditional sentences are often used to describe S2R (Cha-
parro et al., 2017b). However, only the sentences giving enough details
about how to reproduce the bug were allowed for coding. For example,
the sentence “When I use the wall, facebook will not retrieve...” does not
give details on the S2R, thus should not be tagged. In contrast, the sen-
tence “When I share a URL in my Facebook wall page, Facebook will not
retrieve...” gives a specific and clear description of the S2R, hence should
be tagged accordingly.

We made the choice of having one coder for each bug report in order to
maximize the number of queries used in the evaluation. Given the nature of the
coding task, one would expect differences between different coders (Chaparro
et al., 2017b,a). Our future work will investigate the differences between coders
and assess the robustness of the proposed reformulation strategies with respect
to these differences. In any case, our past experience when we had multiple
coders per bug report, revealed high agreement between coders.

3.5.3 Identification of TITLE and CODE

The identification of TITLE and CODE in the sampled bug reports was per-
formed automatically. The TITLE was given by the default structure of the
bug reports collected from the issue trackers as they contain a separate field
for the title. The CODE was identified using the StORMeD island parser6

provided by Ponzanelli et al. (Ponzanelli et al., 2015), which automatically
identifies (in)complete multi-language code elements within natural language
documents. We only considered code snippets as CODE, as opposed to iden-
tifiers referenced in the text written by the reporters.

6 https://stormed.inf.usi.ch/

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 21

Fig. 2: Bug report #101434 from Eclipse. The highlighted text corresponds
to the title (TITLE), observed behavior (OB), expected behavior (EB), and
steps to reproduce (S2R).

Bug report title:
[Contexts] performance: Slow cursor navigation in Text fields [TITLE]

Bug report description:
N20050623-0010-gtk.

Not sure whether this is my particular install or a new problem.

With the above build, cursor navigation in any text field is extremely slow. [OB]

Steps:
- open the Find dialog (alternatively: open the preference dialog, or the Team>Create
Patch wizard)
- in a text field, enter some text, at least 20 characters
- press and hold the ARROW LEFT / RIGHT keys [S2R]

Expected: I see the caret move through the entered text [EB]

Actual: The cursor does not visibly change its position until after releasing the key
plug some delay. [OB]

[...]

Legend: TITLE OB EB S2R

Bug report found at https://bugs.eclipse.org/bugs/show_bug.cgi?id=101434

3.5.4 Structure Identification Results

Overall, 1,185 (i.e., 97.1%) of the tagged bug reports describe an OB (see
Table 8), and only 284 (23.2%), 625 (51.2%), and 481 (39.4%) of the bug
reports contain sentences corresponding to EB, S2R, and CODE, respectively.
These proportions are in line with the ones measured in other bug reports
data sets (Davies and Roper, 2014; Chaparro et al., 2017b,a). The TITLE
is always present in all bug reports, and the OB is found in almost all of
them, hence they are more applicable for query reformulation than the other
bug information. The coding required significant manual effort for the 1,221
reports, however, in an actual usage scenario, the user only needs to select
the OB/EB/S2R/TITLE/CODE sentences from a single report, which takes
seconds. For example, from the bug report shown in Figure 2, the user would
only select the highlighted text and use it for reformulation, depending on
the reformulation strategy. Note that the OB, EB, S2R, or CODE may be
described in non-contiguous parts of the text, including in parts of the title.
Other parts of the bug description are ignored when reformulating the query.

22 Oscar Chaparro et al.

Table 8: Number (and proportion) of sampled queries that contain TITLE,
OB, EB, S2R, and CODE.

Data set TITLE OB EB S2R CODE
CDS 270 (100%) 266 (98.5%) 65 (24.1%) 142 (52.6%) 118 (43.7%)
FDS 792 (100%) 763 (96.3%) 180 (22.7%) 421 (53.2%) 286 (36.1%)
MDS 159 (100%) 156 (98.1%) 39 (24.5%) 62 (39.0%) 77 (48.4%)
Total 1,221 (100%) 1,185 (97.1%) 284 (23.3%) 625 (51.2%) 481 (39.4%)

3.6 Evaluation Procedure and Measures

The evaluation focuses on the initial queries that fail to retrieve the buggy code
artifacts in top-N (i.e., low-quality queries), in the first step of our proposed
bug localization scenario (see Section 2). We reformulate the low-quality initial
queries by retaining the sentences tagged as OB, EB, S2R, TITLE, or CODE,
and removing the rest of the sentences in the bug description, depending on the
reformulation strategy. We call the reformulated queries reduced queries. Note
that if a sentence is tagged as more than one type of content (e.g., both OB
and S2R), we include the sentence only once in the reduced query. We refor-
mulated all 1,221 initial queries using each one of the reformulation strategies.
The only condition for having a valid reduced query, given a reformulation
strategy, is the presence of all types of information in the bug descriptions
corresponding to the strategy. For example, for the strategy OB+EB+CODE,
we reformulated only the initial queries containing OB, EB, and CODE in
their bug descriptions. When all five information types are present in the bug
report (i.e., TITLE, OB, EB, S2R, and CODE), we will have the initial query
and 31 reduced queries.

We executed the initial and reduced queries with the five TRBL techniques,
depending on the code granularity (see Table 9). We measured the TRBL
performance using HITS@N, which is the proportion of queries for which a
TRBL approach returns at least one buggy code document within the top-
N candidates. This is one of the most commonly used measures in TRBL
research (Wang and Lo, 2014; Zhou et al., 2012; Moreno et al., 2014; Wong
et al., 2014) and it is ideal for assessing the performance of TRBL techniques
as, in practice, developers would likely inspect the top-N results only, rather
than the full list of results.

Our empirical evaluation mimics an actual usage scenario of our reformu-
lation approach, where the developer issues the initial query and inspects the
N results returned by a TRBL engine (step #1). If she does not find any
buggy code artifact, then she makes the choice of reformulating the initial
query (e.g., via any of the proposed reformulation strategies) or using the
same initial query (i.e., no reformulation) to retrieve additional N candidates
(step #2). The N results returned by the initial query in step #1 are removed
from the result lists produced in step #2 by both the reformulated query and
the initial query (because they are deemed non-buggy), and then HITS@N
is computed for both the initial and the reformulated query in the second

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 23

Table 9: Number (and proportion) of reduced queries (for N=5) generated by
each reformulation strategy and executed by each TRBL technique.

Reformulation strategy Lucene Lobster BugLocator BRTracer Locus
TITLE 1,080 (100%) 49 (100%) 728 (100%) 630 (100%) 332 (100%)

OB 1,047 (97%) 48 (98%) 699 (96%) 605 (96%) 318 (96%)
OB+TITLE 1,048 (97%) 48 (98%) 699 (96%) 605 (96%) 318 (96%)

S2R 544 (50%) 29 (59%) 387 (53%) 333 (53%) 202 (61%)
S2R+TITLE 547 (51%) 29 (59%) 391 (54%) 337 (53%) 202 (61%)

OB+S2R 542 (50%) 29 (59%) 387 (53%) 334 (53%) 200 (60%)
OB+S2R+TITLE 542 (50%) 29 (59%) 387 (53%) 334 (53%) 200 (60%)

CODE 403 (37%) 23 (47%) 249 (34%) 218 (35%) 161 (48%)
TITLE+CODE 415 (38%) 25 (51%) 255 (35%) 222 (35%) 161 (48%)

OB+CODE 402 (37%) 25 (51%) 244 (34%) 213 (34%) 155 (47%)
OB+TITLE+CODE 402 (37%) 25 (51%) 244 (34%) 213 (34%) 155 (47%)

S2R+CODE 244 (23%) 15 (31%) 166 (23%) 142 (23%) 110 (33%)
S2R+TITLE+CODE 244 (23%) 15 (31%) 166 (23%) 142 (23%) 110 (33%)

OB+S2R+CODE 242 (22%) 15 (31%) 164 (23%) 141 (22%) 109 (33%)
OB+S2R+TITLE+CODE 242 (22%) 15 (31%) 164 (23%) 141 (22%) 109 (33%)

EB 237 (22%) 5 (10%) 167 (23%) 135 (21%) 78 (23%)
EB+TITLE 240 (22%) 5 (10%) 167 (23%) 135 (21%) 78 (23%)

OB+EB 232 (21%) 4 (8%) 161 (22%) 129 (20%) 76 (23%)
OB+EB+TITLE 232 (21%) 4 (8%) 161 (22%) 129 (20%) 76 (23%)

EB+S2R 131 (12%) 1 (2%) 92 (13%) 75 (12%) 48 (14%)
EB+S2R+TITLE 131 (12%) 1 (2%) 92 (13%) 75 (12%) 48 (14%)

OB+EB+S2R 129 (12%) 1 (2%) 91 (13%) 74 (12%) 48 (14%)
OB+EB+S2R+TITLE 129 (12%) 1 (2%) 91 (13%) 74 (12%) 48 (14%)

EB+CODE 91 (8%) 3 (6%) 67 (9%) 50 (8%) 41 (12%)
EB+TITLE+CODE 91 (8%) 3 (6%) 67 (9%) 50 (8%) 41 (12%)

OB+EB+CODE 89 (8%) 3 (6%) 65 (9%) 48 (8%) 40 (12%)
OB+EB+TITLE+CODE 89 (8%) 3 (6%) 65 (9%) 48 (8%) 40 (12%)

EB+S2R+CODE 55 (5%) 1 (2%) 43 (6%) 30 (5%) 26 (8%)
EB+S2R+TITLE+CODE 55 (5%) 1 (2%) 43 (6%) 30 (5%) 26 (8%)

OB+EB+S2R+CODE 55 (5%) 1 (2%) 43 (6%) 30 (5%) 26 (8%)
OB+EB+S2R+TITLE+CODE 55 (5%) 1 (2%) 43 (6%) 30 (5%) 26 (8%)

Total 1,080 49 728 630 332

step. We repeat this process for the queries generated based on all 31 refor-
mulation strategies, using the five TRBL approaches, for N={5, 6, 7, ..., 30}
– 26 thresholds N total. The replication package also includes the results for
N={1, 2, 3, 4} and for additional evaluation metrics (see below). In the end,
if the HITS@N for the reformulated queries is higher than the one for the
initial queries, we can conclude that the reformulation is a better strategy. If
the measures are the other way around, we can conclude that it is not worth
reformulating the query, as there is no gain over just simply investigating N
more results returned by the initial query. We perform the comparison only in
the cases where an initial query could be successfully reduced since otherwise,
the reformulation would have no effect.

When comparing different TRBL techniques, researchers also use Mean
Reciprocal Rank (MAP) and Mean Average Precision (MAP) (Dit et al., 2012).

Mean Reciprocal Rank (MRR) is a statistic that measures the quality of
the ranking of TRBL technique by capturing how close to the top of the result
list a relevant (i.e., buggy) code document (to a query q) is retrieved. MRR is
given by the average of the reciprocal rank of a set of queries Q:

24 Oscar Chaparro et al.

MRR(Q) =
1

|Q|
∑
q∈Q

1

rank(q)
(1)

where rank(q) is the rank of the first buggy code artifact found in the result
list produced by q. The higher the MRR value, the higher the ranking quality
of the bug localization approach will be. MRR is an aggregate measure of how
high the first relevant document ranks.

Mean Average Precision (MAP) is a measure of the accuracy of a retrieval
approach based on the average precision of each query q in the set Q. Given
Rq, the set of documents relevant to query q, the average precision is computed
as the average of the precision values at the resulting rank of each document.
MAP is the mean of the average precision of the set of queries Q, defined as
follows:

MAP(Q) =
1

|Q|
∑
q∈Q

1

|Rq|
∑
r∈Rq

precision(rank(r)) (2)

where rank(r) is the rank of the buggy document r in the result list and
precision(N) = (# buggy docs. in top-N)/N , i.e., the proportion of code doc-
uments found in top-N that are buggy. MAP reflects how well all the buggy
code documents rank, in aggregate.

We measured the Magnitude of Improvement (Improv) for the metrics used
in this evaluation (i.e., HITS@N, MAP, and MRR), by computing the change
percentage of metric M before (Mb) and after reformulation (Ma):

Improv(M) =
Ma −Mb

Mb
(3)

We aim at maximizing Improv, avoiding negative values, which would mean
deterioration rather than improvement. When Ma and Mb equal to zero, then
Improv is zero. Otherwise, Improv is undefined when Mb is zero.

We assessed the statistical significance of our measures using the Mann-
Whitney test (Hollander et al., 2013), a non-parametric test for comparing
paired samples whose distributions are not assumed to follow a normal dis-
tribution (which is our case). This method was used to test if an evaluation
measure M , when applying a reformulation strategy (Ma), is higher than when
using no reformulation (Mb). We carried out the test on the HITS@N, MRR,
and MAP paired values that we collected across the 26 threshold values and
3 data sets, for each TRBL technique. For each metric M , we defined the null
hypothesis as H0 : Mb ≥Ma, and the alternative hypothesis as H1 : Mb < Ma.
We applied the test with a 95% confidence level, thus rejecting the null hy-
pothesis, in favor of the alternative, if p-value < 5%.

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 25

3.6.1 HITS@N vs. MRR/MAP

The main difference between HITS@N and MRR/MAP is that HITS@N is
based on checking the top-N results only, while MRR and MAP are based
on checking the entire list of retrieved code elements. HITS@N and MRR are
based on the rank of the first buggy code artifact found in the result list (i.e.,
the closest artifact to the top of the list), while MAP is based on rank of all
the buggy code artifacts in the result list (when there is more than one). Note
that MRR and MAP are the same, when there is only one buggy code artifact
for a query.

We focus the analysis in this paper on HITS@N for the following reasons:
(1) Developers are likely to inspect the top-N results retrieved by a TRBL tech-
nique (rather than the entire list of results) before switching to other methods
for localizing the bug (e.g., navigating code dependencies). We contend that
checking the top-N results only (captured by HITS@N) is more realistic than
checking the entire result list (captured by MRR/MAP); (2) For the cases
when more than one buggy code artifact exist, developers are likely to switch
to other strategies when they find one of the buggy artifacts in the result list. It
is likely that other strategies, such as navigating code dependencies, will lead
to finding the other artifacts faster since the artifacts may be related in the
code structure. In other words, it is more important for developers to retrieve
one of the buggy code artifacts (rather than all of them) in top-N. The rank-
ing of the other buggy artifacts, outside the top-N, is less important. HITS@N
and MRR measure this phenomenon better than MAP, however, HITS@N is
more intuitive and easier to interpret than MRR; (3) When comparing two
TRBL techniques, MRR and MAP do a very good job in capturing the overall
retrieval performance and support the comparison when the two techniques
are tested with a large number of queries. However, we are not comparing two
TRBL techniques using the same query, but comparing two queries used with
the same TRBL technique: the reformulated query and the original one, for
retrieving at least one buggy code artifact in the additional N results. In this
case, HITS@N is more intuitive and easier to interpret than MRR and MAP,
since it is based on the binary result of finding the first buggy artifact within
the top-N results.

For the sake of completeness, we also measured MAP and MRR and in-
cluded the results in the replication package (Chaparro et al., 2019). We ob-
served that MRR and MAP do not necessarily correspond with HITS@N. In
some cases, we observed HITS@N improvement and MRR/MAP deterioration
and also the other way around. For example, the reformulation strategy EB,
when using Lucene, deteriorates HITS@N by 10.6%, but improves MRR/MAP
by 35.5%/45.0%, on average7. As such, a MAP/MRR improvement may not
mean that the developer will retrieve the buggy code faster after reformulation
(i.e., within the top-N results).

7 See Table 11 and our replication package for more details.

26 Oscar Chaparro et al.

3.7 Analysis Framework

We define three criteria for determining the best reformulation strategies, and
thus, answering our research question: effectiveness, applicability, and con-
sistency.

We categorized the strategies by their effectiveness, in terms of HITS@N
improvement. The strategies that lead to HITS@N improvement (i.e., Im-
prov(HITS@N) > 0) are called effective; the ones that lead to deterioration
(i.e., Improv(HITS@N) < 0) are called ineffective; and those that lead to
no change of HITS@N (i.e., Improv(HITS@N) = 0) are called neutral . We
defined two sub-categories for the effective and ineffective categories, based
on the entire set of HITS@N improvement values that we collected for each
TRBL technique, each data set/granularity, and each threshold N. We relied
on the distribution quartiles to define the criteria for categorizing the strate-
gies across TRBL techniques, granularities, and thresholds N. Specifically, we
used the 1st and 3rd quartiles of the entire HITS@N improvement distribu-
tion, whose values are -20.6% and 21.4%, respectively – the median is zero.
Hence, we categorized the strategies that lead to improvement up to 21.4%
(i.e., 0% < Improv(HITS@N) ≤ 21.4%) as somewhat-effective, and those that
lead to higher improvement (i.e., Improv(HITS@N) > 21.4%) as very-effective.
Likewise, the strategies that lead to deterioration up to 20.6% (i.e., −20.6% ≤
Improv(HITS@N) < 0%) are categorized as somewhat-ineffective, and those
that lead to higher deterioration (i.e., Improv(HITS@N) < −20.6%) as very-
ineffective. Note that one strategy can fall in one sub-category for a particular
TRBL technique, granularity, or threshold N, and fall in another sub-category
for another {technique, granularity, threshold} combination.

Regarding applicability, we categorize the reformulation strategies ac-
cording to the number of initial queries that can be reformulated by each
one of the strategies. Table 10 shows that the OB, TITLE, and OB+TITLE
strategies can be used to reformulate nearly all initial queries (i.e., 97.1% -
100%), which means they are the most applicable strategies in an actual usage
scenario. We call these strategies highly-applicable, which are characterized
for retaining the OB and TITLE sentences. The strategies S2R, OB+S2R,
S2R+TITLE, and OB+S2R+TITLE are applicable in ∼50% of the cases,
hence we call them moderately-applicable. In addition to OB and TITLE, these
strategies retain the S2R sentences found in the bug reports. The strategies
CODE, TITLE+CODE, OB+CODE, and OB+TITLE+CODE are catego-
rized as somewhat-applicable because they reformulate ∼38% of the initial
queries. Note that the CODE is the common information type across these
strategies. The remaining strategies can be applied to less than 25% of the
queries, hence their applicability is low. The reformulation strategies using
EB alone or in combination with other information types belong to this sub-
category.

The third criterion is the consistency that a strategy achieves across all
thresholds N. In other words, we aim to determine if a strategy is effective,
neutral , or ineffective for most (if not all) thresholds N, within the selected

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 27

Table 10: Overall number (and proportion) of reduced queries generated by
each reformulation strategy, and the applicability of each strategy.

Reformulation strategy Reduced queries Applicability
TITLE 1,221 (100.0%)

HighOB 1,185 (97.1%)
OB+TITLE 1,185 (97.1%)

S2R 625 (51.2%)

Moderate
S2R+TITLE 625 (51.2%)

OB+S2R 619 (50.7%)
OB+S2R+TITLE 619 (50.7%)

CODE 481 (39.4%)

Somewhat
TITLE+CODE 481 (39.4%)

OB+CODE 468 (38.3%)
OB+TITLE+CODE 468 (38.3%)

S2R+CODE 290 (23.8%)

Low

S2R+TITLE+CODE 290 (23.8%)
OB+S2R+CODE 288 (23.6%)

OB+S2R+TITLE+CODE 288 (23.6%)
EB 284 (23.3%)

EB+TITLE 284 (23.3%)
OB+EB 275 (22.5%)

OB+EB+TITLE 275 (22.5%)
EB+S2R 159 (13.0%)

EB+S2R+TITLE 159 (13.0%)
OB+EB+S2R 156 (12.8%)

OB+EB+S2R+TITLE 156 (12.8%)
EB+CODE 120 (9.8%)

EB+TITLE+CODE 120 (9.8%)
OB+EB+CODE 118 (9.7%)

OB+EB+TITLE+CODE 118 (9.7%)
EB+S2R+CODE 77 (6.3%)

EB+S2R+TITLE+CODE 77 (6.3%)
OB+EB+S2R+CODE 77 (6.3%)

OB+EB+S2R+TITLE+CODE 77 (6.3%)

Size of the union query set across the five TRBL techniques.

set, i.e., N={5, 6, ..., 30}. Therefore, the degree of consistency is determined
by the proportion of thresholds N (out of the 26 values) for which a strategy
is effective, neutral , and ineffective, depending on the {technique, granularity,
threshold} combination. Ideally, a reformulation strategy improves HITS@N
for all 26 thresholds. However, a strategy may lead to improvement for some
thresholds, and to deterioration or no effect for some others. For instance,
the strategy OB+S2R may be effective for 22 thresholds, neutral for another
one, and ineffective for the remaining three. Hence, the best strategies are the
ones that maximize the number of N values for which they improve HITS@N
(i.e., effective), while minimizing the number of thresholds N for which they
deteriorate HITS@N (i.e., ineffective).

Intuitively, the best strategies are the ones that are effective (ideally, very-
effective), highly- or moderately-applicable, and improve HITS@N for most
thresholds N (out of the 26 N values). Conversely, the worst cases are the most
ineffective strategies, whose applicability is low, and consistently deteriorate

28 Oscar Chaparro et al.

Table 11: Average number (and proportion) of queries for which Lucene re-
trieves at least one buggy code document within the top-N results using each
one of the reformulation strategies (Reform) vs. no reformulation (No reform);
and number of thresholds for which each strategy is Effective (E), Neutral (N),
and Ineffective (I).

Reformulation # of HITS@N Thresh.
strategy queries No reform. Reform. Improv. E N I

OB+EB+TITLE 155.2 39.5 (26.0%) 51.1 (33.7%) 30.3% 26 0 0
OB+TITLE 763.6 173.5 (23.3%) 224.0 (29.9%) 29.3% 26 0 0

OB+S2R+TITLE 409.0 90.7 (22.9%) 116.0 (29.0%) 29.2% 26 0 0
OB+EB+S2R+TITLE 90.3 20.8 (23.5%) 26.5 (30.3%) 28.6% 25 0 1

OB+EB 155.2 39.5 (26.0%) 49.4 (32.5%) 26.1% 26 0 0
OB+TITLE+CODE 285.1 69.2 (24.9%) 86.2 (30.8%) 25.6% 26 0 0

OB+EB+S2R 90.3 20.8 (23.5%) 25.8 (29.4%) 24.9% 24 0 2
OB+S2R 409.0 90.7 (22.9%) 110.1 (27.5%) 22.4% 26 0 0
TITLE 783.5 178.7 (23.4%) 214.4 (27.9%) 20.1% 26 0 0

S2R+TITLE 409.9 91.5 (23.0%) 107.7 (26.8%) 19.1% 26 0 0
EB+TITLE 161.3 40.3 (25.5%) 46.9 (29.9%) 17.3% 25 0 1

OB 762.6 173.5 (23.3%) 201.5 (27.0%) 16.2% 26 0 0
OB+CODE 285.1 69.2 (24.9%) 78.8 (28.2%) 14.7% 26 0 0

EB+S2R+TITLE 90.8 21.2 (23.8%) 23.9 (27.7%) 14.4% 14 4 8
TITLE+CODE 292.5 70.9 (24.9%) 79.3 (27.5%) 12.4% 24 1 1

OB+EB+TITLE+CODE 55.3 15.1 (27.4%) 15.9 (29.0%) 6.7% 14 4 8
OB+S2R+TITLE+CODE 176.8 41.3 (24.0%) 43.7 (25.2%) 6.2% 18 3 5

OB+EB+CODE 55.3 15.1 (27.4%) 15.3 (28.1%) 3.3% 12 5 9
OB+S2R+CODE 176.8 41.3 (24.0%) 42.5 (24.6%) 3.2% 12 2 12

S2R+TITLE+CODE 176.9 41.5 (24.0%) 39.7 (22.8%) -4.1% 8 2 16
OB+EB+S2R+TITLE+CODE 37.1 8.3 (22.3%) 7.2 (19.3%) -9.8% 5 4 17

EB+S2R 90.8 21.2 (23.8%) 18.6 (21.4%) -10.6% 6 1 19
EB 158.9 39.4 (25.2%) 34.8 (22.5%) -10.6% 2 2 22

OB+EB+S2R+CODE 37.1 8.3 (22.3%) 6.8 (18.4%) -15.1% 4 2 20
EB+TITLE+CODE 57.3 15.1 (26.4%) 12.3 (21.1%) -20.0% 1 0 25

S2R+CODE 176.9 41.5 (24.0%) 29.8 (17.2%) -27.9% 0 0 26
EB+CODE 57.3 15.1 (26.4%) 10.7 (18.7%) -29.3% 0 0 26

S2R 408.5 91.1 (23.0%) 62.3 (15.5%) -30.6% 0 0 26
CODE 284.5 69.2 (25.0%) 43.3 (15.6%) -37.2% 0 0 26

EB+S2R+TITLE+CODE 37.1 8.3 (22.3%) 5.0 (13.1%) -41.5% 0 1 25
EB+S2R+CODE 37.1 8.3 (22.3%) 4.3 (11.1%) -49.8% 0 0 26

Average # of queries and HITS@N values across the 3 data sets and 26 thresholds N.

Strategies sorted by average HITS@N improvement (Improv).

All strategies with positive improvement, except EB+S2R+TITLE, achieve

a statistically-significant higher HITS@N, compared to

no reformulation (Mann-Whitney, p-value< 5%).

HITS@N for most thresholds N. Note that the highly-applicable strategies
that are ineffective are quite undesirable, as they lead to a significant negative
impact from a practical point of view, i.e., they can be used frequently but
they lead to retrieving the buggy code documents in the top-N results for fewer
cases, compared to no reformulation.

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 29

Table 12: Categorization of each reformulation strategy according to their
Effectiveness and Applicability when using Lucene.

VE SE SI VI

O+T (29.3%) T (20.1%)

O (16.2%)

O+S+T (29.2%)

O+S (22.4%)

O+C (14.7%)

T+C (12.4%)

E+T (17.3%) S+T+C (-4.1%)

O+E+T (30.3%) E+S+T (14.4%) O+E+S+T+C (-9.8%) S+C (-27.9%)

O+E+S+T (28.6%) O+E+T+C (6.7%) E+S (-10.6%) E+C (-29.3%)

O+E (26.1%) O+S+T+C (6.2%) E (-10.6%) E+S+T+C (-41.5%)

O+E+S (24.9%) O+E+C (3.3%) O+E+S+C (-15.1%) E+S+C (-49.8%)

O+S+C (3.2%) E+T+C (-20.0%)

Effectiveness

A
p
p
li
c
a
b
il
it
y

H

M

S

L

S+T (19.1%)

O+T+C (25.6%)

S (-30.6%)

C (-37.2%)

In parenthesis, average HITS@N improvement across the 3 data sets and 26 thresholds N.

Strategies sorted by avg. HITS@N improvement for each Applicability-Effectiveness category.

Applicability categories: High (H), Moderate (M), Somewhat (S), and Low (L).

Effectiveness categories: Very Effective (VE), Somewhat Effective (SE), Somewhat

Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to

the effective category and the strategies in red to the ineffective category.

Information types: OB (O), EB (E), S2R (S), TITLE (T), and CODE (C).

4 Evaluation Results and Discussion

We present and discuss the results obtained from the empirical evaluation of
the 31 reformulation strategies, across the three code granularities/data sets
and 26 thresholds (N=5, 6, 7, ..., 30), for Lucene (Section 4.1), Lobster (Section
4.2), BugLocator (Section 4.3), BRTracer (Section 4.4), and Locus (Section
4.5). In addition, we analyze the results for each code granularity (Section 4.6)
and for all TRBL techniques on aggregate (Section 4.7). We provide examples
and discuss the best and worst reformulation strategies (Section 4.8), including
the trade-offs between successful and unsuccessful queries (Section 4.9).

4.1 Performance for Lucene

Tables 11 and 12 show the results obtained for Lucene across the 26 thresh-
olds N and three code granularities (or data sets). The replication package
(Chaparro et al., 2019) contains the breakdown for each data set and each
threshold N (N=5, 6, 7, ..., 30). The way to interpret the results in Table 11 is
as follows. For example, let us look at the OB reformulation strategy, reading
its corresponding row in the table. OB is present in 762.6 queries (on average
across all N and data sets) – second column “# of queries”. If the user in-
vestigates N more returned code documents without reformulating the initial
query, then 173.5 (23.3%) of them will retrieve a relevant code document in
top-N – third column “No reform.”. Conversely, using OB to reformulate the
queries results in 201.5 (27%) of them returning relevant code documents in
top-N – fourth column “Reform.”. This means 16.2% avg. improvement when
reformulating – fifth column “Improv.”.

30 Oscar Chaparro et al.

We measured the number of thresholds N (out of the 26 N we used) for
which each reformulation strategy is effective, neutral and ineffective. Table
11 also shows the results we obtained for Lucene regarding this aspect. Let us
focus on the OB strategy once more. The last three columns in the table show
that OB is effective (E) across all 26 thresholds N, while never being neutral
(N) and ineffective (I). Another example is the following: the OB+EB+S2R
reformulation strategy (in row #8) is effective for 24 thresholds N (sixth col-
umn ‘E’), and ineffective for the remaining two thresholds (seventh column
‘I’). The strategy is never neutral , i.e., the value of the last column ‘N’ is zero.

We categorized each reformulation strategy into the categories defined in
Section 3.7 for effectiveness and applicability, according to how much a strategy
improves HITS@N and the number of queries it can reformulate. For Lucene,
this categorization is shown in Table 12, and the way to interpret the table is
as follows. For example, let us keep looking at the OB8 reformulation strategy.
As OB can be used to reformulate 97.1% of the queries (see Table 10), its
applicability is considered high (HI). Since OB’s HITS@N improvement (i.e.,
16.2%) is positive but less than 21.4%, the strategy is considered as somewhat-
effective (SE). Therefore, the OB strategy (labeled as ‘O’ in the table) is placed
in the cell of the second row and third column of Table 12, which corresponds
to the intersection of the categories “Applicability-H” and “Effectiveness-SE”.
Note that the TITLE strategy (labeled as ‘T’ in the table) also belongs to
this Applicability-H/Effectiveness-SW category, however, since it achieves a
greater avg. HITS@N improvement than OB (i.e., 20.1%), it ranks above OB.

Tables 11 and 12 reveal that 19 (out of 31) strategies improve HITS@N by
3.2% - 30.3%, on average (i.e., they are effective). Among these, 8 strategies
are very-effective (i.e., their HITS@N improvement is higher than 21.4%),
OB+EB+TITLE leading to the highest HITS@N improvement, i.e., it re-
trieves the buggy code document(s) for 30.3% more queries (on average) than
without using the reformulation (i.e., ∼51 vs ∼40 queries). This strategy also
achieves 54.2% (51%) MRR (MAP) average improvement with respect to no re-
formulation - see our replication package for the full MRR/MAP results (Cha-
parro et al., 2019). Table 12 reveals that while OB+EB+TITLE is the most ef-
fective, it is one of the least applicable strategies (because of EB). Other strate-
gies are more applicable and achieve comparable effectiveness. OB+TITLE is
the highly-applicable strategy that achieves the highest avg. HITS@N improve-
ment (i.e., 29.3% – also 57.8%/60.5% avg. MRR/MAP improvement). In fact,
OB+TITLE is the second most effective strategy, which consistently improves
HITS@N for all 26 thresholds N (see Table 11). The other two highly-applicable
strategies, namely TITLE and OB, achieve lower avg. HITS@N improvement
(i.e., 20.1% and 16.2%, respectively), and fall in the somewhat-effective cat-
egory. Among the moderately-applicable strategies, OB+S2R+TITLE is the
most-effective (3rd most-effective overall), as it improves TRBL for 29.2% more
queries (on average) compared to no reformulation (i.e., 45.9%/51.2% aver-
age MRR/MAP improvement). As for the other moderately-applicable strate-

8 We changed the notation in the table for space reasons.

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 31

gies, OB+S2R is very-effective, S2R+TITLE is somewhat-effective, and S2R
very-ineffective. All highly- and moderately-applicable strategies, except S2R,
consistently improve HITS@N for all thresholds N, and their improvement is
statistically-significant (Mann-Whitney, p-value < 5%). Our replication pack-
age contains the full results of the statistical tests for HITS@N, MRR, and
MAP (Chaparro et al., 2019).

The remaining 12 strategies are ineffective (i.e., they deteriorate HITS@N
compared to the initial queries). Among these, EB+S2R+TITLE+CODE and
EB+S2R+CODE are the ones with the lowest applicability and highest dete-
rioration, i.e., more than 40% HITS@N/MAP/MRR deterioration (see Tables
11 and 12, and our online replication package). Also, these strategies consis-
tently lead to deterioration for 25 thresholds N (see Table 11). Note that the
strategies that retain the EB, S2R, and CODE alone or in combination belong
to the very-ineffective category (their HITS@N deterioration is greater than
20.6%), S2R and CODE being the ones with the highest negative impact in
practice, i.e., they are moderately- and somewhat-applicable, respectively, and
achieve high deterioration levels.

We conclude that OB+TITLE is the best reformulation strategy when
using Lucene, because it is very-effective, highly-applicable, and consistently
leads to HITS@N improvement (with respect to no reformulation) for all 26
thresholds N.

4.2 Performance for Lobster

The results obtained for Lobster reveal that 25 (out of 31) reformulation strate-
gies are effective (see Tables 13 and 14). In particular, 23 strategies return the
buggy code artifacts in top-N for 20% - 222.2% more queries (on average)
than without reformulation. Unlike when using no reformulation, the other
two strategies, i.e., OB+EB+S2R(+TITLE), are able to return the buggy
code document(s) for the only query they can reformulate (see the last two
rows of Table 139). All the effective strategies achieve HITS@N improvement
with statistical significance (Mann-Whitney, p-value < 5%). The 6 remaining
strategies have no effect on TRBL (i.e., they are neutral).

Twenty-two of the effective strategies belong to the very-effective category,
OB+EB+TITLE and OB+EB being the most effective ones, i.e., they both
achieve 222.2% avg. HITS@N improvement, and 1,167.6%/839.8% avg. MR-
R/MAP improvement10. However, the applicability of these strategies is rather
low, as they can reformulate ∼3 initial queries only. All highly-applicable are
very-effective (see Table 14), and consistently improve HITS@N across all 26
thresholds N, with respect to no reformulation (see Table 13). Among these,
TITLE is the strategy with the highest effectiveness (i.e., 97.1% avg. HITS@N

9 HITS@N improvement cannot be measured for these two strategies because the HITS@N
achieved by the initial queries (i.e., no reformulation) is zero, hence, the improvement is
undefined (see Formula 3).
10 See our replication package for the detailed MRR/MAP results (Chaparro et al., 2019).

32 Oscar Chaparro et al.

Table 13: Average number (and proportion) of queries for which Lobster
retrieves at least one buggy code document within the top-N results using
each one of the reformulation strategies (Reform) vs. no reformulation (No
reform); and number of thresholds for which each strategy is Effective (E),
Neutral (N), and Ineffective (I).

Reformulation # of HITS@N Thresh.
strategy queries No reform. Reform. Improv. E N I

OB+EB+TITLE 3.2 1.0 (31.5%) 3.2 (100.0%) 222.2% 18 8 0
OB+EB 3.2 1.0 (31.5%) 3.2 (100.0%) 222.2% 18 8 0

EB+TITLE 4.2 1.0 (23.9%) 3.2 (75.0%) 216.7% 18 8 0
EB 4.2 1.0 (23.9%) 2.2 (52.2%) 122.2% 18 8 0

S2R+TITLE 20.7 4.8 (22.2%) 9.0 (42.0%) 116.2% 23 3 0
OB+S2R+TITLE 20.7 4.8 (22.2%) 8.9 (41.5%) 113.8% 23 3 0

OB+S2R 20.7 4.8 (22.2%) 8.6 (40.3%) 108.9% 23 3 0
EB+TITLE+CODE 2.2 1.0 (46.3%) 2.0 (92.6%) 100.0% 18 8 0

OB+EB+TITLE+CODE 2.2 1.0 (46.3%) 2.0 (92.6%) 100.0% 18 8 0
OB+EB+CODE 2.2 1.0 (46.3%) 2.0 (92.6%) 100.0% 18 8 0

TITLE 35.6 6.8 (18.5%) 13.0 (35.2%) 97.1% 26 0 0
OB+TITLE+CODE 17.2 4.0 (22.9%) 7.7 (42.6%) 95.2% 26 0 0

TITLE+CODE 17.2 4.0 (22.9%) 7.5 (41.8%) 92.0% 26 0 0
OB+CODE 17.2 4.0 (22.9%) 7.4 (41.5%) 89.9% 26 0 0
OB+TITLE 34.6 6.8 (19.0%) 12.2 (34.4%) 88.3% 26 0 0

OB 34.6 6.8 (19.0%) 11.7 (33.2%) 82.1% 26 0 0
S2R 20.7 4.8 (22.2%) 6.4 (30.0%) 60.8% 17 9 0

S2R+TITLE+CODE 10.9 3.4 (31.7%) 5.3 (47.4%) 58.4% 19 7 0
OB+S2R+TITLE+CODE 10.9 3.4 (31.7%) 5.1 (46.0%) 55.3% 16 10 0

OB+S2R+CODE 10.9 3.4 (31.7%) 4.9 (45.0%) 50.9% 16 10 0
S2R+CODE 10.9 3.4 (31.7%) 4.8 (44.2%) 45.7% 19 7 0

CODE 16.1 3.9 (23.9%) 4.8 (29.1%) 28.9% 17 8 1
EB+CODE 2.1 0.9 (41.7%) 1.1 (48.3%) 20.0% 4 22 0

EB+S2R+TITLE 1 0.0 (0.0%) - (0.0%) 0.0% 0 26 0
EB+S2R 1 0.0 (0.0%) - (0.0%) 0.0% 0 26 0

EB+S2R+TITLE+CODE 1 0.0 (0.0%) - (0.0%) 0.0% 0 26 0
EB+S2R+CODE 1 0.0 (0.0%) - (0.0%) 0.0% 0 26 0

OB+EB+S2R+CODE 1 0.0 (0.0%) - (0.0%) 0.0% 0 26 0
OB+EB+S2R+TITLE+CODE 1 0.0 (0.0%) - (0.0%) 0.0% 0 26 0

OB+EB+S2R 1 0.0 (0.0%) 1.0 (100.0%) - 26 0 0
OB+EB+S2R+TITLE 1 0.0 (0.0%) 1.0 (100.0%) - 26 0 0

Average # of queries and HITS@N values across CDS and the 26 thresholds N.

Strategies sorted by average HITS@N improvement (Improv).

All strategies with positive improvement, including OB+EB+S2R(+TITLE), achieve

a statistically-significant higher HITS@N, compared to

no reformulation (Mann-Whitney, p-value< 5%).

improvement and 286.4%/243% avg. MRR/MAP improvement), followed by
OB+TITLE, which is able to retrieve the buggy code documents for 88.3%
more queries than the initial queries (on average). All moderately-applicable
strategies, except S2R, consistently improve TRBL for 23 thresholds and are
neutral for the remaining 3 N, and all of them are categorized as very-effective.
It is important to note that the improvement rates for Lobster are (signif-
icantly) higher than for the other four TRBL approaches. This is because

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 33

Table 14: Categorization of each reformulation strategy according to their
Effectiveness and Applicability when using Lobster.

VE SE N SI VI

T (97.1%)

O+T (88.3%)

O (82.1%)

S+T (116.2%)

O+S+T (113.8%)

O+S (108.9%)

S (60.8%)

O+T+C (95.2%)

T+C (92.0%)

O+C (89.9%)

C (28.9%)

O+E+T (222.2%)

O+E (222.2%)

E+T (216.7%)

E (122.2%) E+S+T (0.0%)

E+T+C (100%) E+S (0.0%)

O+E+T+C (100%) E+C (20.0%) E+S+T+C (0.0%)

O+E+C (100%) E+S+C (0.0%)

S+T+C (58.4%) O+E+S+C (0.0%)

O+S+T+C (55.3%) O+E+S+T+C (0.0%)

O+S+C (50.9%)

S+C (45.7%)

Effectiveness

A
p
p
li
c
a
b
il
it
y

H

M

S

L

In parenthesis, average HITS@N improvement across CDS and 26 thresholds N.

Strategies sorted by avg. HITS@N improvement for each Applicability-Effectiveness category.

Applicability categories: High (H), Moderate (M), Somewhat (S), and Low (L).

Effectiveness categories: Very Effective (VE), Somewhat Effective (SE), Neutral (N),

Somewhat Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to

the effective category and the strategies in red to the ineffective category.

Information types: OB (O), EB (E), S2R (S), TITLE (T), and CODE (C).

Lobster can only be used for the bug reports that contain stack traces, which
are not many in our data sets (i.e., between 1 and 49 queries, see Table 9).

We conclude that TITLE is the best reformulation strategy when using
Lobster, since it is very-effective, highly-applicable, and it consistently retrieves
more buggy code documents than no reformulation across all 26 thresholds N.

4.3 Performance for BugLocator

Tables 15 and 16 shows the results obtained for BugLocator across the 26
thresholds N and FDS (i.e., file-level granularity). The results reveal that only
two reformulation strategies, namely OB+TITLE+CODE and OB+EB+ TI-
TLE+CODE, retrieve more code artifacts in top-N compared to no reformula-
tion. OB+TITLE+CODE’s improvement reaches 4.4% (on average) in terms
of HITS@N (6.8%/21.9% avg. MRR/MAP improvement), and OB+EB+ TI-
TLE+CODE’s improvement over the initial queries is minimal (i.e., 0.2% avg.
HITS@N and 7.5% avg. MAP improvement, and 7.3% avg. MRR deteriora-
tion). Further, none of these improvements are statistically significant (Mann-
Whitney, 5% significance level) and these strategies present low consistency

34 Oscar Chaparro et al.

Table 15: Average number (and proportion) of queries for which BugLocator
retrieves at least one buggy code document within the top-N results using each
one of the reformulation strategies (Reform) vs. no reformulation (No reform);
and number of thresholds for which each strategy is Effective (E), Neutral (N),
and Ineffective (I).

Reformulation # of HITS@N Thresh.
strategy queries No reform. Reform. Improv. E N I

OB+TITLE+CODE 174.7 33.1 (18.9%) 33.7 (19.5%) 4.4% 14 0 12
OB+EB+TITLE+CODE 36.0 9.7 (26.1%) 9.2 (25.7%) 0.2% 8 4 14

OB+CODE 174.7 33.1 (18.9%) 31.6 (18.4%) -0.7% 12 2 12
OB+S2R+TITLE 309.1 47.3 (15.5%) 46.1 (15.1%) -2.1% 8 3 15

OB+TITLE 552.4 91.3 (16.8%) 85.5 (15.8%) -6.0% 6 2 18
OB+EB+CODE 36.0 9.7 (26.1%) 8.4 (23.4%) -8.4% 8 3 15

OB+S2R+TITLE+CODE 117.4 21.3 (18.0%) 19.2 (16.3%) -8.9% 4 4 18
OB+S2R 309.1 47.3 (15.5%) 41.5 (13.6%) -11.9% 0 0 26

EB+TITLE+CODE 38.0 9.7 (24.7%) 8.0 (21.3%) -12.2% 5 3 18
OB+EB+S2R+TITLE+CODE 25.0 6.8 (26.9%) 5.9 (23.1%) -13.1% 2 8 16

OB 552.4 91.3 (16.8%) 78.9 (14.6%) -13.2% 0 0 26
S2R+TITLE 311.2 48.0 (15.6%) 40.7 (13.3%) -15.1% 1 0 25

OB+EB+TITLE 113.5 23.1 (20.6%) 19.5 (17.5%) -15.8% 0 1 25
OB+S2R+CODE 117.4 21.3 (18.0%) 17.6 (15.0%) -15.9% 4 2 20
TITLE+CODE 182.1 35.6 (19.5%) 29.0 (16.1%) -17.0% 0 0 26

EB+TITLE 118.7 23.8 (20.4%) 18.9 (16.3%) -20.2% 0 0 26
OB+EB+S2R+TITLE 66.7 13.4 (20.6%) 10.8 (16.5%) -20.3% 0 2 24
S2R+TITLE+CODE 117.7 21.5 (18.1%) 17.0 (14.3%) -20.4% 0 1 25

OB+EB+S2R 66.7 13.4 (20.6%) 10.7 (16.5%) -20.6% 0 0 26
OB+EB+S2R+CODE 25.0 6.8 (26.9%) 5.4 (20.9%) -21.0% 2 8 16

OB+EB 113.5 23.1 (20.6%) 18.1 (16.2%) -21.8% 0 0 26
TITLE 571.7 96.4 (17.1%) 74.1 (13.2%) -22.9% 0 0 26

EB+S2R+TITLE+CODE 25.0 6.8 (26.9%) 4.7 (18.4%) -30.4% 0 4 22
EB+S2R+TITLE 67.5 13.9 (21.1%) 9.4 (14.3%) -32.6% 0 0 26

S2R+CODE 117.7 21.5 (18.1%) 13.8 (11.7%) -34.9% 0 0 26
EB+CODE 38.0 9.7 (24.7%) 5.9 (15.3%) -37.0% 0 0 26

EB+S2R+CODE 25.0 6.8 (26.9%) 4.2 (16.3%) -37.6% 0 2 24
CODE 177.2 34.8 (19.6%) 20.2 (11.6%) -40.1% 0 0 26

EB 118.7 23.8 (20.4%) 12.7 (11.0%) -46.8% 0 0 26
S2R 309.0 47.2 (15.5%) 25.0 (8.3%) -46.9% 0 0 26

EB+S2R 67.5 13.9 (21.1%) 7.4 (11.3%) -47.4% 0 0 26

Average # of queries and HITS@N values across FDS and the 26 thresholds N.

Strategies sorted by avg. HITS@N improvement (Improv).

None of the strategies achieve a statistically-significant higher HITS@N,

compared to no reformulation (Mann-Whitney, 5% significance level).

level across thresholds (i.e., they improve HITS@N for 14 and 8 thresholds
N while deteriorating it for 12 and 14 N, respectively). The remaining 29 re-
formulation strategies lead to HITS@N deterioration by 0.7% - 47.4% (i.e.,
they are ineffective). Thirteen of these are very-ineffective, TITLE, S2R, and
CODE being the ones with the highest negative impact in practice, given
their high, moderate, and somewhat applicability, respectively. S2R and CODE
are ineffective for all thresholds N, and TITLE for 24 N values. In fact, all
very-ineffective strategies never retrieve more buggy documents than when

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 35

Table 16: Categorization of each reformulation strategy according to their
Effectiveness and Applicability when using BugLocator.

VE SE SI VI

O+T (-6.0%)

O (-13.2%)

O+S+T (-2.1%)

O+S (-11.9%) S (-46.9%)

S+T (-15.1%)

O+C (-0.7%)

T+C (-17.0%)

O+E+C (-8.4%) O+E+S (-20.6%)

O+S+T+C (-8.9%) O+E+S+C (-21.0%)

E+T+C (-12.2%) O+E (-21.8%)

O+E+S+T+C (-13.1%) E+S+T+C (-30.4%)

O+E+T (-15.8%) E+S+T (-32.6%)

O+E+T+C (0.2%) O+S+C (-15.9%) S+C (-34.9%)

E+T (-20.2%) E+C (-37.0%)

O+E+S+T (-20.3%) E+S+C (-37.6%)

S+T+C (-20.4%) E (-46.8%)

E+S (-47.4%)

T (-22.9%)

Effectiveness

A
p
p
li
c
a
b
il
it
y

H

M

S C (-40.1%)

L

O+T+C (4.4%)

In parenthesis, average HITS@N improvement across FDS and 26 thresholds N.

Strategies sorted by avg. HITS@N improvement for each Applicability-Effectiveness category.

Applicability categories: High (H), Moderate (M), Somewhat (S), and Low (L).

Effectiveness categories: Very Effective (VE), Somewhat Effective (SE), Somewhat

Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to

the effective category and the strategies in red to the ineffective category.

Information types: OB (O), EB (E), S2R (S), TITLE (T), and CODE (C).

using no reformulation for each one of the 26 thresholds (see Table 15). The
highly-applicable strategies OB+TITLE and OB, and the moderately-applicable
strategies OB+S2R+TITLE, OB+S2R, and S2R+TITLE, are somewhat- in-
effective, and lead to deterioration for 15 or more thresholds. OB+S2R, OB,
and S2R+TITLE, always lead to deterioration for each threshold N. From all
the strategies that lead to deterioration, only OB+CODE, OB+EB+CODE,
OB+S2R+TITLE’s deterioration is not statistically significant, compared to
no reformulation (Mann-Whitney, 5% significance level). The results indicate
that OB+TITLE+CODE, OB+EB+TITLE+CODE, OB+CODE, OB+EB
+CODE, and OB+S2R+TITLE are nearly as effective as no reformulation,
despite their corresponding improvement or deterioration level.

We conclude that OB+TITLE+CODE is the best strategy for BugLocator,
as it leads to TRBL improvement with respect to the initial queries (in terms
of HITS@N, MRR, and MAP). The downside of this strategy is its somewhat
applicability and low consistency across thresholds N. The results indicate that
BugLocator can retrieve the buggy code artifacts within the top-N candidates
even if bug reports (used as input queries) contain noisy information. In other
words, BugLocator is very robust to noisy queries, and query reduction has
little effect on TRBL.

We experimented with the two scoring components of BugLocator in order
to know which one is more robust to noisy query terms. The first component
(i.e., rVSM) computes the similarity score between the query and a file by

36 Oscar Chaparro et al.

using a VSM-based similarity and a boost factor for the file, according to its
length. The second component (i.e., SimiScore) computes the similarity score
between the query and a file by using a VSM-based similarity between the
query and past bug reports that lead to changes in the file. The full version
of BugLocator combines the resulting similarity scores from both components
in a linear fashion, giving a 0.8 weight to rVSM and 0.2 weight to SimiS-
core. We found that using rVSM alone leads to five effective reformulation
strategies (i.e., they improve HITS@N by 5.9%-14.2% on average, compared
to no reformulation), and using SimiScore alone leads to twenty-two effective
strategies (i.e., they improve HITS@N by 0.2%-55% on average, with respect
to no reformulation). In addition, we found that the HITS@N achieved by
the initial queries when using rVSM is substantially higher than when using
SimiScore (i.e., 17.8% vs 8.9%, on average across reformulation strategies).
When both are combined (i.e., full BugLocator), the HITS@N achieved by
the initial queries reaches 20.5% on average. These results mean that rVSM
achieves such a high performance with the initial queries that the reformula-
tions have little effect. Hence, rVSM is more robust to noisy information in
the queries than SimiScore. We conjecture that increasing the frequency of
the terms in the reformulated queries proportionally to their frequency in the
full bug report can lead to higher retrieval improvement when using rVSM.
Verifying this conjecture is part of our future research agenda.

4.4 Performance for BRTracer

The results for BRTracer (see Tables 17 and 18) reveal that 14 (out of 31)
strategies improve TRBL with respect to no reformulation. OB+EB+S2R
is the reformulation strategy with the highest average HITS@N improve-
ment compared to no reformulation (i.e., 16.5%). The improvement is statis-
tically significant, according to the Mann-Whitney test (p-value< 5%). This
strategy also achieves 44.7%/35.4% avg. MRR/MAP improvement, and im-
proves HITS@N for 20 thresholds while deteriorating it for only one. The
downside of this strategy is its low applicability (see Table 18), as only ∼55
queries (out of ∼47411) can be reformulated with it, on average. OB+TITLE
is the only highly-applicable strategy that achieves avg. HITS@N improve-
ment (i.e., 0.9%). However, the improvement is not statistically significant
(Mann-Whitney, 5% significance level), and this strategy improves and dete-
riorates HITS@N for an equal number of thresholds (i.e., 13 N). Among the
moderately-applicable strategies, OB+S2R+TITLE is the one with the high-
est average HITS@N improvement (i.e., 15.6%), and it is the only strategy of
all that consistently improves HITS@N for all thresholds. This strategy also
leads to 12.8%/14.2% avg. MRR/MAP improvement, across all thresholds N
and FDS. Conversely, out of the 31 strategies, 17 of them lead to HITS@N
deterioration, and nine of them fall in the very-ineffective category, including

11 The # of queries for TITLE in Table 17 represents the avg. total # of queries for
BRTracer.

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 37

Table 17: Average number (and proportion) of queries for which BRTracer
retrieves at least one buggy code document within the top-N results using
each one of the reformulation strategies (Reform) vs. no reformulation (No
reform); and number of thresholds for which each strategy is Effective (E),
Neutral (N), and Ineffective (I).

Reformulation # of HITS@N Thresh.
strategy queries No reform. Reform. Improv. E N I

OB+EB+S2R* 55.2 10.7 (19.6%) 12.2 (22.5%) 16.5% 20 5 1
OB+S2R+TITLE* 255.5 51.2 (20.6%) 58.5 (23.4%) 15.6% 26 0 0

OB+EB+S2R+TITLE* 55.2 10.7 (19.6%) 12.0 (22.2%) 14.2% 20 2 4
OB+S2R+TITLE+CODE* 92.8 25.6 (28.3%) 27.1 (29.8%) 7.7% 17 4 5

OB+S2R* 255.5 51.2 (20.6%) 54.5 (21.9%) 7.7% 21 2 3
S2R+TITLE* 256.2 51.8 (20.7%) 54.4 (21.7%) 6.4% 17 2 7

EB+S2R+TITLE 55.3 10.8 (19.7%) 11.1 (20.7%) 5.5% 18 2 6
OB+EB 93.6 20.4 (22.2%) 21.0 (22.7%) 4.6% 13 3 10

OB+TITLE+CODE 139.3 39.2 (29.0%) 40.1 (29.2%) 2.8% 13 2 11
S2R+TITLE+CODE 93.1 25.8 (28.4%) 25.9 (28.3%) 2.7% 12 3 11

OB+EB+TITLE 93.6 20.4 (22.2%) 20.6 (22.1%) 1.9% 11 3 12
EB+S2R 55.3 10.8 (19.7%) 10.7 (19.6%) 1.8% 12 3 11

OB+TITLE 458.3 99.8 (22.4%) 99.8 (22.3%) 0.9% 13 0 13
OB+S2R+CODE 92.8 25.6 (28.3%) 25.3 (27.9%) 0.4% 10 2 14

TITLE 474.2 104.1 (22.6%) 99.3 (21.3%) -3.7% 9 0 17
OB 458.3 99.8 (22.4%) 94.7 (21.2%) -4.5% 5 4 17

OB+CODE 139.3 39.2 (29.0%) 37.2 (27.3%) -4.6% 6 0 20
TITLE+CODE 145.0 40.9 (29.1%) 37.7 (26.5%) -7.1% 4 2 20

OB+EB+S2R+CODE 16.7 5.7 (34.2%) 5.1 (30.0%) -12.2% 1 11 14
EB+TITLE 98.0 20.8 (21.6%) 18.0 (18.6%) -13.4% 2 1 23

OB+EB+S2R+TITLE+CODE 16.7 5.7 (34.2%) 4.9 (28.7%) -16.0% 1 11 14
OB+EB+TITLE+CODE 25.9 9.0 (34.2%) 7.7 (27.8%) -20.0% 3 2 21

EB+S2R+CODE 16.7 5.7 (34.2%) 4.4 (26.7%) -21.0% 0 8 18
OB+EB+CODE 25.9 9.0 (34.2%) 7.5 (27.2%) -21.5% 3 1 22

EB+S2R+TITLE+CODE 16.7 5.7 (34.2%) 4.5 (26.4%) -22.3% 1 3 22
S2R+CODE 93.1 25.8 (28.4%) 19.3 (21.0%) -22.8% 3 0 23

EB+TITLE+CODE 27.9 9.0 (31.6%) 7.0 (23.8%) -24.5% 1 2 23
EB 98.0 20.8 (21.6%) 14.9 (15.5%) -28.3% 0 0 26
S2R 254.1 51.0 (20.6%) 33.9 (13.6%) -32.1% 0 0 26

EB+CODE 27.9 9.0 (31.6%) 6.3 (20.7%) -34.5% 1 1 24
CODE 142.6 40.5 (29.4%) 24.1 (17.1%) -40.7% 0 0 26

Average # of queries and HITS@N values across FDS and the 26 thresholds N.

Strategies sorted by average HITS@N improvement (Improv).

All strategies marked with * achieve a statistically-significant higher HITS@N,

compared to no reformulation (Mann-Whitney, p-value< 5%).

S2R and CODE, which have the highest impact since they are somewhat- and
moderately-applicable, respectively.

We conclude that OB+S2R+TITLE is the best reformulation strategy
when using BRTracer, since it is effective, moderately-applicable, and it consis-
tently retrieves more buggy code documents than no reformulation across all
26 thresholds N. The results indicate that BRTracer is more robust to noisy
queries, compared to Lucene and Lobster, since only six strategies achieve
higher HITS@N (vs. no reformulation) with statistical significance. Remem-

38 Oscar Chaparro et al.

Table 18: Categorization of each reformulation strategy according to their
Effectiveness and Applicability when using BRTracer.

VE SE SI VI

T (-3.7%)

O (-4.5%)

O+S+T (15.6%)

O+S (7.7%) S (-32.1%)

S+T (6.4%)

O+C (-4.6%)

T+C (-7.1%)

O+E+S (16.5%)

O+E+S+T (14.2%) E+S+C (-21.0%)

O+S+T+C (7.7%) O+E+S+C (-12.2%) O+E+C (-21.5%)

E+S+T (5.5%) E+T (-13.4%) E+S+T+C (-22.3%)

O+E (4.6%) O+E+S+T+C (-16.0%) S+C (-22.8%)

S+T+C (2.7%) O+E+T+C (-20.0%) E+T+C (-24.5%)

O+E+T (1.9%) E (-28.3%)

E+S (1.8%) E+C (-34.5%)

O+S+C (0.4%)

L

O+T+C (2.8%)

Effectiveness

A
p
p
li
c
a
b
il
it
y

H O+T (0.9%)

M

S C (-40.7%)

In parenthesis, average HITS@N improvement across FDS and 26 thresholds N.

Strategies sorted by avg. HITS@N improvement for each Applicability-Effectiveness category.

Applicability categories: High (H), Moderate (M), Somewhat (S), and Low (L).

Effectiveness categories: Very Effective (VE), Somewhat Effective (SE), Somewhat

Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to

the effective category and the strategies in red to the ineffective category.

Information types: OB (O), EB (E), S2R (S), TITLE (T), and CODE (C).

ber that BRTracer is an extension of BugLocator, consequently, BRTracer’s
robustness comes from BugLocator.

4.5 Performance for Locus

Tables 19 and 20 show the results obtained for Locus across the 26 thresholds
N and FDS (i.e., file-level granularity). Eleven strategies are effective, i.e.,
they improve HITS@N by 0.1% to 36.1% (on average) with respect to no re-
formulation. The most effective strategies belong to the low-applicability cate-
gory, OB+EB+S2R being the strategy that achieves the highest avg. improve-
ment in terms of HITS@N (i.e., 36.1%). This strategy consistently improves
HITS@N for 24 thresholds, while deteriorating it for only one. All highly-
applicable strategies are effective with statistical significance (Mann-Whitney,
p-value< 5%) and fall in the somewhat-effective category (with 2.1% - 15.5%
avg. HITS@N, and 31.1%/45% - 30.7%/43.9% avg. MRR/MAP improvement).
However, only OB+TITLE is effective for all 26 thresholds N. Among the
moderately-applicable strategies, OB+S2R+TITLE is the only one that leads
to a statistically significant HITS@N improvement (i.e., 10.2% on average) for
25 thresholds N. This strategy also achieves 23.2%/25.7% avg. MRR/MAP
improvement. Conversely, the 20 remaining strategies retrieve the buggy code
artifacts within top-N for less number of queries than when using no reformu-
lation (i.e., they are ineffective). Eight of them are very-ineffective because

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 39

Table 19: Average number (and proportion) of queries for which Locus re-
trieves at least one buggy code document within the top-N results using each
one of the reformulation strategies (Reform) vs. no reformulation (No reform);
and number of thresholds for which each strategy is Effective (E), Neutral (N),
and Ineffective (I).

Reformulation # of HITS@N Thresh.
strategy queries No reform. Reform. Improv. E N I

OB+EB+S2R* 26.9 7.3 (26.2%) 9.2 (34.5%) 36.1% 24 1 1
OB+EB+S2R+TITLE* 26.9 7.3 (26.2%) 8.9 (33.6%) 33.3% 23 1 2

OB+EB+TITLE* 40.6 13.6 (33.3%) 16.8 (41.6%) 25.4% 24 1 1
OB+EB* 40.6 13.6 (33.3%) 16.5 (41.2%) 24.2% 24 0 2

OB+TITLE* 190.7 60.0 (32.1%) 69.3 (37.0%) 15.5% 26 0 0
OB+S2R+TITLE* 124.4 37.0 (30.4%) 40.7 (33.4%) 10.2% 25 1 0
EB+S2R+TITLE 26.9 7.3 (26.2%) 7.6 (27.8%) 9.1% 14 5 7

TITLE* 199.6 62.7 (32.0%) 64.8 (33.1%) 3.5% 20 2 4
OB* 190.7 60.0 (32.1%) 61.2 (32.8%) 2.1% 17 5 4

OB+TITLE+CODE 92.5 29.4 (32.9%) 29.4 (32.5%) 1.1% 11 2 13
S2R+TITLE 125.6 37.2 (30.3%) 37.5 (30.1%) 0.1% 11 2 13

OB+EB+TITLE+CODE 16.5 7.3 (43.7%) 7.0 (43.4%) -0.3% 6 14 6
EB+TITLE 42.1 13.9 (32.9%) 13.7 (32.4%) -1.4% 8 4 14

OB+EB+CODE 16.5 7.3 (43.7%) 6.7 (42.5%) -2.1% 6 14 6
OB+EB+S2R+CODE 10.5 4.1 (34.1%) 3.8 (32.4%) -3.7% 1 19 6

OB+S2R 124.4 37.0 (30.4%) 35.4 (28.9%) -4.3% 7 2 17
OB+EB+S2R+TITLE+CODE 10.5 4.1 (34.1%) 3.7 (32.0%) -4.5% 1 18 7

EB+S2R+TITLE+CODE 10.5 4.1 (34.1%) 3.6 (31.2%) -6.2% 0 18 8
OB+CODE 92.5 29.4 (32.9%) 26.8 (29.6%) -7.8% 6 2 18

OB+S2R+TITLE+CODE 63.4 20.3 (32.9%) 18.1 (29.5%) -10.0% 3 2 21
OB+S2R+CODE 63.4 20.3 (32.9%) 17.0 (27.7%) -15.4% 1 1 24

EB+TITLE+CODE 17.5 7.3 (40.8%) 6.0 (34.0%) -16.3% 0 7 19
TITLE+CODE 98.1 30.5 (32.1%) 24.5 (25.3%) -18.6% 2 3 21

EB+S2R 26.9 7.3 (26.2%) 5.5 (20.3%) -21.3% 0 3 23
S2R+TITLE+CODE 64.4 20.3 (32.4%) 15.6 (24.9%) -22.6% 1 0 25

EB+S2R+CODE 10.5 4.1 (34.1%) 3.1 (25.1%) -29.7% 0 8 18
S2R 125.6 37.2 (30.3%) 23.4 (19.1%) -36.5% 0 0 26

EB+CODE 17.5 7.3 (40.8%) 4.2 (22.7%) -44.4% 0 0 26
S2R+CODE 64.4 20.3 (32.4%) 11.0 (17.6%) -45.0% 0 0 26

CODE 98.1 30.5 (32.1%) 16.1 (16.9%) -46.7% 0 0 26
EB 42.1 13.9 (32.9%) 7.6 (17.5%) -46.9% 0 0 26

Average # of queries and HITS@N values across FDS and the 26 thresholds N.

Strategies sorted by average HITS@N improvement (Improv).

All strategies marked with * achieve a statistically-significant higher HITS@N,

compared to no reformulation (Mann-Whitney, p-value< 5%).

they lead to more than 20.6% HITS@N deterioration, and consistently deteri-
orate HITS@N for a large amount of thresholds (i.e., 18, 25, or 26 - see Table
19). S2R and CODE belong to this subset and are the strategies with the
most negative impact in practice, given its applicability level (moderate and
somewhat, respectively).

We conclude that OB+TITLE is the best reformulation strategy when
using Locus, since it is effective, highly-applicable, and it consistently retrieves

40 Oscar Chaparro et al.

Table 20: Categorization of each reformulation strategy according to their
Effectiveness and Applicability when using Locus.

VE SE SI VI

O+T (15.5%)

T (3.5%)

O (2.1%)

O+S+T (10.2%) O+S (-4.3%)

S+T (0.1%)

O+C (-7.8%)

T+C (-18.6%)

O+E+T+C (-0.3%)

E+T (-1.4%) E+S (-21.3%)

O+E+S (36.1%) O+E+C (-2.1%) S+T+C (-22.6%)

O+E+S+T (33.3%) O+E+S+C (-3.7%) E+S+C (-29.7%)

O+E+T (25.4%) E+S+T (9.1%) O+E+S+T+C (-4.5%) E+C (-44.4%)

O+E (24.2%) E+S+T+C (-6.2%) S+C (-45.0%)

O+S+T+C (-10.0%) E (-46.9%)

O+S+C (-15.4%)

E+T+C (-16.3%)

L

S (-36.5%)

Effectiveness

A
p
p
li
c
a
b
il
it
y

H

M

S O+T+C (1.1%) C (-46.7%)

In parenthesis, average HITS@N improvement across FDS and 26 thresholds N.

Strategies sorted by avg. HITS@N improvement for each Applicability-Effectiveness category.

Applicability categories: High (H), Moderate (M), Somewhat (S), and Low (L).

Effectiveness categories: Very Effective (VE), Somewhat Effective (SE), Somewhat

Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to

the effective category and the strategies in red to the ineffective category.

Information types: OB (O), EB (E), S2R (S), TITLE (T), and CODE (C).

the buggy code documents within the top-N results for more cases across all
26 thresholds N (compared to no reformulation).

4.6 Analysis across Code Granularities

We analyze the performance of the reformulation strategies across the three
code granularities for Lucene, which is the only TRBL approach among the
five that we could use with all granularities. Tables 21 and 22 reveal that the
strategies have a different performance across code granularities.

Regarding class-level granularity (i.e., CDS), twelve reformulation strate-
gies achieve a 22.3% - 50.2% avg. HITS@N improvement with respect to no
reformulation (i.e., they are very-effective), and nine more strategies achieve
0.5% - 20.9% avg. HITS@N improvement (i.e., they are somewhat-effective).
The remaining 10 strategies lead to HITS@N deterioration, hence, they are
ineffective. Lucene performs best when using the moderately-applicable strate-
gies OB+S2R+TITLE, OB+S2R, and S2R+TITLE (i.e., 50.2%, 49.2%, and
46.7% avg. HITS@N improvement, respectively), and when using the highly-
applicable strategies OB+TITLE, OB, and TITLE (i.e., 44%, 31.7%, and
31.5% avg. HITS@N improvement, respectively). These six strategies consis-
tently improve HITS@N for all 26 thresholds (see Table 22 - CDS columns).
The worst strategies are EB+S2R+CODE and EB+S2R+TITLE+CODE,
which consistently fail to retrieve the buggy code documents within the top-N

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 41

Table 21: Average number of reduced queries (|Q|) and HITS@N improvement
(Improv) for Lucene on each data set when using each reformulation strategy.

Reformulation CDS FDS MDS All data sets
strategy |Q| Improv |Q| Improv |Q| Improv |Q| Improv

OB+EB+TITLE 37.4 22.3% 89.6 34.2% 28.1 50.0% 155.2 30.3%
OB+TITLE 170.8 44.0% 472.7 26.4% 120.1 11.7% 763.6 29.3%

OB+S2R+TITLE 97.5 50.2% 263.3 20.8% 48.1 34.8% 409.0 29.2%
OB+EB+S2R+TITLE 21.4 7.1% 51.6 34.8% 17.3 90.2% 90.3 28.6%

OB+EB 37.4 19.4% 89.6 30.9% 28.1 35.6% 155.2 26.1%
OB+TITLE+CODE 80.4 40.3% 151.2 14.3% 53.5 39.4% 285.1 25.6%

OB+EB+S2R 21.4 8.7% 51.6 28.8% 17.3 86.3% 90.3 24.9%
OB+S2R 97.5 49.2% 263.3 10.9% 48.1 30.8% 409.0 22.4%
TITLE 172.6 31.5% 488.1 16.6% 122.8 14.2% 783.5 20.1%

S2R+TITLE 98.0 46.7% 263.8 4.1% 48.1 47.2% 409.9 19.1%
EB+TITLE 38.9 29.4% 94.3 14.2% 28.1 18.2% 161.3 17.3%

OB 169.8 31.7% 472.7 13.5% 120.1 -4.0% 762.6 16.2%
OB+CODE 80.4 27.0% 151.2 3.1% 53.5 34.6% 285.1 14.7%

EB+S2R+TITLE 21.9 -6.7% 51.6 15.5% 17.3 131.2% 90.8 14.4%
TITLE+CODE 80.4 31.1% 156.8 -4.1% 55.3 36.0% 292.5 12.4%

OB+EB+TITLE+CODE 17.6 5.2% 25.7 8.7% 12.0 21.3% 55.3 6.7%
OB+S2R+TITLE+CODE 50.5 17.3% 99.1 2.4% 27.2 35.2% 176.8 6.2%

OB+EB+CODE 17.6 4.5% 25.7 2.3% 12.0 20.5% 55.3 3.3%
OB+S2R+CODE 50.5 20.9% 99.1 -5.4% 27.2 34.2% 176.8 3.2%

S2R+TITLE+CODE 50.5 1.9% 99.2 -7.5% 27.2 35.7% 176.9 -4.1%
OB+EB+S2R+TITLE+CODE 13.0 -30.1% 16.6 8.5% 7.6 -1.3% 37.1 -9.8%

EB+S2R 21.9 0.5% 51.6 -13.9% 17.3 -13.9% 90.8 -10.6%
EB 37.5 24.9% 94.3 -18.2% 27.1 -51.4% 158.9 -10.6%

OB+EB+S2R+CODE 13.0 -30.1% 16.6 0.1% 7.6 -2.2% 37.1 -15.1%
EB+TITLE+CODE 17.6 -17.5% 27.7 -22.6% 12.0 1.3% 57.3 -20.0%

S2R+CODE 50.5 -32.3% 99.2 -26.3% 27.2 11.6% 176.9 -27.9%
EB+CODE 17.6 -24.8% 27.7 -34.0% 12.0 -13.7% 57.3 -29.3%

S2R 98.0 -17.6% 262.4 -34.0% 48.1 -46.5% 408.5 -30.6%
CODE 76.2 -39.5% 153.4 -44.9% 54.8 -1.4% 284.5 -37.2%

EB+S2R+TITLE+CODE 13.0 -55.8% 16.6 -33.2% 7.6 -1.3% 37.1 -41.5%
EB+S2R+CODE 13.0 -59.0% 16.6 -46.4% 7.6 -2.2% 37.1 -49.8%

Average values across thresholds N={5, 6, 7, ..., 30}.
Strategies sorted by avg. HITS@N improvement for all data sets.

results for 24 thresholds N. These two and five more strategies belong to the
very-ineffective category. S2R and CODE are the strategies with the highest
negative impact in practice, according to their level of applicability (i.e., mod-
erate and somewhat, respectively) and performance (i.e., they lead to more
than 15% HITS@N deterioration, and consistently achieve deterioration for
20 and 26 thresholds, respectively). We consider OB+TITLE as the best re-
formulation strategy for Lucene when retrieving buggy classes.

In the case of file-level granularity (i.e., FDS), we found that five strategies
achieve more than 21.4% average HITS@N improvement, namely OB+EB+
S2R+TITLE, OB+EB+TITLE, OB+EB, OB+EB+S2R, and OB+TITLE
(i.e., 34.8%, 34.2%, 30.9%, 28.8%, and 26.4% average improvement, respec-
tively), hence, they belong to the very-effective category and they consistently
improve HITS@N for all thresholds (see Table 22 - FDS columns). Among
these, OB+TILE is the only highly-applicable strategy. Fourteen more strate-
gies lead to HITS@N improvement by 0.1% - 20.8%, on average, including
all moderately-applicable strategies, except S2R. The remaining 12 strategies
are ineffective. Among these, seven lead to more than 20.6% HITS@N de-

42 Oscar Chaparro et al.

Table 22: Number of thresholds N (out of 26) for which each reformulation
strategy is Effective (E), Neutral (N), and Ineffective (I) when using Lucene
on each data set.

Reformulation CDS FDS MDS
Strategy E N I H@N E N I H@N E N I H@N

OB+EB+TITLE 25 1 0 22.3% 26 0 0 34.2% 22 1 3 50.0%
OB+TITLE 26 0 0 44.0% 26 0 0 26.4% 19 1 6 11.7%

OB+S2R+TITLE 26 0 0 50.2% 26 0 0 20.8% 21 5 0 34.8%
OB+EB+S2R+TITLE 11 7 8 7.1% 26 0 0 34.8% 13 12 1 90.2%

OB+EB 24 2 0 19.4% 26 0 0 30.9% 19 4 3 35.6%
OB+TITLE+CODE 25 0 1 40.3% 25 1 0 14.3% 25 1 0 39.4%

OB+EB+S2R 11 7 8 8.7% 26 0 0 28.8% 13 10 3 86.3%
OB+S2R 26 0 0 49.2% 25 1 0 10.9% 20 3 3 30.8%
TITLE 26 0 0 31.5% 24 0 2 16.6% 19 1 6 14.2%

S2R+TITLE 26 0 0 46.7% 13 3 10 4.1% 22 1 3 47.2%
EB+TITLE 26 0 0 29.4% 22 2 2 14.2% 14 4 8 18.2%

OB 26 0 0 31.7% 26 0 0 13.5% 7 4 15 -4.0%
OB+CODE 20 3 3 27.0% 16 5 5 3.1% 24 0 2 34.6%

EB+S2R+TITLE 6 4 16 -6.7% 14 4 8 15.5% 13 9 4 131.2%
TITLE+CODE 21 2 3 31.1% 3 6 17 -4.1% 25 1 0 36.0%

OB+EB+TITLE+CODE 10 6 10 5.2% 14 9 3 8.7% 8 16 2 21.3%
OB+S2R+TITLE+CODE 9 5 12 17.3% 17 2 7 2.4% 17 5 4 35.2%

OB+EB+CODE 10 6 10 4.5% 10 9 7 2.3% 7 17 2 20.5%
OB+S2R+CODE 13 2 11 20.9% 9 4 13 -5.4% 17 4 5 34.2%

S2R+TITLE+CODE 9 0 17 1.9% 4 9 13 -7.5% 17 5 4 35.7%
OB+EB+S2R+TITLE+CODE 0 8 18 -30.1% 7 10 9 8.5% 0 25 1 -1.3%

EB+S2R 8 3 15 0.5% 5 2 19 -13.9% 2 14 10 -13.9%
EB 24 1 1 24.9% 0 1 25 -18.2% 1 2 23 -51.4%

OB+EB+S2R+CODE 0 8 18 -30.1% 5 10 11 0.1% 0 24 2 -2.2%
EB+TITLE+CODE 5 5 16 -17.5% 0 3 23 -22.6% 2 19 5 1.3%

S2R+CODE 4 0 22 -32.3% 0 0 26 -26.3% 10 8 8 11.6%
EB+CODE 1 5 20 -24.8% 0 0 26 -34.0% 0 17 9 -13.7%

S2R 5 1 20 -17.6% 0 0 26 -34.0% 0 1 25 -46.5%
CODE 0 0 26 -39.5% 0 0 26 -44.9% 4 7 15 -1.4%

EB+S2R+TITLE+CODE 0 2 24 -55.8% 0 1 25 -33.2% 0 25 1 -1.3%
EB+S2R+CODE 0 2 24 -59.0% 0 0 26 -46.4% 0 24 2 -2.2%

H@N is the average HITS@N improvement across 26 thresholds N.

Strategies sorted by average HITS@N improvement across all data sets.

terioration (i.e., they are very-ineffective), including S2R and CODE, which
consistently fail to retrieve the buggy code documents for all thresholds. We
conclude that OB+TITLE is the best reformulation strategy for Lucene when
retrieving buggy files.

As for the method-level granularity (i.e., MDS), 14 strategies are very-
effective (i.e., their HITS@N improvement is greater than 21.4%). Among
these, five strategies achieve more than 40% average HITS@N improvement,
namely EB+S2R+TITLE, OB+EB+S2R+TITLE, OB+EB+S2R, OB+EB+
TITLE, and S2R+TITLE (i.e., 131.2%, 90.2%, 86.3%, 50.0%, and 47.2% avg.
HITS@N improvement, respectively), S2R+TITLE being the only moderately-
applicable. However, from these five strategies, only OB+EB+TITLE and

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 43

S2R+TITLE improve HITS@N for most thresholds N (i.e., 22 N - see Table
22), while deteriorating it for few cases (i.e., 3 N). The strategies OB+CODE
and TITLE+CODE are the only ones that lead to improvement for nearly all
thresholds (i.e., 25 N). Seven more strategies achieve 1.3% - 21.3% average
HITS@N improvement (i.e., they are somewhat-effective). The remaining 10
strategies do not lead to any improvement, and among these, S2R and EB
are the most ineffective ones, which lead to deterioration for a large num-
ber of thresholds (i.e., 25 and 23 N values, respectively). We conclude that
S2R+TITLE is the best reformulation strategy for Lucene when retrieving
buggy methods.

We observed that the effective CODE-based strategies are more common
for MDS than for CDS and FDS (10 vs. 8 and 7 strategies, respectively), which
indicates that the CODE information in bug reports is more effective for re-
trieving methods than for retrieving files or classes. We manually analyzed a
subset of the MDS queries and their respective buggy code methods (i.e., the
gold set) and found that, indeed, code snippets are commonly found in the
MDS bug reports and they contain many relevant terms present in the buggy
code. This is more common on the queries from the Defects4J systems (Just
et al., 2014), i.e., Lang, Joda-Time, and Math, than for other systems. Note
that the Defects4J bugs were originally collected for software testing research
and have three main characteristics (Just et al., 2014): (1) they are clearly
related to the source code in the version control system; (2) they are repro-
ducible; and (3) their fixes were done independently of other code changes.
This explains (in part) why the code in the Defects4J queries is likely to con-
tain relevant terms with respect to TRBL.

All highly- and moderately-applicable strategies, except OB and S2R, are
among the strategies that achieve the highest HITS@N improvement across
the three code granularities. Among these, OB+TITLE and S2R+TITLE are
the best-performing strategies, the former for CDS and FDS, and the latter for
MDS (i.e., 44%, 26.4%, and 47.2% avg. HITS@N improvement, respectively).
These results provide evidence of how effective it is to combine the TITLE
with OB or S2R for reformulating the initial queries.

Note that the top-3 most effective strategies for MDS achieve a high avg.
HITS@N improvement, i.e., greater than 85%, which is substantially higher
than the best improvement rates achieved for CDS and FDS (i.e., 50.2% and
34.8%, respectively). These differences come from the large improvement that
the MDS strategies achieve for a subset of the thresholds N. For example,
EB+S2R+TITLE’s avg. HITS@N improvement is 300% for N={13, 21, 22,
23, 24, 25, 26} and 100% for N={12, 27, 28, 29, 30}. These values lead to a
high overall average improvement for this strategy. For the remaining thresh-
olds, HITS@N improvement values are similar to the ones from CDS and FDS.
Finally, note that for Java systems, we can consider class- and file-level gran-
ularities to be somewhat similar. The performance for Lucene across the CDS
and FDS data sets indicates that the corpus granularity does not seriously
impact the successful reformulation techniques.

44 Oscar Chaparro et al.

4.7 Overall Reformulation Performance

In general, fewer strategies lead to TRBL improvement in terms of HITS@N
for BugLocator, BRTracer, and Locus than for Lucene and Lobster (2, 14, and
11 vs. 19 and 25 strategies, respectively). The results indicate that BugLoca-
tor, BRTracer, and Locus are less sensitive to noisy queries than Lucene and
Lobster, yet the reformulation strategies still lead to TRBL improvement for
all of them (i.e., buggy code retrieval in top-N for more cases than without
reformulation).

Summarizing across the TRBL techniques, code granularities, and thresh-
olds N (see Tables 23, 24, and 25), the results show that 18 query reformulation
strategies achieve improvement in terms of HITS@N, MRR, and MAP. Among
these 18, all highly-applicable strategies (i.e., OB, TITLE, and OB+TITLE)
improve TRBL by 16.6% - 25.6% HITS@N, and by 48.9% - 73.9% (51.6% -
69.8%) MRR (MAP), on average. OB+TITLE falls in the very-effective cate-
gory, and TITLE and OB in the somewhat-effective category (see Table 25).
OB+TITLE is the second best strategy (after OB+S2R+TITLE, see below)
in terms of the total number of thresholds N for which there is HITS@N im-
provement, i.e., 97 thresholds N (out of 130 total, on aggregate across TRBL
approaches - see Table 23), versus 31 thresholds N for which there is HITS@N
deterioration. This strategy also retrieves the buggy code documents within
the top-N results for 25.6% more queries (on average), compared to no refor-
mulation and achieves 58.6%/60.6% avg. MRR/MAP improvement.

In addition, among the effective strategies, three moderately-applicable
(i.e., OB+S2R+TITLE, OB+S2R, and S2R+TITLE) stand out, since they
achieve between 22.6% and 31.4% avg. HITS@N improvement, and between
42.3% (49.1%) and 54.4% (57.3%) avg. MRR/MAP improvement. All three
strategies are very-effective, and OB+S2R+TITLE is the best strategy in
terms of avg. HITS@N improvement (i.e., 31.4%) and the number of thresholds
N for which there is HITS@N improvement, i.e., 108 thresholds N (out of 130,
on aggregate) versus 15 thresholds N for which there is HITS@N deterioration.

The remaining 12 effective strategies are less applicable and achieve be-
tween 2% and 41.7% improvement in terms of HITS@N, and between 13.3%
(9.3%) and 201.1% (148.8%) MRR/MAP improvement, on average. OB+EB+
TITLE is the strategy that performs best in terms of HITS@N (i.e., 41.7%
avg. improvement), but at the same time, its applicability is rather low. All
strategies with positive HITS@N improvement, excluding OB+EB+CODE
and OB+S2R+CODE, achieve a statistically significant HITS@N improve-
ment, compared to no reformulation (Mann-Whitney, p-value< 5%).

Overall, OB+S2R+TITLE is the moderately-applicable reformulation strat-
egy that achieves the highest TRBL performance in terms of HITS@N across
TRBL techniques, as it leads to the retrieval of the buggy code artifacts within
the top-N results (N={5, 6, ..., 30}) for 28.2% of the queries, on average, which
is 31.4% more queries than when using no reformulation at all, where only
22.3% of the queries return the buggy code on the top of the result list. The
OB+TITLE strategy achieves comparable (yet lower) results, as it retrieves

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 45

Table 23: Average number (and proportion) of queries for which all five
TRBL techniques retrieve at least one buggy code document within the
top-N results using each one of the reformulation strategies (Reform) vs. no re-
formulation (No reform); and aggregated number of thresholds for which each
strategy is Effective (E), Neutral (N), and Ineffective (I), across all TRBL
techniques.

Reformulation # of HITS@N Thresh.
strategy queries No reform. Reform. Improv. E N I

OB+EB+TITLE 86.3 20.7 (26.4%) 23.5 (39.2%) 41.7% 79 13 38
OB+EB 86.3 20.7 (26.4%) 22.9 (38.8%) 39.8% 81 11 38

OB+S2R+TITLE 228.5 47.2 (22.3%) 55.1 (28.2%) 31.4% 108 7 15
EB+TITLE 90.1 21.2 (24.9%) 21.2 (31.8%) 28.2% 53 13 64

OB+TITLE+CODE 141.8 35.0 (25.7%) 39.4 (30.9%) 25.8% 90 4 36
OB+TITLE 399.9 86.3 (22.7%) 98.2 (27.9%) 25.6% 97 2 31
S2R+TITLE 229.5 47.6 (22.4%) 50.8 (26.4%) 23.2% 78 7 45

OB+S2R 228.5 47.2 (22.3%) 51.0 (26.1%) 22.6% 77 7 46
TITLE 412.9 89.7 (22.7%) 93.1 (26.2%) 18.8% 81 2 47

OB+CODE 141.8 35.0 (25.7%) 36.4 (29.0%) 18.3% 76 4 50
OB 399.7 86.3 (22.7%) 89.6 (25.7%) 16.6% 74 9 47

OB+EB+S2R 59.8 13.1 (22.5%) 14.5 (25.7%) 14.2% 68 32 30
OB+EB+S2R+TITLE 59.8 13.1 (22.5%) 14.6 (25.7%) 14.0% 68 31 31

TITLE+CODE 147.0 36.4 (25.7%) 35.6 (27.5%) 12.3% 56 6 68
OB+EB+TITLE+CODE 28.8 8.9 (34.8%) 8.8 (40.5%) 11.9% 49 32 49

OB+EB+CODE 28.8 8.9 (34.8%) 8.4 (39.5%) 8.6% 47 31 52
OB+S2R+TITLE+CODE 96.9 23.5 (26.7%) 23.6 (28.4%) 7.5% 58 23 49

OB+S2R+CODE 96.9 23.5 (26.7%) 22.4 (27.0%) 2.0% 43 17 70
S2R+TITLE+CODE 97.2 23.6 (26.7%) 21.6 (26.4%) -0.3% 40 13 77
EB+TITLE+CODE 30.3 8.9 (33.1%) 7.4 (35.0%) -0.8% 25 20 85

EB+S2R+TITLE 59.6 13.2 (22.5%) 12.9 (22.4%) -0.9% 46 37 47
OB+EB+S2R+TITLE+CODE 21.0 5.8 (27.5%) 5.1 (24.1%) -10.2% 9 67 54

EB 89.6 21.0 (24.9%) 15.2 (21.9%) -10.2% 20 10 100
OB+EB+S2R+CODE 21.0 5.8 (27.5%) 5.0 (23.8%) -12.2% 8 66 56

S2R 228.4 47.2 (22.3%) 30.7 (17.0%) -18.9% 17 9 104
EB+S2R 59.6 13.2 (22.5%) 10.5 (18.0%) -19.2% 18 33 79

S2R+CODE 97.2 23.6 (26.7%) 16.4 (21.1%) -20.5% 22 7 101
EB+S2R+TITLE+CODE 21.2 5.9 (27.8%) 4.2 (21.1%) -23.7% 1 52 77

CODE 143.7 35.8 (26.0%) 21.7 (18.1%) -27.1% 17 8 105
EB+CODE 29.9 8.7 (32.6%) 5.8 (24.0%) -27.2% 5 23 102

EB+S2R+CODE 21.2 5.9 (27.8%) 3.8 (18.7%) -32.7% 0 44 86

Average # of queries and HITS@N values the 3 data sets/granularities, 5 TRBL techniques,

and 26 thresholds N. Strategies sorted by average HITS@N improvement (Improv).

The total number of thresholds (i.e., E + N + I) is 5 (techniques) x 26 (thresholds) = 130.

All strategies with positive improvement, excluding OB+EB+CODE and OB+S2R+CODE,

achieve a statistically-significant higher HITS@N, compared to

no reformulation (Mann-Whitney, p-value< 5%).

the buggy code for 25.6% more queries (on average) than without reformu-
lation, while being more applicable in an actual usage scenario - in fact, it
is the best highly-applicable strategy. Both strategies consistently retrieve the
buggy code documents within top-N for more queries (than when using no
reformulation) across thresholds N.

46 Oscar Chaparro et al.

Table 24: Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP)
achieved by all five TRBL techniques using each one of the reformulation
strategies (Ref) vs. no reformulation (No ref).

Reformulation MRR MAP
strategy No ref. Ref. Improv. No ref. Ref. Improv.

OB+EB+TITLE 8.4% 19.7% 196.1% 6.6% 14.6% 148.4%
OB+EB 8.4% 19.9% 201.1% 6.6% 14.5% 148.8%

OB+S2R+TITLE 7.3% 10.0% 48.9% 5.6% 8.2% 55.1%
EB+TITLE 8.0% 15.8% 173.5% 6.3% 12.2% 133.9%

OB+TITLE+CODE 8.2% 14.2% 101.0% 6.3% 11.3% 110.4%
OB+TITLE 7.3% 11.0% 58.6% 5.7% 8.7% 60.6%
S2R+TITLE 7.3% 10.2% 54.4% 5.7% 8.2% 57.3%

OB+S2R 7.3% 9.5% 42.3% 5.6% 7.8% 49.1%
TITLE 7.4% 11.9% 73.9% 5.7% 9.2% 69.8%

OB+CODE 8.2% 12.8% 88.0% 6.3% 10.1% 99.2%
OB 7.4% 10.2% 48.9% 5.7% 8.1% 51.6%

OB+EB+S2R 7.3% 8.3% 23.1% 5.6% 6.3% 21.9%
OB+EB+S2R+TITLE 7.3% 7.8% 13.3% 5.6% 6.0% 13.4%

TITLE+CODE 8.2% 13.0% 85.5% 6.3% 10.1% 90.9%
OB+EB+TITLE+CODE 11.2% 18.1% 97.7% 8.7% 15.5% 101.8%

OB+EB+CODE 11.2% 17.8% 95.3% 8.7% 15.3% 99.4%
OB+S2R+TITLE+CODE 8.8% 10.1% 16.2% 6.7% 7.7% 17.8%

OB+S2R+CODE 8.8% 9.3% 6.7% 6.7% 7.2% 9.3%
S2R+TITLE+CODE 8.8% 9.6% 10.3% 6.7% 7.3% 11.0%
EB+TITLE+CODE 10.7% 16.1% 80.0% 8.4% 14.1% 83.8%

EB+S2R+TITLE 7.3% 7.8% 45.9% 5.6% 5.7% 20.9%
OB+EB+S2R+TITLE+CODE 9.6% 9.4% 89.7% 7.1% 6.9% 29.0%

EB 8.1% 12.9% 130.2% 6.3% 10.2% 101.7%
OB+EB+S2R+CODE 9.6% 9.2% 86.6% 7.1% 6.8% 26.8%

S2R 7.4% 7.0% -1.1% 5.7% 5.6% 0.4%
EB+S2R 7.3% 6.4% 25.8% 5.6% 4.7% 2.4%

S2R+CODE 8.8% 7.6% -13.4% 6.7% 5.9% -11.3%
EB+S2R+TITLE+CODE 9.7% 8.1% 68.7% 7.2% 5.9% 8.6%

CODE 8.4% 8.9% 33.8% 6.5% 6.7% 37.2%
EB+CODE 10.6% 13.9% 60.5% 8.3% 12.6% 66.0%

EB+S2R+CODE 9.7% 7.0% 56.1% 7.2% 5.0% -3.5%

Average values across the 3 data sets, 5 TRBL techniques, and 26 thresholds N.

Strategies sorted by avg. HITS@N improvement (same order as in Table 23).

All strategies with positive HITS@N improvement, including S2R+TITLE+CODE,

achieve a statistically-significant higher MRR/MAP, compared to

no reformulation (Mann-Whitney, p-value< 5%).

We consider OB+TITLE as the best strategy across all TRBL techniques
and code granularities, as it is very-effective, highly-applicable, and consistent
across different thresholds. Combining the TITLE and OB with the S2R from
the bug report (if present) leads to higher TRBL effectiveness and comparable
consistency, yet it is less applicable in an actual usage scenario. We conclude
that among the five types of information from bug reports (i.e., the TITLE,
OB, EB, S2R, and CODE), the TITLE, OB, and S2R are the most effective
and practical for improving TRBL in the context of query reformulation. This
means that developers should use the terms used in the TITLE, and the ones

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 47

Table 25: Categorization of each reformulation strategy according to their
Effectiveness and Applicability when using all five TRBL techniques.

VE SE SI VI

T (18.8%)

O (16.6%)

O+S+T (31.4%)

S+T (23.2%) S (-18.9%)

O+S (22.6%)

O+C (18.3%)

T+C (12.3%)

S+T+C (-0.3%)

O+E+S (14.2%) E+T+C (-0.8%)

O+E+T (41.7%) O+E+S+T (14.0%) E+S+T (-0.9%) E+S+T+C (-23.7%)

O+E (39.8%) O+E+T+C (11.9%) O+E+S+T+C (-10.2%) E+C (-27.2%)

E+T (28.2%) O+E+C (8.6%) E (-10.2%) E+S+C (-32.7%)

O+S+T+C (7.5%) O+E+S+C (-12.2%)

O+S+C (2.0%) E+S (-19.2%)

S+C (-20.5%)

L

Effectiveness

A
p
p
li
c
a
b
il
it
y

H

M

S C (-27.1%)

O+T (25.6%)

O+T+C (25.8%)

In parenthesis, average HITS@N improvement across the 3 data sets,

5 TRBL techniques, and 26 thresholds N. Strategies sorted by avg.

HITS@N improvement for each Applicability-Effectiveness category.

Applicability categories: High (H), Moderate (M), Somewhat (S), and Low (L).

Effectiveness categories: Very Effective (VE), Somewhat Effective (SE), Somewhat

Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to

the effective category and the strategies in red to the ineffective category.

Information types: OB (O), EB (E), S2R (S), TITLE (T), and CODE (C).

describing OB and S2R (when present) to reformulate an initial query and
expect to find the buggy code artifacts in the top of the list for more cases
(i.e., between 25.6% and 31.4%, on average) than without reformulation.

4.8 Discussion

We observed that the summary provided in the bug report TITLE usually
contains key terms about the context of the software bug, which are helpful
for retrieval (according to the results). The OB usually describes details about
the bug, which include specific terms that help narrow down the search space
of code documents. In several cases, we found that the title is a succinct
description of the observed behavior, which is later expanded in the bug report
description. Combining the TITLE and OB for reformulation increases the
weight of relevant terms, thus leading to higher retrieval performance. We also
observed that the S2R usually adds key terms related to the problem, i.e., it
gives additional context for retrieval. However, these terms may hinder TRBL
if they are not specific enough to the problem or contain extra terms that are
present in many documents from the corpus.

To illustrate these observations, consider the bug report #102778 from
Eclipse and its respective buggy code file CodeSnippetParser.java (see
Figure 3). The title describes a problem related to “enhanced for statements”
in “scrapbook pages”. The S2R and the CODE snippet provide the information
for triggering the problem. Note that they do not state the problem, but

48 Oscar Chaparro et al.

Fig. 3: Bug report #102778 from Eclipse and its corresponding buggy file. The
boxed terms represent the terms shared between the report and the file. Each
sentence in the report is marked according to its corresponding information
type: [TITLE], [CODE], [OB], or [S2R].

Bug report title:
Scrapbook page doesn’t work with enhanced for statement [TITLE]

Bug report description:
Using 3.1, create a new java project. [S2R]

Add a new scrapbook page that contains this source : [S2R]

int[] tab = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9 };
int sum = 0;
for (int i : tab) {

sum += i;
}
sum [CODE]

You get an error about syntax error . [OB]

Buggy code file: CodeSnippetParser.java

[...]
/**
* A parser for code snippets.

*/
public class CodeSnippetParser extends Parser

implements EvaluationConstants {
[...]

int last Statement = -1; // end of last top level statement

[...]
/**

* Creates a new code snippet parser.

*/
public CodeSnippetParser(ProblemReporter problemReporter,

EvaluationContext evaluationContext,
[...]) {

[...]

this.reportOnlyOne SyntaxError = true;

this.javadocParser.checkDocComment = false;
}
[...]
protected CompilationUnitDeclaration endParse(int act) {

[...]

// otherwise it contained the type, [...]

int start = unitResult.problems[i].get Source Start();

[...]
}
[...]

protected void report SyntaxErrors (boolean isDietParse,

int oldFirstToken) {
[...]

super.report SyntaxErrors (isDietParse, oldFirstToken);

}
[...]

}

Bug report found at https://bugs.eclipse.org/bugs/show_bug.cgi?id=102778

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 49

provide additional context about it (i.e., “creating a java project” with the
given code snippet in a “scrapbook page”). Finally, in the last sentence of
the report, the problem is explicitly described (i.e., a “syntax error” thrown
by the system – this is the OB). Note that the steps to reproduce are not
quite specific to the problem, i.e., creating a java project that contains some
source code is a common task in Eclipse. In this case, S2R contain terms (e.g.,
“project” or “contain”) that are likely to be present in multiple files within
Eclipse, even though, some of them appear in the buggy file (i.e., “create” and
“source”).

Using the full bug report from Figure 3, as input query to Lucene, would
retrieve the buggy file in the 179th position of the result list. Clearly, the
query is low-quality12. Assume the developer inspects the top-5 documents,
then reformulates and executes the query, and inspects the next top-5 docu-
ments13. Using TITLE, OB, and S2R alone as reformulation strategies lead
to retrieving the file in positions 43, 74, and 2,888, respectively. Using the
CODE alone fails to retrieve the buggy file because the code snippet does
not share any terms with the file. Similar results are obtained for BugLoca-
tor, BRTracer, and Locus. These results indicate that the TITLE and OB
contain the most useful terms for retrieval (i.e., “statement”, “syntax”, and
“error”) and fewer noisy terms than the other parts of the report. Conversely,
the terms from the S2R hinder retrieval. We found that the shared S2R terms
with the buggy file (i.e., “create”, “contain”, and “source”) appear in more
than 3,600 files, while the TITLE and OB terms appear in no more than 326
files. Also, the term “project” appears in more than 1,600 documents. In this
case, the S2R terms are not discriminatory for TRBL (i.e., they are noisy).
Using OB+TITLE, S2R+TITLE, OB+S2R, and OB+S2R+TITLE as refor-
mulation strategies lead to retrieving the buggy file in positions 4, 314, 633,
and 60, respectively. These results confirm the usefulness of OB and TITLE
for TRBL (i.e., the buggy code is retrieved on position 4). Note that the S2R,
when combined with OB or TITLE, deteriorates the rank of the buggy file.

Consider the example in Figure 4, regarding bug report #4330 from Ar-
goUML and its respective buggy class TabToDo. In this case, the OB states
that there is an “exception” that produces the reported “stack (trace)”. The
TITLE describes part of the OB (i.e., the exception) and the feature being
used (i.e., “send email to expert“), which is also described in the S2R. The
S2R provides additional information/context related to the feature (i.e., se-
lecting an “active critic” in “ToDoPane”). When using the full bug report
as initial query to Lucene, the buggy class is retrieved in the 334th position.
When the query is reformulated by using the OB and TITLE, the class is
retrieved in the 5th position (after removing the first top-5 irrelevant docu-
ments). The significant improvement is because many terms from other parts
of the bug report (especially from the stack trace) appear in other documents
of the corpus. Also, the terms “email” and “expert”, present in the TITLE,

12 The query is low-quality for the other three file-level TRBL techniques as well.
13 The position of the buggy file, after excluding the first top-5 documents would be 174.

50 Oscar Chaparro et al.

Fig. 4: Bug report #4330 from ArgoUML and its corresponding buggy class.
The boxed terms represent the terms shared between the report and the class.
Each sentence in the report is marked according to its corresponding informa-
tion type: [TITLE], [OB], or [S2R].

Bug report title:
Exception in ”Send email to expert ” [OB,TITLE]

Bug report description:
Steps to reproduce:
- select an active critic from the ToDoPane [S2R]

- press the ”send email to expert ” button [S2R]

The following exception is thrown (stack from the console, no pop-ups appear): [OB]

Exception in thread ”AWT-EventQueue-0” java.lang.NullPointerException
at org. argouml .ui.cmd. ActionEmailExpert . action

Performed(ActionEmailExpert .java:57)
at javax.swing.AbstractButton.fireActionPerformed(Unknown Source)
at javax.swing.AbstractButton$Handler.actionPerformed(Unknown Source)
at javax.swing.DefaultButtonModel.fireActionPerformed(Unknown Source)
at javax.swing.DefaultButtonModel.setPressed(Unknown Source)
at javax.swing.plaf.basic.BasicButtonListener.mouseReleased(Unknown Source)
at java.awt.AWTEventMulticaster.mouseReleased(Unknown Source)
at java.awt.AWTEventMulticaster.mouseReleased(Unknown Source)

[...]

Buggy code class: TabToDo

[...]
public class TabToDo extends AbstractArgoJPanel

implements TabToDoTarget {
[...]

private static UndoableAction actionEmailExpert

= new ActionEmailExpert ();

[...]
/**
* The constructor.

* Is only called thanks to its listing in the

org/ argouml /argo.ini file.

*/
public TabToDo() {

[...]
JToolBar toolBar = new ToolBar(SwingConstants.VERTICAL);

toolBar.add(action NewToDoItem);

toolBar.add(action Resolve);

toolBar.add(actionEmailExpert);

[...]

split Pane = new BorderSplit Pane ();

add(split Pane , BorderLayout.CENTER);

setTarget(null);
}

public void setTree(ToDoPane tdp) {

if (getOrientation().equals(Horizontal.getInstance())) {

split Pane .add(tdp, BorderSplit Pane .WEST);

} else {

split Pane .add(tdp, BorderSplit Pane .NORTH);

}
}
[...]

}

Bug report found at http://argouml.tigris.org/issues/show_bug.cgi?id=4330

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 51

appear frequently in the buggy class, hence, they are highly relevant. When
the S2R is also retained in the reformulated query, the buggy class ranks in
the 3rd position (after removing the first top-5 irrelevant documents). In this
case, three terms are added to the query, namely “ToDoPane”, “email” and
“expert”. The first term is a new term in the query and is highly relevant.
While the other two are already present in the query, their frequency/weight
gets increased, thus improving the ranking. This case illustrates how the S2R
contain specific terms about the problem and are useful for TRBL.

Although we consider combining OB and TITLE (as well as S2R, when
present in the bug report) as the most effective and practical strategy to re-
formulate queries, note that their combination with EB is highly effective as
well. For all TRBL techniques, except BugLocator, the EB, when combined
with OB, TITLE or S2R, achieves the best effectiveness, and in many cases,
it achieves comparable consistency across different thresholds. The only short-
coming of combining the EB with other information is that it is not frequently
found in bug reports. In any case, we recommend developers to use the ex-
pected behavior (when available) together with OB, TITLE, and/or S2R. Ac-
cording to the results, by using this strategy, developers can expect to find
the buggy code artifacts in the top of the list for more cases than with no
reformulation (e.g., 47.7% on average, when combined with OB and TITLE,
across different techniques, granularities, and thresholds). We observed that
when using the EB, the terms retained from the OB (as well as from other
information types) get weighted, thus leading to higher TRBL performance.
This indicates how similar OB and EB are.

It is important to note that S2R and CODE alone (i.e., when they are not
combined with any of the other information types) consistently deteriorate
HITS@N with respect to no reformulation. In many cases (e.g., the Eclipse
case in Figure 3), the S2R includes terms that refer to several features of
the system (i.e., it gives a broad problem context), which can diverge the
retrieval engine from the specific buggy code. In other cases, the S2R can
refer to higher layers of the systems’ architecture (e.g., the GUI layer) instead
of referring to lower layers, which are the buggy ones in many cases. In the
future, we will combine the reformulation strategies with code dependency
analysis to trace the buggy code across layers. While in many cases, CODE
snippets use few code artifacts, we observed that in many others, they refer to
many classes or methods. Usually, these latter cases correspond to large code
snippets, which help communicate the bug better to the developers. However,
since they contain many code references, their discriminatory power is low
(for text retrieval), which leads to retrieving many non-buggy documents. In
addition, as seen in Figure 3, the CODE may not share any terms at all with
the buggy documents.

We observed that in many cases, the relevant terms from the OB, S2R,
and TITTLE are present in other parts of the bug report. We believe that the
weight of these terms can be boosted according to how frequently they appear
in the full bug report. In our future work, we will investigate this method for
improving the TRBL performance of the reformulation strategies.

52 Oscar Chaparro et al.

Table 26: Average proportion of Successful (S) and Unsuccessful (U) queries
before reformulation that turned Unsuccessful (U) and Successful (S) after
reformulation, when using each reformulation strategy.

(a) OB+TITLE

TRBL technique |Q| U → S S → U S → S U → U
Lucene 763.6 13.9% 7.3% 16.0% 62.7%
Lobster 34.6 17.3% 2.0% 17.0% 63.6%

BugLocator 552.4 5.3% 6.2% 10.5% 78.0%
BRTracer 458.3 7.7% 7.8% 14.6% 69.9%

Locus 190.7 11.7% 6.7% 25.4% 56.2%
Average 11.2% 6.0% 16.7% 66.1%

(b) OB+S2R+TITLE

TRBL technique |Q| U → S S → U S → S U → U
Lucene 409.0 12.7% 6.6% 16.2% 64.4%
Lobster 19.9 20.0% 0.4% 19.3% 60.4%

BugLocator 309.1 4.1% 4.4% 11.0% 80.4%
BRTracer 255.5 7.6% 4.7% 15.8% 71.8%

Locus 124.4 7.6% 4.6% 25.8% 62.0%
Average 10.4% 4.2% 17.6% 67.8%

Average values across the 3 data sets and 26 thresholds N.

4.9 Trade-offs between Successful and Unsuccessful Queries

During query reformulation, there is always a trade-off, as some queries become
successful while others become unsuccessful with respect to no reformulation.
A good reformulation strategy would lead to more successful queries (i.e.,
retrieving buggy code artifacts in top-N) than unsuccessful queries (i.e., not
retrieving buggy code artifacts in top-N), compared to the initial queries. We
aim to better understand the trade-offs for the best reformulation strategy,
i.e., OB+TITLE. We also analyze the case when OB+TITLE is combined
with the S2R, i.e., OB+S2R+TITLE.

We refer to all the queries that retrieve code artifacts in top-N as success-
ful queries, and to those that do not retrieve code artifacts as unsuccessful
queries. Ideally, a reformulation strategy would preserve the successful queries
(i.e., an initial successful query, which reformulated remains successful, a.k.a.
successful → successful), while converting all (or at least some) of the initially-
unsuccessful queries into successful ones (i.e., unsuccessful → successful). In
other terms, we want to avoid a situation when successful queries turn unsuc-
cessful (i.e., successful → unsuccessful) via the reformulation.

Table 26 shows that OB+TITLE and OB+S2R+TITLE transform about
the same proportion of unsuccessful queries into successful ones (i.e., approx.
11% of the queries, on average). However, OB+TITLE converts slightly more
successful queries into unsuccessful ones compared to OB+S2R+ TITLE (i.e.,
6% vs 4.2% on average, respectively), which is less desirable. Both strate-
gies preserve nearly the same proportion (i.e., approx. 17%) of the successful

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 53

queries, and OB+S2R+TITLE preserves slightly more unsuccessful queries
than OB+TITLE (i.e., 67.8% vs 66.1%, respectively), which is less desirable.
The small differences of successful and unsuccessful queries before and after
reformulation supports our conclusion in that both strategies achieve com-
parable TRBL performance. Finally, approach-wise, note that for the case of
OB+S2R+TITLE, Lucene and Lobster are the approaches with the highest
proportions of unsuccessful → successful, which are substantially higher than
the proportions for BugLocator and BRTracer. For the case of OB+TITLE,
Lucene, Lobster, and Locus are the approaches with the highest proportions
of unsuccessful → successful queries, which are substantially higher than the
proportions for BugLocator and BRTracer. These results further show the ro-
bustness of BugLocator and BRTracer with respect to noisy queries.

Figure 5 illustrates a successful → successful case when using Lucene. The
full bug report #727 (from Math), used as input query to Lucene, fails to
return the buggy method within the top-5 results (i.e., N=5), i.e., the method
is ranked in the 7th position. Reformulating the query with the TITLE and
the OB from the bug report14 leads to retrieving the buggy method in the
13th position, i.e., 6 positions down the result list. Figure 5 reveals that all
the sentences in the bug report contain shared terms with the buggy method,
and the terms “step”, “size”, “integrat(or/tion)”, “Runge”, and “Kuttap” are
the most relevant ones, since they appear frequently in the buggy method.
When the query is reformulated, the only relevant term that is completely
removed is “compute”. While the most relevant terms are not removed by the
reformulation, they appear less frequently in the reformulated query (i.e., their
term frequency decreases), thus reducing their weight and finally hindering the
retrieval of the buggy method. This is another example of how increasing the
weight of the terms appearing in the OB or TITLE, based how frequent they
appear in other parts of the bug report, may improve TRBL.

Another successful → successful example is the bug report #1152 from
Tika15, whose buggy class is ChmLzxBlock. When the full bug report is used
as input query to Lucene, the buggy class is retrieved in the 6th position. When
the query is reformulated, by using the OB (i.e., “... Java process stuck”), the
TITLE (i.e., “Process loops infinitely... ”), and the S2R (i.e., “By parsing
the attachment CHM file...”), the class is retrieved in the 11th position. The
reason for the deterioration is the removal of the terms corresponding to the
stack trace included in the report, which contains the terms of the buggy class
name. The reformulation strategy removes this content since it is not natural
language written by the users, hence does not correspond to OB. Note that
the initial query is not low-quality when using Lobster. This is because Lobster
uses the stack traces within bug reports to boost the classes that appear in
the traces as well as their dependencies (i.e., related classes). As part of our

14 The reformulation results in the query: “too large first step ... (Dormand-Prince 8(5,3)
...) For embedded Runge-Kutta type, this step size ... and fails to stop).”
15 Found at https://issues.apache.org/jira/browse/TIKA-1152

54 Oscar Chaparro et al.

Fig. 5: Bug report #727 from Math and its corresponding buggy method. The
boxed terms represent the terms shared between the report and the method.
Each sentence in the report is marked according to its corresponding informa-
tion type: [TITLE] or [OB].

Bug report title:
too large first step with embedded Runge - Kutta integrators
(Dormand-Prince 8(5,3) ...) [OB,TITLE]

Bug report description:
Adaptive step size integrators compute the first step size by themselves if it
is not provided.
For embedded Runge - Kutta type, this step size is not checked against the

integration range, so if the integration range is extremely short, this step size

may evaluate the function out of the range (and in fact it tries afterward to go back,
and fails to stop). [OB]

Gragg-Bulirsch-Stoer integrators do not have this problem, the step size is

checked and truncated if needed.

Buggy code method: EmbeddedRungeKuttaIntegrator:integrate

/** {@inheritDoc} */
@Override

public void integrate (final ExpandableStatefulODE equations,

final double t)
throws MathIllegalStateException,
[...] {

sanity Checks (equations, t);

[...]

// set up an interpolator sharing the integrator arrays

final RungeKuttaStep Interpolator interpolator =

(RungeKuttaStep Interpolator) prototype.copy();

[...]

stepSize = hNew;

// next stages
for (int k = 1; k < stages; ++k) {

for (int j = 0; j < y0.length; ++j) {
[...]

yTmp[j] = y[j] + stepSize * sum;

}

compute Derivatives(step Start + c[k-1] * stepSize ,

yTmp, yDotK[k]);
}
[...]
if (fsal) {

// save the last evaluation for the next step

System.arraycopy(yDotTmp, 0, yDotK[0], 0, y0.length);
}
[...]

}

Bug report found at https://issues.apache.org/jira/browse/MATH-727

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 55

future work, we will investigate ways to incorporate (parts of the) stack traces
into the reformulation.

5 Threats to Validity

We discuss the threats that could affect the validity of our empirical evaluation.
The main threat to construct validity concerns the criteria used to deter-

mine if a query is successful or unsuccessful within the proposed scenario for
bug localization (see Section 2). In our experimental setting, the buggy code
artifacts are known for each query/bug report. We determined the success of
a query by measuring the rank of these artifacts in the list produced by the
TRBL techniques when using the query as input to them. A query is deemed
successful if any of the buggy code artifacts is found within the top-N results
(i.e., their rank is less than or equal to N), otherwise the query is considered
unsuccessful. In a real case scenario, the developer does not know the buggy
code artifacts beforehand, and determining the success of a query implies man-
ually inspecting the returned code candidates, which may be non-trivial. The
metrics used in the evaluation, in particular HITS@N, which is based on the
rank of the first buggy document found in the result list, were used as a proxy
to measuring the effort spend by a developer when inspecting the code candi-
dates. Although, this is a widely-used experimental setting in TRBL research,
it might not resemble a realistic scenario for bug localization. In our future
work, we will address this threat to validity by conducting empirical studies
with developers to determine the usefulness of reformulating the initial queries
via the proposed reformulation strategies.

Another threat to construct validity is the subjectivity introduced in the
labeled set of bug reports when manually identifying OB, EB, and S2R, as each
bug report was coded by a single coder. We made this choice in order to max-
imize the number of queries used in our evaluation. Also, our past experience
when we had multiple coders per bug report revealed high agreement between
coders (Chaparro et al., 2017b,a). In order to reduce subjectivity, we used the
set of common coding criteria that we defined in our prior work (Chaparro
et al., 2017b,a). We also conducted training sessions with the coders, which
included examples and discussion of ambiguous phrases in the bug reports.
The impact of bug coding from different coders on code retrieval will be in-
vestigated in our future work.

In order to mitigate threats to the conclusion validity, we compared the
performance of the initial and reduced queries using HITS@N, MRR, and
MAP, metrics widely used in TRBL research (Wang and Lo, 2014; Zhou et al.,
2012; Moreno et al., 2014; Wong et al., 2014). We focused our evaluation
primarily on HITS@N. We argue that this metric is best for assessing query
reformulation for TRBL as, in practice, developers would likely inspect the top
N candidate code artifacts only, before switching to another bug localization
method (e.g., navigating code dependencies). Also, HITS@N is more intuitive
and easy to interpret than MRR and MAP. We categorized the strategies

56 Oscar Chaparro et al.

using three dimensions, namely effectiveness, applicability, and consistency,
which allowed us to determine the best strategies across TRBL techniques and
granularities. We also analyzed the trade-offs of our reformulation strategies,
to further strengthen our conclusions. We defined two categories of queries
(i.e., successful and unsuccessful) and analyzed the transition of the queries
between categories before and after reformulation. Similar analyses have been
used in prior query reformulation research (Chaparro et al., 2017a; Haiduc
et al., 2013).

The internal validity of our evaluation is affected by our TRBL data sets
and approaches. Based on data previously used in TRBL studies (Zhou et al.,
2012; Wong et al., 2014; Moreno et al., 2014; Mills et al., 2017; Chaparro et al.,
2017a; Lee et al., 2018), we built three data sets at different granularity levels
(i.e., method-, class-, and file-level). These data sets contain bug reports/-
queries and code corpora that correspond to distinct Java software systems.
While we observed variation in results across data sets (i.e., code granularity)
and TRBL approaches, the common denominator in all treatments was our
query reformulation strategies, which we consider the main factor in the ob-
served improvements. We also used five state-of-the-art TRBL techniques pro-
posed by prior research. As mentioned before, the differences in performance
we observed for the original implementation of Buglocator and our implemen-
tation may impact the results, but we consider the impact minimal, and using
the other four approaches confirms that the successful reformulations work
with different approaches. Finally, our query sample contains a small subset
of duplicated queries across the three code granularities and projects versions.
The duplication stems from the independent data collection process performed
by the data owners of the original data sources. These queries can be treated
as different queries because they are likely to perform differently across gran-
ularities and project versions. In any case, given the small proportion of these
queries in our sample (i.e., 4.3% total), we consider that their impact in the
results is minimal.

We addressed the external validity of our empirical evaluation by using
1,221 low-quality queries from 248 versions of 30 different software systems that
span different domains and software types. We used nearly as three times more
queries and nine more software projects than in our prior work on OB-based
query reformulation (Chaparro et al., 2017a) to strengthen the generalizability
of our conclusions. Finally, we used five TRBL techniques, namely Lucene
(Hatcher and Gospodnetic, 2004), Lobster (Moreno et al., 2014), BugLocator
(Zhou et al., 2012), BRTracer (Wong et al., 2014), and Locus (Wen et al.,
2016). Investigating the effectiveness of our reformulation strategies with other
TRBL techniques is part of our future research agenda.

6 Related Work

In this section, we describe the main TRBL approaches and discuss existing
work on query reformulation in the context of source code retrieval.

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 57

6.1 TR-based Bug Localization

TRBL is closely related to TR-based concept/feature location in source code
(Marcus and Haiduc, 2013; Dit et al., 2012) and TR-based traceability link re-
covery (De Lucia et al., 2012). These are all formulated as document retrieval
problems. A requirement (e.g., feature description, bug report, etc.) is used as
query to search a document space built from source code artifacts of a software
system and retrieve a list of code documents (e.g., files, classes, functions, or
methods) relevant to the query. The relevance of a source code document to
a query is determined by the textual similarity between them: the higher the
textual similarity, the more likely the document is to implement the require-
ment. The targeted (i.e., relevant) code documents are the ones that contain
the feature described in the requirement. Both TRBL and concept/feature lo-
cation can be considered instances of traceability link recovery, but they differ
in the types of artifacts they use as queries. What differentiates TR-based bug
localization from the more general code retrieval approaches is the use of bug
reports as queries.

TRBL techniques often use additional information related to the current
bug report to adjust the ranking of the relevant code documents. Additional
information leveraged by existing TRBL techniques includes: code structure
(Wang and Lo, 2014; Saha et al., 2013; Wang and Lo, 2016; Youm et al.,
2017; Ali et al., 2012; Takahashi et al., 2018), part-of-speech tags (Zhou et al.,
2017), similar bug reports (Zhou et al., 2012; Wang and Lo, 2014, 2016; Youm
et al., 2017; Saha et al., 2013; Davies et al., 2012; Wong et al., 2014; Rath
et al., 2018), code version history (Sisman and Kak, 2012; Wang and Lo, 2016;
Youm et al., 2017; Wang and Lo, 2014), stack traces (Moreno et al., 2014;
Wong et al., 2014; Wang and Lo, 2016; Youm et al., 2017; Sisman et al., 2016;
Wen et al., 2016), or combinations of the above (Wang and Lo, 2016; Youm
et al., 2017; Wang and Lo, 2014; Saha et al., 2013; Wong et al., 2014; Shi et al.,
2018; Dao et al., 2017).

We focus the discussion in this section on approaches designed specifically
for bug retrieval (i.e., they use information from or related to bug reports),
rather than more generic concept/feature location and traceability link re-
covery approaches, which could also be used for bug localization. All TRBL
approaches follow a common process, consisting of:

1. Building a corpus using the source code of the software.
2. Indexing the corpus using a TR model.
3. Formulating an initial query based on the bug report.
4. Ranking the documents with respect to the query, based on the TR model

used and additional information related to the bug report.
5. Inspecting the retrieved documents. If the buggy code document is found,

the process ends.
6. Reformulating the query if the buggy code is not identified, and resuming

the process at step 4.

58 Oscar Chaparro et al.

Our contributions focus on steps 5 and 6. For step 5, we assume that the
user will examine the first N results before deciding that a relevant code artifact
was not retrieved by the query formulated in step 3 (i.e., the initial query).
Our work provides a set of strategies for the reformulation of the initial query
(step 6), which is commonly formulated using the full textual description of a
bug report (Dit et al., 2012). We argue that the user should select certain parts
of the bug report if they are present (TITLE, OB, and S2R/EB) and then re-
run the newly created query with their TRBL approach of choice (step 4). In
order to determine whether this approach is effective for TRBL, we compare
the first N results produced by the reformulated query and the ones produced
by the original query, excluding the previous N results already inspected and
deemed irrelevant by the developer. In other words, we compare the results
after reformulation with the case in which the user checks the following N
results of the original query without applying reformulation.

Previous research in concept/feature location and traceability link recovery
focused on improving all the six steps of this process and TRBL techniques
utilize much of that research. The main research efforts in TRBL focused
primarily on step 4. While some research has focused on improving/optimizing
traditional TRBL techniques, for example, via parameter tuning, advanced
machine learning, or extending the mathematical models behind them (Zhang
et al., 2016; Ye et al., 2016a,b; Le et al., 2014; Eddy et al., 2018; Hoang
et al., 2018; Xiao et al., 2018), most of the research has focused on leveraging
additional information related to the bug reports, as mentioned above.

Software history information is used by TRBL approaches to boost code
artifacts with high defect/change probability based on code change records
(e.g., version control records). The code artifacts boosted are those found in
change-sets that were intended to fix bugs. The boost amount can depend
on different factors, e.g., the number of times a code artifact has been fixed
(Sisman and Kak, 2012; Wang and Lo, 2016; Wen et al., 2016; Youm et al.,
2017) or how long ago this happened (Sisman and Kak, 2012; Wang and Lo,
2014; Wen et al., 2016).

Bug fix history is also used to complement textual similarity. A set of
previously fixed bug reports is kept, each one with its corresponding fix-set:
the set of code documents that were modified in order to fix the bug. A query
(i.e., the current bug report) is compared to each previously-fixed bug report.
The documents in each fix-set are boosted according to some criteria, e.g., the
textual similarity of the fixed bug with the query (Zhou et al., 2012; Wang
and Lo, 2014, 2016; Youm et al., 2017; Saha et al., 2013; Davies et al., 2012;
Wong et al., 2014). Recently, feature requests have been leveraged in addition
to bugs, in the same way described before (Rath et al., 2018).

Bug reports sometimes contain stack traces, which are also used to alter
the text-based ranking. Some TRBL approaches work on the assumption that
the buggy code artifacts could be directly referenced by these traces, and use
regular expressions to identify referenced classes/files (Moreno et al., 2014;
Wong et al., 2014; Wang and Lo, 2016; Youm et al., 2017; Sisman et al.,
2016). The set of suspicious classes/files is expanded by identifying artifacts

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 59

(in)directly referenced in the code of the ones found in the stack trace. These
relationships can be found by using the system’s call graph (Moreno et al.,
2014) or the files’ import statements (Wong et al., 2014; Youm et al., 2017).

Some approaches exploit query and document structure by simply splitting
the query into two parts (bug report title and description) and the document in
four (classes, methods, variables, and comments). Besides the score calculated
from the full text of both the query and the document, additional scores are
calculated from the similarities between each of the two query components and
each of the document components (8 additional scores in total), and then all
scores are added together. This assigns a greater weight to terms appearing
in multiple fields of a document, increasing their discriminating power for
retrieval (Wang and Lo, 2014; Saha et al., 2013; Wang and Lo, 2016; Youm
et al., 2017; Ali et al., 2012). These approaches treat the title as a separate
part of the bug report (similar to our TITLE strategy), however, they still use
the full text of the bug report. We argue that some parts of the bug report
text can be removed to improve TRBL performance.

It has also been proposed to use code smells as a separate source of infor-
mation (Takahashi et al., 2018). For this approach, code smells are detected
along with their severity, and this severity score is combined with the textual
similarity while ranking code elements. Finally, part-of-speech information has
been explored as a possible source of improvement. Zhou et al.. (Zhou et al.,
2017) propose boosting the retrieval weight of bug report terms tagged as
nouns by an automatic part-of-speech tagger.

Despite this rich body of existing work in improving TRBL, our focus is
on helping developers reformulating a query when it fails to retrieve at least
one relevant code artifact (i.e., step 6 in the above process).

6.2 Query Reformulation in TRBL and Code Retrieval

Existing research highlighted the challenges that developers face when re-
formulating queries for code retrieval (Starke et al., 2009; Bajracharya and
Lopes, 2012; Damevski et al., 2016). On one hand, TRBL approaches mitigate
the problems associated with formulating an initial query by utilizing the bug
report (Chaparro and Marcus, 2016). On the other hand, existing research
provides little or no guidance on what parts of the bug reports to use when
reformulating a query when no relevant results are retrieved within the first
few entries of the ranked list (Kevic and Fritz, 2014).

Three general query reformulation strategies are found in the literature,
namely, query expansion (Carpineto and Romano, 2012), query replacement
(Gibiec et al., 2010; Guo et al., 2016), and query reduction (Lu and Keefer,
1995; Rahman and Roy, 2017a; Kevic and Fritz, 2014). Query expansion con-
sists in adding alternative terms (or phrases) to a query; query replacement
changes (part of) a query with a new set of terms; and query reduction focuses
on removing query terms.

60 Oscar Chaparro et al.

Most existing research on query reformulation in code retrieval (including
TRBL) has focused on query expansion. The methods to determine the alter-
native terms include relevance feedback from developers (Gay et al., 2009);
pseudo-relevance feedback (Haiduc et al., 2013; Sisman and Kak, 2013), which
leverages the lexicon of the previous top code documents retrieved; the use of
English or software ontologies (e.g., WordNet or custom-built models) (Shep-
herd et al., 2007; Rahman and Roy, 2017b), which contain related terms to
the ones in a query (e.g., synonyms); or co-occurring term information from
various software sources, such as source code, Stack Overflow (SO) questions,
or regulatory documents (Rahman and Roy, 2016; Marcus et al., 2004; Diet-
rich et al., 2013). Similar techniques have been applied in the context of code
search, where the initial queries are reformulated based on thesauri (e.g., lexi-
cal databases from SO) (Li et al., 2016; Lazzarini Lemos et al., 2015; Ge et al.,
2017), relevance feedback from users (Wang et al., 2014b), pseudo-relevance
feedback from SO results (Nie et al., 2016), co-occurrence and frequency of
query terms with previous results and source code (Hill et al., 2014; Roldan-
Vega et al., 2013), and textual similarity between the query and Application
Programming Interfaces (Lv et al., 2015).

Query replacement has been utilized mostly for traceability link recovery
(Gibiec et al., 2010), where the terms from similar web and domain-specific
documents to the query are leveraged to select a set of candidate terms to re-
place the initial query. Another query replacement method is learning frequent
terms from existing requirement-regulation trace corpora, and using them as
the new query (Guo et al., 2016).

Regarding query reduction, our prior research showed that removing noisy
terms from the query (i.e., from bug reports) leads to substantial retrieval im-
provement in TR-based bug localization (Chaparro and Marcus, 2016). Simi-
larly, Mills et al. (Mills et al., 2018) found that near-optimal (reduced) queries
from bug report lead to high improvement on code retrieval. The few works
that include some kind of query reduction rely on heuristics to remove the
noisy terms. Specifically, Rahman et al. (Rahman and Roy, 2016) discarded
the terms different from nouns or those occurring in more than 25% of the
code documents, since they are likely to be non-discriminating. Haiduc et al.
(Haiduc et al., 2013) followed a similar strategy. Kevic et al. (Kevic and Fritz,
2014) recommended the top three terms in a change request that have the high-
est predictive power to retrieve the relevant code documents (i.e., in top-10 of
the list). Their findings suggest that terms that appear in both the summary
and description of change requests are good candidates to be used as query
(Kevic and Fritz, 2014). In another work, Rahman et al. (Rahman and Roy,
2017a) leveraged term co-occurrences and syntactic dependencies to select the
most important terms in a change request as a query. Recently, the same au-
thors proposed weighting and selecting query terms based on how these relate
to each and whether they reference code entities and/or appear in particular
parts of the bug reports, e.g., in stack traces (Rahman and Roy, 2018). Re-
lated to term selection, other research focused on weighing terms (from the

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 61

query) that occur in method names and calls (Bassett and Kraft, 2013) or
terms corresponding to source code file names (Dilshener et al., 2016).

Our reformulation strategy is in line with query reduction, as we are se-
lecting part of the initial query and discarding the rest of the query terms.
We do not argue that all the terms we select are most relevant, but rather
we claim that the terms we do not select are less relevant. To the best of our
knowledge, our original work (Chaparro et al., 2017a) was the first to inves-
tigate how the type of textual content from bug descriptions used as queries
can improve TR-based bug localization via query reformulation (specifically,
query reduction), and it remains the only work in the subject until the time
of writing this paper.

7 Conclusions and Future Work

We proposed a set of reformulation strategies based on the structure of bug
descriptions. These strategies can be employed when using the full bug re-
ports as initial queries fails to retrieve the buggy code artifacts within the
top retrieved results (i.e., these bug descriptions result in low-quality queries).
Our hypothesis was that the TITLE of the bug reports, the observed behav-
ior (OB), expected behavior (EB), and steps to reproduce (S2R), as well as
the code snippets (CODE) in the bug description contain relevant information
with respect to TRBL, while other parts of the description include irrelevant
terms that act as noise for code retrieval. From the combination of these five
types of content, we defined 31 query reformulation strategies that are based
on the user selecting the TITLE, OB, EB, S2R, or CODE parts of the bug
description. We used the defined strategies to reformulate 1,221 low-quality
queries, which were executed using five state-of-the-art TRBL approaches on
data of three code granularity levels (i.e., file, class, and method). We assessed
the ability of the reformulation strategies to retrieve the buggy code artifact(s)
within the top-N returned candidates for 26 different thresholds (N={5, 6, 7,
..., 30}) in comparison with no reformulation, when excluding the first N ir-
relevant results produced by the initial queries.

The results indicate that combining the TITLE and the OB from the
bug descriptions is the best reformulation strategy across the five TRBL ap-
proaches and three code granularities, as it leads to retrieving the buggy code
artifacts within the top-N results for 25.6% more queries (on average) than
without query reformulation. This strategy is highly-applicable and highly-
consistent across different thresholds N. In addition, combining the OB and
TITLE with the S2R, when provided in the bug reports, leads to better re-
trieval performance (i.e., for 31.4% more queries with respect to no reformula-
tion) and comparable consistency, yet it is applicable in fewer cases. Likewise,
using the EB (when available) along with the OB and TITLE leads to better
performance (i.e., 41.7% more queries with respect to no reformulation) and
comparable consistency. However, the shortcoming of using this strategy is its
low applicability, given that the EB is not frequently found in bug reports.

62 Oscar Chaparro et al.

We also found that three of the TRBL approaches we experimented with
(i.e., BugLocator, BRTracer, and Locus) are less sensitive to noisy queries
than the other two (i.e., Lucene and Lobster), while all benefit from the best
query reformulation strategies we defined. The results bear evidence in support
of our hypothesis about the effectiveness of the structure of bug descriptions
on TRBL. Our reformulation strategies are simple to use, do not depend on
any information outside the bug report, and demand minimal effort from the
developer, i.e., simply select the TITLE and the sentences describing the OB
and the S2R (when available).

As future work, we plan to evaluate the proposed reformulation strategies
with additional TRBL approaches. In addition, we will conduct a sensitivity
analysis of the reformulation strategies with respect to fuzzy selection of the
OB, EB, and S2R by different users. While we believe that the proposed
reformulation strategies are easy to use, as they only require a copy-paste
operation from the user, we need empirical evidence to support this. Our
future research will be directed towards finding such evidence. In addition, we
will focus on investigating combined reformulation strategies, that is, not only
query reduction, which may lead to even better results. Finally, expanding the
evaluation on more TRBL data and queries is also planned.

References

Nasir Ali, Aminata Sabane, Yann-Gael Gueheneuc, and Giuliano Antoniol.
Improving bug location using binary class relationships. In Proceedings of
the International Working Conference on Source Code Analysis and Manip-
ulation (SCAM’12), pages 174–183, 2012.

Sushil Krishna Bajracharya and Cristina Videira Lopes. Analyzing and mining
a code search engine usage log. Empirical Software Engineering, 17(4-5):
424–466, 2012.

B. Richard Bassett and Nicholas A. Kraft. Structural information based term
weighting in text retrieval for feature location. In Proceedings of the Inter-
national Conference on Program Comprehension (ICPC’13), pages 133–141,
2013.

Claudio Carpineto and Giovanni Romano. A survey of automatic query ex-
pansion in information retrieval. Computing Surveys, 44(1):1, 2012.

Oscar Chaparro and Andrian Marcus. On the Reduction of Verbose Queries
in Text Retrieval Based Software Maintenance. In Proceedings of the In-
ternational Conference on Software Engineering (ICSE’16), pages 716–718,
2016.

Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. Using observed
behavior to reformulate queries during text retrieval-based bug localization.
In Proceedings of the 33rd International Conference on Software Mainte-
nance and Evolution (ICSME’17), pages 376–387, 2017a.

Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano
Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng. Detecting

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 63

missing information in bug descriptions. In Proceedings of the Joint Meeting
on Foundations of Software Engineering (ESEC/FSE’17), 2017b. 396-407.

Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. Replication pack-
age, 2019. URL https://tinyurl.com/y7bzqnwc.

Kostadin Damevski, David Shepherd, and Lori Pollock. A field study of how
developers locate features in source code. Empirical Software Engineering,
21(2):724–747, 2016.

Tung Dao, Lingming Zhang, and Na Meng. How does execution information
help with information-retrieval based bug localization? In Proceedings of
the International Conference on Program Comprehension (ICPC’17), pages
241–250, 2017.

Steven Davies and Marc Roper. What’s in a Bug Report? In Proceedings of
the International Symposium on Empirical Software Engineering and Mea-
surement (ESEM’14), pages 26:1–26:10, 2014.

Steven Davies, Marc Roper, and Murray Wood. Using bug report similarity
to enhance bug localisation. In Proceedings of the Working Conference on
Reverse Engineering (WCRE’12), pages 125–134, 2012.

Andrea De Lucia, Andrian Marcus, Rocco Oliveto, and Denys Poshyvanyk.
Information retrieval methods for automated traceability recovery. In Jane
Cleland-Huang, Orlena Gotel, and Andrea Zisman, editors, Software and
Systems Traceability, pages 71–98. Springer, 2012.

Timothy Dietrich, Jane Cleland-Huang, and Yonghee Shin. Learning effec-
tive query transformations for enhanced requirements trace retrieval. In
Proceedings of the International Conference on Automated Software Engi-
neering (ASE’13), pages 586–591, 2013.

Tezcan Dilshener, Michel Wermelinger, and Yijun Yu. Locating bugs without
looking back. In Proceedings of the International Conference on Mining
Software Repositories (MSR’16), pages 286–290, 2016.

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Fea-
ture location in source code: A taxonomy and survey. Journal of Software:
Evolution and Process, 25(1):53–95, 2012.

Brian P Eddy, Nicholas A Kraft, and Jeff Gray. Impact of structural weighting
on a latent dirichlet allocation–based feature location technique. Journal of
Software: Evolution and Process, 30(1):e1892, 2018.

Gregory Gay, Sonia Haiduc, Andrian Marcus, and Tim Menzies. On the use
of relevance feedback in ir-based concept location. In Proceedings of the
International Conference on Software Maintenance (ICSM’09), pages 351–
360, 2009.

Xi Ge, David C Shepherd, Kostadin Damevski, and Emerson Murphy-Hill.
Design and evaluation of a multi-recommendation system for local code
search. Journal of Visual Languages & Computing, 39:1–9, 2017.

Marek Gibiec, Adam Czauderna, and Jane Cleland-Huang. Towards mining
replacement queries for hard-to-retrieve traces. In Proceedings of the Inter-
national Conference on Automated Software Engineering (ASE’10), pages
245–254, 2010.

64 Oscar Chaparro et al.

Jin Guo, Marek Gibiec, and Jane Cleland-Huang. Tackling the term-mismatch
problem in automated trace retrieval. Empirical Software Engineering, pages
1–40, 2016.

Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea
De Lucia, and Tim Menzies. Automatic query reformulations for text re-
trieval in software engineering. In Proceedings of the International Confer-
ence on Software Engineering (ICSE’13), pages 842–851, 2013.

Erik Hatcher and Otis Gospodnetic. Lucene in Action. Manning Publications,
2004.

E. Hill, M. Roldan-Vega, J. A. Fails, and G. Mallet. Nl-based query refine-
ment and contextualized code search results: A user study. In Proceedings
of the Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE’14), pages 34–43, 2014.

T. V. Hoang, R. J. Oentaryo, T. B. Le, and D. Lo. Network-clustered multi-
modal bug localization. IEEE Transactions on Software Engineering, 2018.
(to appear).

Myles Hollander, Douglas A Wolfe, and Eric Chicken. Nonparametric statis-
tical methods, volume 751. John Wiley & Sons, 2013.

René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of
existing faults to enable controlled testing studies for java programs. In Pro-
ceedings of the International Symposium on Software Testing and Analysis
(ISSTA’14), pages 437–440. ACM, 2014.

Katja Kevic and Thomas Fritz. Automatic search term identification for
change tasks. In Proceedings of the International Conference on Software
Engineering (ICSE’14), pages 468–471, 2014.

Otavio Augusto Lazzarini Lemos, Adriano Carvalho de Paula, Hitesh Sajnani,
and Cristina V. Lopes. Can the use of types and query expansion help
improve large-scale code search? In Proceedings of the International Working
Conference on Source Code Analysis and Manipulation (SCAM’15), pages
41–50, 2015.

Tien-Duy B Le, Ferdian Thung, and David Lo. Predicting effectiveness of ir-
based bug localization techniques. In Proceedings of the 25th International
Symposium on Software Reliability Engineering (ISSRE’14), pages 335–345,
2014.

Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. Information retrieval
and spectrum based bug localization: Better together. In Proceedings of the
Joint Meeting on Foundations of Software Engineering (ESEC/FSE’15),
pages 579–590, 2015.

Jaekwon Lee, Dongsun Kim, Tegawendé F. Bissyandé, Woosung Jung, and
Yves Le Traon. Bench4bl: Reproducibility study on the performance of ir-
based bug localization. In Proceedings of the 27th International Symposium
on Software Testing and Analysis (ISSTA’18), ISSTA 2018, pages 61–72,
2018.

Zhixing Li, Tao Wang, Yang Zhang, Yun Zhan, and Gang Yin. Query refor-
mulation by leveraging crowd wisdom for scenario-based software search.
In Proceedings of the Asia-Pacific Symposium on Internetware (Internet-

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 65

ware’16), pages 36–44, 2016.
X. Allan Lu and Robert B Keefer. Query expansion/reduction and its impact

on retrieval effectiveness. NIST Special Publication, pages 231–231, 1995.
Apache Lucene. https://lucene.apache.org/, 2017.
Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and

Jianjun Zhao. Codehow: Effective code search based on api understanding
and extended boolean model. In Proceedings of the International Conference
on Automated Software Engineering (ASE’15), pages 260–270, 2015.

Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel,
Steven Bethard, and David McClosky. The stanford corenlp natural lan-
guage processing toolkit. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL’14), pages 55–60, 2014.

Andrian Marcus and Sonia Haiduc. Text retrieval approaches for concept
location in source code. In Software Engineering: International Summer
Schools, ISSSE 2009-2011, Salerno, Italy. Revised Tutorial Lectures, volume
7171 of Lecture Notes in Computer Science, pages 126–158. Springer, 2013.

Andrian Marcus, Andrey Sergeyev, Václav Rajlich, and Jonathan I. Maletic.
An information retrieval approach to concept location in source code. In Pro-
ceedings of the Working Conference on Reverse Engineering (WCRE’04),
pages 214–223, 2004.

Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, Andrian Marcus,
and Andrea De Lucia. Predicting query quality for applications of text re-
trieval to software engineering tasks. Transactions on Software Engineering
and Methodology, 26(1):3:1–3:45, 2017.

Chris Mills, Jevgenija Pantiuchina, Esteban Parra, Gabriele Bavota, and Sonia
Haiduc. Are bug reports enough for text retrieval-based bug localization? In
Proceedings of the 34th IEEE International Conference on Software Main-
tenance and Evolution (ICSME’18), pages 410–421, 2018.

Laura Moreno, John Joseph Treadway, Andrian Marcus, and Wuwei Shen.
On the use of stack traces to improve text retrieval-based bug localization.
In Proceedings of the Conference on Software Maintenance and Evolution
(ICSME’14), pages 151–160, 2014.

Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar Al-Kofahi, Hung Viet Nguyen,
and Tien N. Nguyen. A topic-based approach for narrowing the search
space of buggy files from a bug report. In Proceedings of the International
Conference On Automated Software Engineering (ASE’11), pages 263–272,
2011.

Brent D. Nichols. Augmented bug localization using past bug information.
In Proceedings of the Annual Southeast Regional Conference (ACMSE’10),
pages 1–6, 2010.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xiaochen Li. Query expansion
based on crowd knowledge for code search. IEEE Transactions on Services
Computing, 9(5):771–783, 2016.

Luca Ponzanelli, Andrea Mocci, and Michele Lanza. Stormed: Stack overflow
ready made data. In Proceedings of 12th Working Conference on Mining
Software Repositories (MSR’15), pages 474–477, 2015.

66 Oscar Chaparro et al.

Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980.

Md Masudur Rahman, Jed Barson, Sydney Paul, Joshua Kayani, Fed-
erico Andrés Lois, Sebastián Fernandez Quezada, Christopher Parnin,
Kathryn T. Stolee, and Baishakhi Ray. Evaluating how developers use
general-purpose web-search for code retrieval. In Proceedings of the 15th
International Conference on Mining Software Repositories (MSR’18, pages
465–475, 2018.

Mohammad Masudur Rahman and Chanchal K. Roy. Quickar: Automatic
query reformulation for concept location using crowdsourced knowledge. In
Proceedings of the International Conference on Automated Software Engi-
neering (ASE’16), pages 220–225, 2016.

Mohammad Masudur Rahman and Chanchal K. Roy. Strict: Information re-
trieval based search term identification for concept location. In Proceed-
ing of the Conference on Software Analysis, Evolution, and Reengineering
(SANER’17), pages 79–90, 2017a.

Mohammad Masudur Rahman and Chanchal K Roy. Improved query refor-
mulation for concept location using coderank and document structures. In
Proceedings of the International Conference on Automated Software Engi-
neering (ASE’17), pages 428–439. IEEE Press, 2017b.

Mohammad Masudur Rahman and Chanchal K Roy. Improving ir-based
bug localization with context-aware query reformulation. In Proceedings
of the 26th Joint Meeting on Foundations of Software Engineering (ES-
EC/FSE’18), 2018. (to appear).

Shivani Rao and Avinash Kak. Retrieval from software libraries for bug
localization: a comparative study of generic and composite text models.
In Proceedings of the Working Conference on Mining software repositories
(MSR’11), pages 43–52, 2011.

Michael Rath, David Lo, and Patrick Mäder. Analyzing Requirements and
Traceability Information to Improve Bug Localization. In Proceedings of
the Working Conference on Mining Software Repositories (MSR’18). ACM,
2018.

Manuel Roldan-Vega, Greg Mallet, Emily Hill, and Jerry Alan Fails. Conquer:
A tool for nl-based query refinement and contextualizing code search results.
In Proceedings of the International Conference on Software Maintenance
(ICSM’13), pages 512–515, 2013.

Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E. Perry. Im-
proving bug localization using structured information retrieval. In Proceed-
ings of the International Conference on Automated Software Engineering
(ASE’13), pages 345–355, 2013.

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975.

Carolyn B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering, 25(4):557–572,
1999.

Using Bug Descriptions to Reformulate Queries during TR Bug Localization 67

David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-
Shanker. Using natural language program analysis to locate and understand
action-oriented concerns. In Proceedings of the International Conference on
Aspect-oriented Software Development (AOSD’07), pages 212–224, 2007.

Zhendong Shi, Jacky Keung, Kwabena Ebo Bennin, and Xingjun Zhang. Com-
paring learning to rank techniques in hybrid bug localization. Applied Soft
Computing, 62:636–648, 2018.

Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V
Lopes. How well do search engines support code retrieval on the web? ACM
Transactions on Software Engineering and Methodology, 21(1):4, 2011.

Bunyamin Sisman and Avinash C. Kak. Incorporating version histories in
information retrieval based bug localization. In Proceedings of the Working
Conference on Mining Software Repositories (MSR’12), pages 50–59, 2012.

Bunyamin Sisman and Avinash C. Kak. Assisting code search with automatic
query reformulation for bug localization. In Proceedings of the Working Con-
ference on Mining Software Repositories (MSR’13), pages 309–318, 2013.

Bunyamin Sisman, Shayan A. Akbar, and Avinash C. Kak. Exploiting spa-
tial code proximity and order for improved source code retrieval for bug
localization. Journal of Software: Evolution and Process, 29(1):e1805, 2016.

Jamie Starke, Chris Luce, and Jonathan Sillito. Searching and skimming:
An exploratory study. In Proceedings of the International Conference on
Software Maintenance (ICSM’09), pages 157–166, 2009.

Aoi Takahashi, Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki.
A Preliminary Study on Using Code Smells to Improve Bug Localization.
In Proceedings of the International Conference on Program Comprehension
(ICPC’18), page 4. ACM, 2018.

Shaowei Wang and David Lo. Version history, similar report, and structure:
Putting them together for improved bug localization. In Proceedings of
the 22nd International Conference on Program Comprehension (ICPC’14),
pages 53–63, 2014.

Shaowei Wang and David Lo. Amalgam+: Composing rich information sources
for accurate bug localization. Journal of Software: Evolution and Process,
28(10):921–942, 2016.

Shaowei Wang, D. Lo, and J. Lawall. Compositional vector space models for
improved bug localization. In Proceedings of the Conference on Software
Maintenance and Evolution (ICSME’14), pages 171–180, 2014a.

Shaowei Wang, David Lo, and Lingxiao Jiang. Active code search: Incor-
porating user feedback to improve code search relevance. In Proceedings
of the 29th ACM/IEEE International Conference on Automated Software
Engineering (ASE’14), pages 677–682, 2014b.

M. Wen, R. Wu, and S. Cheung. Locus: Locating bugs from software changes.
In Proceedings of the 31st International Conference on Automated Software
Engineering (ASE’16), pages 262–273, 2016.

Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong
Mei. Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis. In Proceedings of the Conference on Software Mainte-

68 Oscar Chaparro et al.

nance and Evolution (ICSME’14), pages 181–190, 2014.
Yan Xiao, Jacky Keung, Kwabena E. Bennin, and Qing Mi. Improving bug

localization with word embedding and enhanced convolutional neural net-
works. Information and Software Technology, 2018.

X. Ye, R. Bunescu, and C. Liu. Mapping bug reports to relevant files: A
ranking model, a fine-grained benchmark, and feature evaluation. IEEE
Transactions on Software Engineering, 42(4):379–402, 2016a.

Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. From word
embeddings to document similarities for improved information retrieval in
software engineering. In Proceedings of the International Conference on
Software Engineering (ICSE’16), pages 404–415, 2016b.

Klaus Changsun Youm, June Ahn, and Eunseok Lee. Improved bug local-
ization based on code change histories and bug reports. Information and
Software Technology, 82:177–192, 2017.

Y. Zhang, D. Lo, X. Xia, T. D. B. Le, G. Scanniello, and J. Sun. Inferring links
between concerns and methods with multi-abstraction vector space model.
In Proceedings of the International Conference on Software Maintenance
and Evolution (ICSME’16), pages 110–121, 2016.

Jian Zhou, Hongyu Zhang, and David Lo. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports. In Proceedings of the International Conference on Software Engi-
neering (ICSE’12), pages 14–24, 2012.

Yu Zhou, Yanxiang Tong, Taolue Chen, and Jin Han. Augmenting bug local-
ization with part-of-speech and invocation. International Journal of Soft-
ware Engineering and Knowledge Engineering, 27(06):925–949, 2017.

Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just,
Adrian Schröter, and Cathrin Weiss. What Makes a Good Bug Report?
IEEE Transactions on Software Engineering, 36(5):618–643, 2010.

