
Reformulating Queries for
Duplicate Bug Report Detection
Oscar Chaparro, Juan Manuel Florez, Unnati Singh, Andrian Marcus

The University of Texas at Dallas, Richardson, TX, USA
{ojchaparroa, jflorez}@utdallas.edu, unnati2501@gmail.com, amarcus@utdallas.edu

Abstract—When bugs are reported, one important task is to
check if they are new or if they were reported before. Many
approaches have been proposed to partially automate duplicate
bug report detection, and most of them rely on text retrieval
techniques, using the bug reports as queries. Some of them
include additional bug information and use complex retrieval- or
learning-based methods. In the end, even the most sophisticated
approaches fail to retrieve duplicate bug reports in many cases,
leaving the bug triagers to their own devices. We argue that these
duplicate bug retrieval tools should be used interactively, allowing
the users to reformulate the queries to refine the retrieval.
With that in mind, we are proposing three query reformulation
strategies that require the users to simply select from the bug
report the description of the software’s observed behavior and/or
the bug title, and combine them to issue a new query. The paper
reports an empirical evaluation of the reformulation strategies,
using a basic duplicate retrieval technique, on bug reports with
duplicates from 20 open source projects. The duplicate detector
failed to retrieve duplicates in top 5-30 for a significant number
of the bug reports (between 34% and 50%). We reformulated
the queries for a sample of these bug reports and compared the
results against the initial query. We found that using the observed
behavior description, together with the title, leads to the best
retrieval performance. Using only the title or only the observed
behavior for reformulation is also better than retrieval with the
initial query. The reformulation strategies lead to 56.6%-78%
average retrieval improvement, over using the initial query only.

I. INTRODUCTION

Software systems with large user bases constantly receive
many bug reports, especially after major releases, as new bugs
are encountered by the users [25]. For example, Eclipse [4], a
popular open-source development environment, received more
than 45,000 issue reports during 2008 alone [80]. Before the
reported bugs are confirmed and assigned to developers for
fixing, someone usually checks if these bugs were reported be-
fore (i.e., the reports duplicate previous reports) [25]. When the
duplicates are found, the bug reports are marked accordingly,
thus avoiding potentially unnecessary work or complementing
the information of their duplicates for bug fixing [13]. When
the number of bug reports is large, finding duplicates can
be a time-consuming and error-prone activity. For example,
among the bugs reported for Eclipse in 2008, more than 3,000
were marked as duplicates [80]. Hence, researchers proposed
automated tool support that is meant to save time and improve
the accuracy of duplicate bug report detection (see Sec. II). For
simplicity, for the remainder of the paper, we will use duplicate
detection (or just DD) for “duplicate bug report detection”.

Duplicate detection techniques have two aspects in common.
First, most of them rely on some form of text retrieval (TR)
or text-based classifiers, where a query is formulated from
the full textual description in the new bug report (i.e., title +
description) and old bug reports are retrieved (or classified) as
duplicate candidates. Some techniques use simple TR models,
while others use more complex ones. The common trend in
improving such approaches is adding additional information,
such as stack traces and other information recorded in the
reports. Other approaches also consider information from other
sources and/or employ techniques to learn from past duplicate
sets. The common premise here is that there are language
commonalities between bug reports corresponding to the same
bugs [20]. However, even the most sophisticated duplicate
detection approaches are far from perfect. Among the ones
we review in section II, the highest reported recall rates@10
are around 80%-90% [11, 49, 60, 80, 85]. This means that in
10%-20% of the cases, these techniques fail to return existing
duplicates in the top 10 of the retrieved list of bug reports.

Second, all these approaches assume a rather limited usage
scenario. The tools use the new bug report as a query and
then the user inspects the ranked list of retrieved bug reports
to check if any are duplicates of the new bug report. At some
point, if a duplicate is not found, the user chooses to stop and
mark the bug as new or tries some other approach.

A. Motivation

We contend that duplicate bug report detection is different
from other text retrieval applications in software engineering,
and tool support should address the differences. For example,
in applications for other tasks, such as feature/bug localization
[30, 58], traceability link recovery [27], or impact analysis [50,
64], the users have a specific information need, such as finding
a relevant part of the code. They would formulate a query
(sometimes with tool support) and retrieve relevant documents
from the code corpus. Then, the users assess the relevance of
the retrieved code documents and may reformulate the query
to retrieve other documents. They may also use some of the
retrieved documents as a starting point for navigating the code.
The users eventually stop only when their information need is
met (i.e., they found the code document of interest), and they
can continue solving their main task.

In contrast, during duplicate bug detection, the user stops
when she finds a duplicate report or when she is confident
enough that there are no duplicates. In other words, users

may stop without finding any relevant result, as there is no
specific information need that must be met, in form of a
retrieved artifact, which is then used to solve the task at hand
(e.g., fixing the bug). Not retrieving any duplicates is a likely
outcome. Our main goal is to increase the user confidence
when she makes the decision to stop. We propose that tool
support should return a number, say N, of bug reports, rather
than rank the entire search space. More importantly, when a
duplicate is not found among the N retrieved candidates, the
user should be able to refine the query and retrieve N more,
before making a final decision. The expectation is that the
reformulated query is better at retrieving the duplicates (if any)
in top N than the original query is at retrieving them in top
2N, which would yield higher confidence in the retrieval.

Furthermore, in the other text retrieval applications, when
the relevant documents are not found, users rely on their spe-
cific information need, the retrieved results, and the software
knowledge, for reformulating queries. Differently, during bug
report duplicate detection, when no duplicates are returned,
the lack of a specific information need and the knowledge
about the code or the retrieved results are unlikely to help
with query reformulation. The user is also unlikely to have
much specific information about the (potentially) thousands of
previous reports, which she could leverage for reformulation.
Hence, the major challenge is to have a query reformulation
strategy that is independent of such factors and would help
retrieve duplicates in more cases.

B. Contributions

This paper rethinks tool-supported duplicate bug report
detection as a two-step process, using the entire new bug
report as a query in the first step (i.e., the initial query),
for retrieving N bug reports, and a reformulated query in
the second step, for retrieving additional N bug reports, if
needed. The paper proposes and evaluates three reformulation
strategies for improving duplicate bug report detection. The
reformulation strategies are independent of the underlying
detection approach and they do not depend on the returned
results or any information from other bug reports or external
sources. In other words, they are easy to use by any potential
user and should work with any existing duplicate bug report
detection tool based on bug reports.

Our approach is based on the observation that most bug
reports have an inherent structure, consisting of the bug title
(BT), the observed behavior (OB), the expected behavior (EB),
and the steps to reproduce the noted bug (S2R) [19, 22, 26, 87].
While many bug reports may lack EB and S2R, previous
research found that OB is present in most bug reports, i.e.,
in ~93% of them [22, 26]. Our previous work also found
that OB contains salient information that helps locate the
corresponding bugs in the code, more than other parts of the
bug report [19]. We conjecture that the information contained
in the OB may result in better retrieval of duplicate bug
reports. Intuitively, we expect that OB encodes information
unique to the reported bug, while other parts of the bug
reports would have elements potentially common to many

other bugs. With that in mind, our reformulation strategy is
a query reduction approach, where the new query is obtained
by retaining only the OB from a bug report (i.e., from the
title and description) and removing the rest of the textual bug
description. We call this reformulation strategy OB-DD.

The bug title also exhibits some of the same properties that
OB does. BT is present in all bug reports, hence it can be
easily leveraged for query reformulation. Previous research
noted that bug reporters create the bug title as a summary of
the entire report, meaning that they often select the words that
best describe the bug [46, 54]. In addition, nearly all existing
duplicate detection techniques rely specifically on the bug title
as a feature for retrieval or classification (see Sec. II). Hence,
we consider an additional query reduction strategy, where the
initial query (i.e., the entire bug report) is reduced to its BT
only. We call this reformulation strategy BT-DD.

While the bug title may contain words that describe the OB,
we conjecture that OB and BT each have unique terms that are
important for retrieval. Therefore, we also consider the hybrid
reformulation strategy, which reduces the initial query to the
OB and BT only. We call this combined strategy OBT-DD.

The three reformulation strategies can all be employed with
any duplicate bug detection tool that relies on the new bug
report (and potentially other information) as query, and the
bug report contains a part describing the software’s observed
behavior. If no duplicates are retrieved within the top-N results,
when using the entire bug report as an initial query, then the
user should select the OB and/or BT and remove the rest of
the textual bug description. Elements such as stack traces or
code snippets may be retained if the tool uses them. Then, the
user can run the new query and retrieve N more bug reports.

We evaluated the three reformulation strategies using a
duplicate bug report retrieval approach based on Lucene [1]
(see Sec. III-A). We selected 42,226 bug reports with dupli-
cates from 20 open source software projects, used in previous
research [20, 80] (see Sec. III-B). We used these reports as
initial queries to the DD tool for retrieving the corresponding
duplicates in top N, for N={5, 6, ..., 30} (see Secs. III-C
and III-D). Lucene retrieved duplicates in top N for 49.4%
(N=5) to 66.1% (N=30) of the bug reports used as queries. We
sampled a subset of bug reports from those that did not retrieve
duplicates in top N, and used OB-DD, BT-DD, and OBT-
DD to reformulate them (see Sec. III-E). The reformulated
queries retrieved more duplicates in top N for 23.6%-26.8%
of the sample set (on average), which translates to a 56.6%-
78% average improvement over the initial query retrieving
duplicates in top 2N. Based on the results (see Sec. IV), we
conclude that all three reformulation strategies lead to the
retrieval of more duplicates than inspecting 2N results with
the original query, with OBT-DD being the best among them.

II. BACKGROUND AND RELATED WORK

Duplicate bug report detection (DD) has received significant
attention in the past years and dozens of approaches have been
proposed using a variety of text retrieval, natural language pro-
cessing, and machine learning techniques. In addition, query

reformulation has been applied for many tasks in software
engineering, except for DD.

A. Duplicate Bug Report Detection

As proposed by Lin [52] and reused by Kang [43], duplicate
detection approaches can be classified into three categories:
• Ranking approaches [11, 15, 16, 39, 40, 49, 52, 53, 60, 65,

70, 71, 74, 80–83, 85, 86], which use a bug report as input
(i.e., query) and output a ranked list of duplicate candidates
from a corpus of existing bug reports;

• Binary approaches [84], which take a bug report as input
and label it as either duplicate or not duplicate; and

• Decision-making approaches [10, 39, 45, 47], which con-
sider a pair of bug reports and determine whether they
are duplicates of each other.

The proposed reformulation strategies are designed to work
with most DD approaches, but the evaluation we present in this
paper focuses on ranking approaches. Evaluating the strategies
on the other two approaches is subject of future work.

Most issue trackers provide two fields that capture the
natural language bug description reported by the user, i.e., title
and description. All the approaches presented here combine
the textual information found in both fields [14], with a few
exceptions. Two approaches use the report’s title only [11, 65]
and Lerch et al. [49] use only a part of the description,
i.e., stack traces. As OB-DD and OBT-DD are based on the
description, they would not work with these approaches. The
approaches from Amoui et al. [11] and Prifti et al. [65] are
similar to BT-DD, which only use the bug title. However, they
are DD techniques rather than query reformulation approaches.

Researchers have studied the value of adding extra informa-
tion from fields other than the title and description to improve
duplicate retrieval. The main sources of additional information
are the report’s creation date [16, 45, 47, 49, 53, 74] and cat-
egorical features [10, 15, 39, 45, 47, 53, 70, 71, 74, 80, 84] such
as the affected system version or component. Boisselle et al.
[15] group categorical fields that are unique to two issue track-
ers into an additional textual field. Domain information, ex-
tracted from textbooks, project documentation, or Wikipedia,
has also been leveraged, mainly in machine learning ap-
proaches [10, 39, 53]. Wang et al. [85] use manually-extracted
software execution information for detecting duplicates.

More related to our work, Amoui et al. [11] used the
observed results (a.k.a. OB) and the steps to reproduce (S2R)
from the bug report as a source of extra information for retriev-
ing duplicates at BlackBerry. This information is found inside
a field called first_email, which is unique to BlackBerry’s issue
tracker and includes the OB and S2R by convention. However,
this is not the case in most bug reports submitted to open-
source projects [19, 42]. Most issue trackers used by these
projects do not enforce the existence of this information in the
bug report’s textual description [19]. Amoui et al.’s research
does not study the effect of these sources of information on
duplicate detection or focus on query reformulation.

Empirical evaluations of DD techniques have used various
metrics, depending on the approach type. Ranking approaches

are usually evaluated using standard Information Retrieval
measures, such as precision, recall, and MAP [11, 15, 16, 39,
40, 47, 49, 53, 70, 71, 80]. These metrics are suitable when all
duplicate bug reports in the corpus are considered useful for
retrieval since it is possible for a new bug report to have more
than one duplicate. However, many researchers reckon that it
is sufficient to find a single duplicate, since the triagers’ goal is
to mark the new report as duplicate. In this case, MRR and Re-
call Rate@N are usually used [11, 16, 49, 60, 65, 70, 71, 74, 80–
82, 85, 86]. We contend that Recall Rate@N is better suited for
evaluating DD approaches, since the triager is likely to inspect
the top-N results only (rather than the entire ranking), hence,
it is the measure we mainly use in our evaluation (see Sec.
III). For binary and decision-making approaches, accuracy and
true positive/negative rates are typically used [10, 39, 47, 84].

Notable is the work by Hindle et al. [40], who propose a
continuous querying approach. While not focusing on query
reformulation as we do, in Hindle et al.’s approach, queries
are generated as the user types the bug description. Each new
word will trigger the creation of a new query, which consists
of the new word and all the words typed before. It is possible
that, as the user enters the bug description, a query would be
formulated in such a way that roughly corresponds to the OB.
For example, if she starts describing the OB in a contiguous
sequence of words. In that case, the query would be similar to
our reformulated query. However, differently to that approach,
we consider already-submitted bug reports as queries and we
do not assume that the OB description is sequential.

Finally, it is worth noting that our reformulation approach
addresses the cases when duplicates are hard to retrieve. For
example, for the new reports that just-in-time retrieval tools in
issue trackers fail to identify as duplicates [71].

More comprehensive surveys on duplicate bug report detec-
tion are published by Kang [43] and Cavalcanti et al. [18].

B. Query Reformulation in Software Engineering

Duplicate detection techniques offer no guidance on what
to do when a duplicate is not retrieved within the top-N
candidates. We argue that query reformulation can be applied
in such situations to increase the triager’s confidence in the
retrieval. Query reformulation has not been applied to the
problem of detecting duplicates of bug reports. However, re-
searchers have investigated the impact of query reformulation
on other software engineering tasks based on text retrieval
methods, especially on code search and concept location.

There are three commonly used strategies of query reformu-
lation: query expansion [17], which adds alternative terms to
a query; query replacement [33, 35], which changes part of a
query with a set of new terms; and query reduction [44, 55, 68],
which removes terms from the query.

Query expansion is the most common strategy used for
tasks based on source code retrieval. The additional terms to
the query can be selected in different ways, for example, by
using ontologies (e.g., WordNet) [78] or co-occurring terms
from code or external documents [28, 57, 66]; and by apply-
ing relevance [31, 62] or pseudo-relevance feedback [36, 79].

In code search, other reformulation approaches include co-
occurrence and frequency of query terms with previous results
and code [38, 72], thesauri-based reformulation [32, 48, 51],
pseudo-relevance feedback from Stack Overflow results [61],
and textual similarity between the query and APIs [56].

Query replacement has been utilized mostly for traceability
link recovery [33], where similar web and domain-specific
documents to the query are leveraged to select a set of
candidate terms to replace the initial query. Another strategy is
learning frequent terms from existing requirement-regulation
trace corpora and using them as the new query [35].

Query reduction is the category that our approach falls
into. Our prior research found that removing a small amount
of (noisy) terms from the query/bug report leads to substan-
tial improvement in text-retrieval-based bug localization [23].
Similarly, Mills et al. [59] found that near-optimal (reduced)
queries from bug reports lead to high improvement in code
retrieval. Rahman et al. [68] employed term co-occurrences
and syntactic dependencies to build a query out of the most
important terms in a change request. Kevic et al. [44] found
that specific terms in a change request have the highest pre-
dictive power to retrieve the relevant code documents. Other
research focused on increasing the weights of query terms that
correspond to source code file names [29] or occur in method
names and calls [12]. In another work, Rahman et al. [67]
leveraged term co-occurrences and syntactic dependencies to
select the most important terms in a change request as a query.
Recently, the same authors proposed weighting and selecting
query terms based on how these relate to each other and
whether they reference code entities and/or appear in particular
parts of the bug reports, e.g., in stack traces [69]. Other
research used heuristics to remove irrelevant terms. Haiduc et
al. [36] discarded non-noun terms or those appearing in more
than 25% of the code documents, since their discriminatory
power is likely to be low. Rahman et al. [66] employed a
similar strategy, by leveraging crowd-sourced information.

Our OB-DD reformulation strategy is motivated by our prior
work that proposed a query reformulation approach for low-
quality queries in bug localization based on OB [19]. While
the reformulation strategies are similar, their applications and
evaluations are quite different. In bug localization, the buggy
code element is guaranteed to exist in the code corpus, and
the developer must find it eventually. However, in duplicate
detection, a duplicate may or may not exist in the bug report
corpus, and at one point the developer must choose to stop
looking through the list of candidates. These are two distinct
scenarios that must be evaluated differently.

III. EMPIRICAL EVALUATION

We performed an empirical evaluation of the proposed
reformulation strategies. The evaluation aims at answering the
following research questions:

RQ1: Do the three query reformulation strategies help
duplicate detection approaches retrieve more duplicate bug

reports than without query reformulation?

RQ2: Which of the three query reformulation strategies
retrieve more duplicate bug reports?

This section details the procedure we followed to answer
our research questions, while section IV presents and discusses
the evaluation results. We used a Lucene-based approach (Sec.
III-A) to detect duplicates for a large set of bug reports (Secs.
III-B and III-C). Then, for a subset of the bug reports for which
the tool failed to retrieve duplicates in top N (Sec. III-D),
we used the three strategies to reformulate the reports (Secs.
III-E and III-F) and assessed how many more duplicates are
retrieved among the next N candidates (Sec. III-F).

A. Duplicate Bug Report Detector

We selected a DD approach based on Lucene [37], which
was used in previous research for retrieving duplicate bug re-
ports [16, 20] and also for retrieving duplicate Stack Overflow
posts [20]. Since the OB-based query reformulation strategies
do not depend on the underlying duplicate detection approach,
we expect the reformulations to be effective for other, more
complex duplicate detection approaches as well. However,
such an investigation is subject of future research.

Lucene [37] is a retrieval technique implemented in the
open source library of the same name [1], which combines
the standard information retrieval Boolean model and the
Vector Space Model (based on TF-IDF [76]) to compute the
similarity between a new bug report (i.e., the query) and an
existing report. Lucene is a technique that relies only on textual
information to retrieve a ranked list of candidate duplicate
reports. Typically, a Lucene query is created by concatenating
the bug report’s title and description, including any informa-
tion embedded in these sources (e.g., code snippets). In our
evaluation, we used Apache Lucene v5.3.0 [1] with the default
similarity measure and parameters (see [8] and [9] for details).

B. Bug Report Data Set

We use data that corresponds to 449,901 bug reports (a.k.a.
issues) from 20 open source projects (see Table I). This data
was constructed based on two data sets used in prior duplicate
detection research: the one used by Sun et al. [80] (a.k.a. SDS)
and the one provided by Chaparro et al. [20] (a.k.a. CDS).

We used the bug reports for three projects from SDS (i.e.,
Eclipse, Mozilla Firefox, and OpenOffice). The original data in
SDS is in the format used by Sun et al.’s tool (i.e., REP), which
is essentially a set of real-valued vectors corresponding to n-
grams extracted from the bug reports. Since the reformulation
strategies require the bug description, we downloaded the full
text and extra meta-information (e.g., bug type, version, etc.)
of the bug reports used in SDS (from the issue trackers), rather
than using the original data set made available by Sun et al.

As for CDS, we selected 17 (of 115) projects with the
largest number of bug reports. From the projects’ issue track-
ers, we downloaded the same bug reports information as for
SDS. Our data set includes all bug reports submitted to the
issue trackers of each project, at the time of creation of CDS
(i.e., May 2016) and SDS (i.e., Dec. 2007), except for Firefox
and OpenOffice. For these projects, our data set contains

TABLE I
STATISTICS OF OUR DUPLICATE DETECTION DATA SET.

Project # of Total # of # of duplicate
queries bug reports buckets

Accumulo 79 4,106 72
Ambari 117 14,763 100
ActiveMQ 120 5,936 104
Cassandra 334 11,011 273
Cordova 247 10,208 188
Continuum 89 2,722 68
Drill 186 4,305 155
Eclipse 28,518 209,056 16,833
Groovy 115 7,486 97
Hadoop 231 10,645 194
Hbase 97 15,114 93
Hive 315 12,854 268
Maven 275 4,758 177
M. Firefox 7,585 75,653 4,510
MyFaces 79 3,657 55
OpenOffice 3,019 31,138 1,708
PDFBox 155 3,207 106
Spark 430 12,676 359
Wicket 149 6,077 127
Struts 86 4,529 75
Total 42,226 449,901 25,562

only the subset of bug reports provided by Sun et al. [80].
Firefox’ bug reports are from 2010 and OpenOffice’s reports
are from 2008 to 2010 only. The CDS projects use Jira [7]
issue tracker, while the SDS projects use Bugzilla [3]. Our
data set spans different software types that range from desktop
applications (e.g., Eclipse) to frameworks/libraries (e.g., Struts
and PDFBox), in a variety of domains, such as web browsing
(Firefox), office productivity (OpenOffice), mobile/web devel-
opment (e.g., Cordova and MyFaces), distributed computing
(e.g., Hadoop and Spark), databases (e.g., Cassandra or Hive),
development tools (e.g., Groovy and Maven), etc.

C. Queries and Ground Truth

We used the duplicate references between bug reports in the
issue tracker to determine the set of queries and their respective
ground truth, i.e., the duplicate reports. To do so, we first
identified buckets of duplicate reports in the data, using direct
and transitive duplicate references in the issue tracker (similar
to Sadat et al.’s approach [75]). For example, if A is a duplicate
of B, which is a duplicate of C, with C being the oldest (i.e.,
submitted first in the issue tracker) and A the youngest (i.e.,
submitted last), then the respective bucket is {A, B, C}. If A
is a duplicate of C, and B is a duplicate of C, then we form
the same bucket {A, B, C}.

We sorted the bug reports in each bucket chronologically by
creation date (in our example: {C, B, A}), and for each bucket
of size n, we created n − 1 queries, each having as ground
truth the ones that are older from the bucket. The oldest bug
report in each bucket is called the master bug report [80] and
it is the only one that does not reference any past duplicate,
hence it is not considered as a query. In the above example, C
is the master, while A and B are used as queries, with {B, C}
and {C} as ground truth, respectively. We created the ground
truth for each query, as described in the above example, which
includes the list of corresponding past duplicate reports.

Overall, our data sets contain 25,562 duplicate buckets,
from which 42,226 queries were created by using the title
and description of the bug reports (see Table I). All bug
reports in the corpus and all queries were normalized by
using standard preprocessing operations. First, we identified
the words in the bug report text, and performed code identifier
splitting based on the camel case and underscore formats
(e.g., CodeIdentifier or code_identifier would split into code
and identifier). Then, we removed words that are unlikely to
contribute to retrieval, namely, special characters (e.g., # or $),
numbers, common English stop words (e.g., about, because,
the, etc.), Java keywords (e.g., for, while, at, with, like, etc.),
and words shorter than three characters. Finally, we applied
Porter’s algorithm to reduce the words to their root form [63].

It is important to note the differences between the number
of queries for the SDS projects presented by Sun et al. [80]
and the ones presented in Table I. Before discussing such
differences, we must point out that each query in the SDS
data set uses the master bug report as the only duplicate in
the ground truth. We claim that the ground truth based on all
past duplicates for a query is better suited for evaluating DD
approaches, because, when used in practice, users expect to
retrieve any of the duplicate bug reports and not necessarily the
master bug report only. We use this approach in our evaluation.

We compared the list of queries in SDS and our data set
and found 2,741 differences in the following three categories:
1) Queries that are not present in SDS but are present in our

data set. We found 1,824 queries that reference duplicate
reports transitively or directly, which are missing in SDS.

2) Queries that are not present in our data set but are present
in SDS. We found 521 queries that do not reference any
duplicate reports at all (by following the query generation
approach described above). However, the SDS data set
(incorrectly) includes these queries.

3) Queries that are present in both our data set and SDS, but
the ground truth (i.e., the master report) is different. We
found 396 queries for which the issue tracker reports a
different master bug report than the one in SDS.

We manually inspected a subset of the reports in each cate-
gory and confirmed the differences. Our replication package
contains the full list of queries with differences [21].

In summary, our data set includes: (1) a set of queries
generated from the bug reports submitted on the projects’ issue
tracker; (2) the past duplicate bug reports for each query, which
represent the ground truth; and (3) the entire set of existing bug
reports which represents the document search space for DD.
The full set of stop words, bug reports, queries, and ground
truth, is available in our replication package [21].

D. Low-quality Queries

Our reformulation approach follows the scenario in which
the triager issues the initial query (using the full text of
a bug report) and inspects the top-N candidates returned
by the DD technique at hand (e.g., Lucene). If none of
the candidates are deemed duplicated (by inspecting their
title and/or description), the triager reformulates the query

(via the reformulation strategies) and inspects additional N
candidates. In this scenario, the user would inspect a total of
2N candidates. Large N values (say 30 and beyond) would
mean that our approach is impractical because, in the worst-
case scenario, it would imply inspecting 60 results total, which
could demand a significant effort from the user. It is likely that
the triager would not assess more than 30 reports. Very small
N values (say less than 5) would imply an unrealistic scenario.
If the triager finds at least one duplicate report within the top-5
results, then she does not need reformulation. We contend that
inspecting 5 to 10 documents (i.e., 10 to 20 documents total,
following reformulation) is a realistic scenario for DD. In other
words, if a query retrieves the buggy code in top-5/10, then
it is likely that no reformulation is needed. Similar thresholds
have been used in prior DD research [40, 70, 74, 80]. Since
there is no specific research on user behavior during query
reformulation for DD, we do not want to limit the evaluation
only to the thresholds we consider most realistic. Hence, in
this paper, we include results for the threshold set N={5, 6,
7, ..., 30}, which amounts to 26 thresholds total.

Our reformulation strategies focus on queries that fail to
retrieve the duplicate reports within the top-N results (i.e.,
low-quality queries). Therefore, in order to determine the set
of low-quality queries, we executed Lucene with the initial
queries (generated from the entire text of the bug report’s title
and description) and checked if none of the duplicates (among
the set of previously-reported reports for each query [70]) were
retrieved in the top-N results, for N={5, 6, 7, ..., 30}.

Lucene fails at retrieving duplicates for 50.6%, 43.9%,
40.2%, 37.5%, 35.5%, and 33.9% of the queries, within the
top-5, -10, -15, -20, -25, and -30 results, respectively (see
Table II). These numbers mean that a large number of queries
require reformulation (between 14,3k and 21,3k queries, for
N=30 and 5, respectively). More sophisticated duplicate detec-
tors may achieve better retrieval [11, 49, 60, 80, 85], but there is
still a large percentage of queries that fail to retrieve duplicates.

E. Observed Behavior Identification

In order to answer our research questions, we need to
identify the terms corresponding to the system’s observed
behavior (OB) for the bug reports that require reformulation
(i.e., for the low-quality queries), just as a potential user would
do. In contrast, the bug title is found in a separate field within
the bug report and its identification is trivial.

We randomly sampled 749 bug reports for which Lucene
fails to retrieve duplicates within the top-5 results (see Ta-
ble III). The sample includes reports for each project, and
excludes reports referring to new features and enhancements
(i.e., non-bugs) – see our replication package for the full list
of manually excluded reports [21]. The amount of sampled
reports represents 3.5% of the 21,346 low-quality queries for
N=5. The query set also contains a subsample of the queries
that fail to retrieve the duplicates in top-N for N={6, ..., 30}.
Having a relatively small percentage of reports in our overall
sample comes from the large query set for Eclipse, Firefox,

TABLE II
NUMBER AND PROPORTION OF QUERIES FOR WHICH LUCENE FAILS TO

RETRIEVE THE DUPLICATE REPORTS WITHIN THE TOP-N RESULTS.
Project Top-5 Top-10 Top-15 Top-20
Accumulo 31 (39.2%) 26 (32.9%) 22 (27.8%) 21 (26.6%)
Ambari 25 (21.4%) 21 (17.9%) 21 (17.9%) 19 (16.2%)
ActiveMQ 54 (45.0%) 44 (36.7%) 42 (35.0%) 37 (30.8%)
Cassandra 194 (58.1%) 176 (52.7%) 164 (49.1%) 154 (46.1%)
Cordova 106 (42.9%) 90 (36.4%) 82 (33.2%) 76 (30.8%)
Continuum 31 (34.8%) 28 (31.5%) 27 (30.3%) 24 (27.0%)
Drill 102 (54.8%) 90 (48.4%) 81 (43.5%) 72 (38.7%)
Eclipse 14,7k (51.5%) 12,9k (45.2%) 11,8k (41.5%) 11,1k (38.9%)
Groovy 48 (41.7%) 46 (40.0%) 41 (35.7%) 38 (33.0%)
Hadoop 79 (34.2%) 68 (29.4%) 63 (27.3%) 58 (25.1%)
Hbase 38 (39.2%) 33 (34.0%) 27 (27.8%) 26 (26.8%)
Hive 160 (50.8%) 131 (41.6%) 123 (39.0%) 113 (35.9%)
Maven 156 (56.7%) 131 (47.6%) 117 (42.5%) 106 (38.5%)
M. Firefox 3,7k (49.3%) 3,2k (42.2%) 2,9k (38.4%) 2,7k (35.7%)
MyFaces 38 (48.1%) 30 (38.0%) 27 (34.2%) 25 (31.6%)
OpenOffice 1,5k (48.3%) 1,2k (39.6%) 1,1k (35.4%) 968 (32.1%)
PDFBox 84 (54.2%) 74 (47.7%) 71 (45.8%) 63 (40.6%)
Spark 212 (49.3%) 170 (39.5%) 151 (35.1%) 138 (32.1%)
Wicket 69 (46.3%) 61 (40.9%) 57 (38.3%) 47 (31.5%)
Struts 35 (40.7%) 28 (32.6%) 24 (27.9%) 24 (27.9%)
Total 21,3k (50.6%) 18,5k (43.9%) 17k (40.2%) 15,8k (37.5%)
All Top-N results, for N={5, 6, ..., 30}, are available in our replication package [21].

and OpenOffice. Excluding these projects, the sample would
represent 30% of the low-quality queries for N=5.

Three of the authors of this paper (a.k.a. coders) conducted
qualitative text coding [77] on all 749 bug reports. The reports
were distributed among the coders in such a way that each
report was coded by one coder. The coders had to select
any part of the text (e.g., words, clauses, or sentences) in the
reports’ title and description that corresponded to the OB. This
task was performed using the text annotation tool BRAT [2].

TABLE III
NUMBER OF SAMPLED/CODED BUG REPORTS (BRS), THE ONES WITH OB,

AND NUMBER OF REDUCED QUERIES.

Project # of coded # of BRs # of reduced
BRsa with OBb queries

Accumulo 27 (87.1%) 25 (92.6%) 25
Ambari 7 (28.0%) 7 (100%) 7
ActiveMQ 35 (64.8%) 35 (100%) 35
Cassandra 18 (9.3%) 18 (100%) 18
Cordova 29 (27.4%) 29 (100%) 29
Continuum 29 (93.5%) 29 (100%) 29
Drill 34 (33.3%) 34 (100%) 34
Eclipse 96 (0.7%) 93 (96.9%) 93
Groovy 32 (66.7%) 31 (96.9%) 31
Hadoop 26 (32.9%) 22 (84.6%) 22
Hbase 27 (71.1%) 27 (100%) 27
Hive 17 (10.6%) 17 (100%) 17
Maven 35 (22.4%) 32 (91.4%) 32
M. Firefox 102 (2.7%) 99 (97.1%) 99
MyFaces 31 (81.6%) 30 (96.8%) 30
OpenOffice 113 (7.8%) 111 (98.2%) 110
PDFBox 16 (19.0%) 15 (93.8%) 15
Spark 14 (6.6%) 13 (92.9%) 13
Wicket 32 (46.4%) 32 (100%) 32
Struts 29 (82.9%) 28 (96.6%) 28
Total 749 (3.5%) 727 (97.1%) 726

aProportions with respect to the total # of low-quality queries for each
project (for N=5). bProportions with respect to the total # of coded BRs.

We summarize the main criteria used by the coders to tag
the OB in the bug report title and description (the full list can

be found in our replication package [21]):
• The coding focused only on natural language content

written by the users, ignoring code snippets, stack traces,
or program logs. However, the natural language referencing
this information may indicate OB and was allowed for
coding. An example of this case is: “When I click the File
menu, I get the following error and stack trace: ...”.

• Internal system behavior, described by the reporters, was
also allowed for coding, for example: “The open() method
in the class FileMenu reads the options from the file...”.

• Descriptions of graphical user interface issues can be
considered as OB, for example: “The menu’s color is too
light, it should be darker”.

• Uninformative sentences, such as “The File menu does not
work” are insufficient to be considered OB. There must
be a clear description of the software’s OB, for example:
“The File menu doesn’t open when I click on it”.

• Explanations of code attached to the bug reports are not
considered OB, for example: “The attached code defines
the openMenu() method, which iterates on the options...”.

Overall, 727 (i.e., 97.1%) of the tagged bug reports describe an
OB (see Table III). The OB coding required significant manual
effort for all 749 reports, however, in an actual usage scenario,
a user only needs to select the OB terms from a single report,
which takes seconds.

Figures 1 and 2 show examples of coded bug report de-
scriptions, where their OB part is highlighted in yellow. In
practical scenarios, the user would only select the highlighted
text and use it for reformulation (i.e., in the case of OB-DD).
Note that the OB may be described in non-contiguous parts
of the text, including in parts of the title.

We made the choice of having one coder for each bug
report in order to maximize the number of queries used in
the evaluation. However, our past research that uses multiple
coders per bug report reveals high agreement between coders
(i.e., +80% kappa [19]), hence, we expect minimal differences
between single- and multiple-coders-based coding. In any case,
our future work will investigate and assess the robustness of
OB-DD and OBT-DD with respect to these differences.

F. Query Reformulation Strategies and Measures

We reformulate each one of the initial queries, by using
each reformulation strategy, as follows:
• For OB-DD, we concatenate the parts of the text cor-

responding to OB only, from the bug report title and
description, and remove the rest of the textual description.

• For BT-DD, we consider the bug title only and remove the
rest of the textual description.

• For OBT-DD, we retain the title as is, and the OB parts
from the bug report, while removing the rest of the textual
description.

We reformulated all 727 bug reports that describe an OB.
We call these queries reduced queries. However, after pre-
processing, one OpenOffice query (from bug report #113872)
became empty because its OB contained stop words, numbers,
and special characters only. Hence, in total, we obtained 726

Bug report title:
Heading lines do not show in MsWord export

Bug report description:
When exporting a document to MsWord, in my case in order
to submit it to the LuLu website, the ‘Heading Lines’ (‘Righe
d’intestazione’ in the Italian version I use), so painstakingly
inserted, do not show in the Word export.

Fig. 1. Bug report #104924 for OpenOffice. The highlighted text corresponds
to the observed behavior (OB).

Bug report title:
Security Wizard: Delete ATS call should be non-blocking

Bug report description:
Before Start All Services web-client triggers Delete ATS call.
This call should not be marked with jquery ajax async flag
as false. Doing so makes the call blocking and page becomes
unresponsive untill call returns

Fig. 2. Bug report #4968 for Ambari. The highlighted text corresponds to
the observed behavior (OB).

reduced queries (see Table III). For these 726 queries, we also
used BT-DD and OBT-DD to produce reduced queries. For
each initial query, we generated three reduced queries.

We executed each one of the 726 initial and reduced queries
with the Lucene-based duplicate detector. We measured the
performance of duplicate retrieval using Recall Rate@N, i.e.,
the proportion of queries for which a DD approach returns at
least one duplicate report within the top-N candidates. This is
one of the most commonly used measures in past duplicate
detection research (see Sec. II) and is ideal for assessing the
performance of DD techniques as, in practice, users would
likely inspect no more than top-N results before stopping
the DD search (i.e., when they find a duplicate or they are
confident enough that there are no duplicates). For the sake
of completeness, we also measured the performance of the
strategies based on MRR and MAP, which are other common
metrics used in DD research (see Sec. II). However, for space
limitations, we omit the MRR/MAP results in this paper. Our
replication package contains the full MRR/MAP results [21].

As mentioned before, our empirical evaluation mimics an
actual usage scenario, where the user issues the initial query
and inspects the N returned bug reports (step #1). If she
does not find a duplicate, then she makes a choice whether
to retrieve additional N bug reports with the same query or
use any strategy to reformulate the query (i.e., OB-DD, BT-
DD, or OBT-DD) and then retrieve additional N bug reports
(step #2). In both cases (reformulation and no reformulation
in step #2), the N bug reports originally returned in top N
(in step #1) are removed from the ranked list and then Recall
Rate@N is computed for the initial query and the reformulated
query as well. We repeat this process for all queries, for
N={5, 6, ..., 30}. In the end, if the Recall Rate@N for the
reformulated queries is higher than the one for the initial
queries, we can conclude that the reformulation is the better

TABLE IV
NUMBER AND PROPORTION OF QUERIES (i.e., RECALL RATE@N) FOR WHICH LUCENE RETRIEVES AT LEAST ONE DUPLICATE REPORT WITHIN THE

TOP-N RESULTS USING EACH ONE OF THE REFORMULATION STRATEGIES (REFORMULATION) VS. NO REFORMULATION.

N # of No refor- Reformulation Improvement
queries mulation OB-DD BT-DD OB-DD OB-DD BT-DD OB-DD

5 726 90 (12.4%) 139 (19.1%) 125 (17.2%) 150 (20.7%) 54.4% 38.9% 66.7%
10 636 92 (14.5%) 129 (20.3%) 130 (20.4%) 151 (23.7%) 40.2% 41.3% 64.1%
15 594 92 (15.5%) 137 (23.1%) 141 (23.7%) 154 (25.9%) 48.9% 53.3% 67.4%
20 544 78 (14.3%) 135 (24.8%) 137 (25.2%) 153 (28.1%) 73.1% 75.6% 96.2%
25 528 92 (17.4%) 135 (25.6%) 147 (27.8%) 155 (29.4%) 46.7% 59.8% 68.5%
30 502 87 (17.3%) 136 (27.1%) 141 (28.1%) 155 (30.9%) 56.3% 62.1% 78.2%

Avg.* 583 87 (15.1%) 136 (23.6%) 139 (24.1%) 155 (26.8%) 56.6% 59.6% 78.0%
* Average values across the 26 thresholds (i.e., N={5, 6, ..., 30}).

strategy. Conversely, if the measures are the other way around,
we can conclude that it is not worth reformulating the query, as
there is no gain over just simply investigating N more results
returned by the initial query.

We measured the magnitude of improvement for the Recall
Rate@N measurements, by computing the change percentage
of the metric before (Mb) and after reformulation (Ma), i.e.,
Improvement(M) = (Ma−Mb)/Mb. We aim at maximizing
the improvement, avoiding negative values, which would mean
deterioration rather than improvement.

We assessed the statistical significance of our measures
using the Mann-Whitney test [41], a paired non-parametric
test that does not assume normal distributions (as in our
case). This method was used to test if a measure M , when
applying a reformulation strategy (Ma), is higher than when
using no reformulation (Mb). We carried out the test on the
paired Recall Rate@N values that we collected across the 26
thresholds. We define the null hypothesis as H0 : Mb ≥ Ma,
and the alternative hypothesis as H1 : Mb < Ma. We applied
the test with a 95% confidence level, thus rejecting the null
hypothesis, in favor of the alternative, if p-value < 5%.

We also estimated the magnitude of the difference between
Recall Rate@N measures, by using Cliff’s Delta (d), a non-
parametric measure of the effect size for ordinal data that
does not assume normal distributions [24, 34]. We applied
this measure with a 95% confidence level. The effect size
(i.e., Recall Rate@N difference) is interpreted as negligible
if |d| < 0.147, small if 0.147 ≤ |d| < 0.33, medium if
0.33 ≤ |d| < 0.474, and large if |d| ≥ 0.474 [34, 73].

IV. EVALUATION RESULTS AND DISCUSSION

We present and discuss the evaluation results for the
three query reformulation strategies. For space limitations, we
present the results for N={5, 10, 15, 20, 15, 30} only and
focus our analysis on Recall Rate@N. The results for the
full threshold set, including the MRR/MAP measurements, are
available in our online replication package [21].

A. Duplicate Detection Performance

Table IV shows the Recall Rate@N (RR@N) results for
the initial and reduced queries when using OB-DD, BT-DD,
and OBT-DD. Remember that we remove the original top-N
results returned by the initial queries and compare the ability of
both the initial and reduced queries on retrieving the duplicates
within the next top-N results. This means that for each N, we

have a different number of queries (see Table IV). Note that
we compare the three strategies on the same set of bug reports
used for creating the initial and reduced queries.

When using the initial queries (i.e., no reformulation),
Lucene retrieves the duplicates in top N for 15.1% of the
queries, on average. When reformulating the queries via OB-
DD, Lucene retrieves at least one duplicate report for 23.6%
of the queries, on average. This means that 8.5% more queries
(on average) return duplicates when using OB-DD, compared
to no reformulation, which represents a 56.6% improvement.
When reducing the queries based on BT (i.e., BT-DD), Lucene
retrieves at least one duplicate for 24.1% of the queries, on
average, which represents 9% more queries with retrieved
duplicates (i.e., 59.6% improvement). The highest performance
is achieved when combining both the OB and BT for re-
ducing the queries, as this strategy leads to 26.8% of the
queries (on average) to retrieve duplicates in top N, i.e.,
11.7% more queries or 78% improvement, on average, with
respect to no reformulation. The three reformulation strategies
achieve RR@N improvement (and 63.4%-317.9% MRR/MAP
improvement, see our replication package [21]), compared to
no reformulation, for each of the 26 thresholds N. The RR@N
achieved by all three strategies is statistically significant higher
than the one achieved by the initial queries, across the 26
thresholds N (Mann-Whitney, p-value < 5%). All strategies
achieve a large RR@N improvement according to our effect
size analysis based on Cliff’s delta (|d| ≥ 0.474) – see our
replication package for the full statistical test results [21].

We answer our first research question (RQ1) positively, as
the RR@N indicates that using all reformulation strategies
(i.e., OB-DD, BT-DD, and OBT-DD) lead to the retrieval
of more duplicates bug reports than with no reformulation.
As for our second research question (RQ2), we found that
OBT-DD achieves a statistically significant higher RR@N
compared to OB-DD and BT-DD (Mann-Whitney, p-value <
5%), and the RR@N improvement is large (|d| = 0.536)
and medium (|d| = 0.411), respectively. We also found
that BT-DD’s RR@N is statistically significant higher than
OB-DD’s RR@N (Mann-Whitney, p-value < 5%). However,
this RR@N improvement is negligible (|d| = 0.129). The
results indicate that OB-DD and BT-DD achieve comparable
performance. We conclude that OBT-DD leads to the best
detection performance, in terms of number of queries with
retrieved duplicates, compared to using OB-DD and BT-DD.

The results also reveal an interesting issue. We expected

that Lucene would retrieve more duplicates (with or without
reformulation) as N increases. As we report in Table IV,
Lucene retrieves almost the same number of duplicates across
thresholds N. To better understand this phenomenon and the
detection improvements, we analyze the results in more detail.

B. Trade-offs between Successful and Unsuccessful Queries

During query reformulation, there is always a trade-off:
some queries become successful while others become unsuc-
cessful. A good reformulation strategy would lead to more
successful queries (i.e., retrieve duplicates) than unsuccessful
queries (i.e., fail to retrieve duplicates), compared to the initial
ones. All three reformulation strategies achieve that, but we
aim to understand better the trade-offs.

We refer to all the queries that retrieve duplicates in top
N as successful queries, and to those that do not retrieve
duplicates as unsuccessful queries. The ideal reformulation
strategy would preserve the successful queries (i.e., an initial
successful query, which reformulated remains successful, a.k.a.
successful → successful), while converting all (or at least
some) of the unsuccessful initial queries into successful ones
(i.e., unsuccessful → successful). In other words, we want to
avoid the situation when successful queries turn unsuccessful
(i.e., successful → unsuccessful) via the reformulation.

Table V shows that OB-DD and BT-DD transform about
the same number of successful queries into unsuccessful ones,
on average (i.e., approx. 45 and 48, out of 87 good queries,
respectively). However, BT-DD converts more unsuccessful
queries into successful ones (on average), compared to OB-
DD (i.e., 99 vs. 93 queries, respectively). OB-DD preserves
more of the successful queries as successful than BT-DD does,
on average (i.e., 43 vs 39, respectively), while preserving
more of the unsuccessful queries as unsuccessful (i.e., 403
vs 397, respectively), which is undesirable. These results
support BT-DD’s higher performance against OB-DD. As for
OBT-DD, Table V reveals that it outperforms the other two
strategies in all the aspects. Specifically, 39 of 87 successful
queries turn unsuccessful, while 107 unsuccessful queries
become successful. OBT-DD preserves 48 of the successful
queries as successful, and 390 of the unsuccessful queries as
unsuccessful, on average.

The successful → unsuccessful cases need further analysis.
Being query reduction strategies, the assumption is that OB-,
BT-, and OBT-DD eliminate parts of the bug report (different
than BT and OB) that should not be removed. Identifying these
parts helps us improve the strategies in the future.

C. Analysis of Successful → Unsuccessful Queries

We analyzed the set of successful queries that turned un-
successful for N=5 when using the reformulation strategies.
This set corresponds to 55 unique queries/reports. From this
set, 30 queries (i.e., 54.5%) do not retrieve duplicates with any
of the reformulation strategies, which means that the strategies
removed important information from the bug report, leading to
non-retrieved duplicates. Thirteen queries (i.e., 23.6%) retrieve
duplicates only with OB-DD and OBT-DD, which means that

TABLE V
NUMBER AND PROPORTION OF SUCCESSFUL (S) AND UNSUCCESSFUL (U)

QUERIES BEFORE REFORMULATION THAT TURNED UNSUCCESSFUL (U)
AND SUCCESSFUL (S) AFTER REFORMULATION.

N U → S S → U S → S U → U
5 89 (12.3%) 40 (5.5%) 50 (6.9%) 547 (75.3%)

10 88 (13.8%) 51 (8.0%) 41 (6.4%) 456 (71.7%)
15 92 (15.5%) 47 (7.9%) 45 (7.6%) 410 (69.0%)
20 96 (17.6%) 39 (7.2%) 39 (7.2%) 370 (68.0%)
25 93 (17.6%) 50 (9.5%) 42 (8.0%) 343 (65.0%)
30 97 (19.3%) 48 (9.6%) 39 (7.8%) 318 (63.3%)

Avg.* 93 (16.3%) 45 (7.7%) 43 (7.4%) 403 (68.7%)

(a) OB-DD

N U → S S → U S → S U → U
5 80 (11.0%) 45 (6.2%) 45 (6.2%) 556 (76.6%)
10 96 (15.1%) 58 (9.1%) 34 (5.3%) 448 (70.4%)
15 101 (17.0%) 52 (8.8%) 40 (6.7%) 401 (67.5%)
20 100 (18.4%) 41 (7.5%) 37 (6.8%) 366 (67.3%)
25 104 (19.7%) 49 (9.3%) 43 (8.1%) 332 (62.9%)
30 101 (20.1%) 47 (9.4%) 40 (8.0%) 314 (62.5%)

Avg.* 99 (17.3%) 48 (8.3%) 39 (6.8%) 397 (67.6%)

(b) BT-DD

N U → S S → U S → S U → U
5 100 (13.8%) 40 (5.5%) 50 (6.9%) 536 (73.8%)
10 103 (16.2%) 44 (6.9%) 48 (7.5%) 441 (69.3%)
15 100 (16.8%) 38 (6.4%) 54 (9.1%) 402 (67.7%)
20 109 (20.0%) 34 (6.3%) 44 (8.1%) 357 (65.6%)
25 108 (20.5%) 45 (8.5%) 47 (8.9%) 328 (62.1%)
30 111 (22.1%) 43 (8.6%) 44 (8.8%) 304 (60.6%)

Avg.* 107 (18.5%) 39 (6.8%) 48 (8.3%) 390 (66.4%)
* Average values across the 26 thresholds (i.e., N={5, 6, ..., 30}).

Percentage values with respect to the # of queries for each N, from Table IV.

(c) OBT-DD

for these cases, the OB is required for better duplicate retrieval.
Eight (i.e., 14.5%) retrieve duplicates when using BT-DD only,
two (i.e., 4.6%) when using BT-DD and OBT-DD, and two
more (i.e., 4.6%) when using OB-DD only.

We manually analyzed the 30 queries that fail to retrieve
duplicates with any of the strategies. Among these, we found
that the main source of important terms for retrieval (besides
OB and BT) is the steps to reproduce the bug (i.e., S2R).

For 12 successful queries, key S2R terms from the bug
report were removed by the reformulation strategies. These
terms are also present in the duplicate reports, hence, removing
them from the initial query leads to non-retrieved duplicates.
For example, the Firefox bug report #619430 [6] duplicates
the report #611991 [5]. In the former one (i.e., the query),
the OB is described by the sentence “font size menu drop
down is not displayed”, which is repeated three times in the
bug description. The terms font, size, and menu are relevant
because they appear in the duplicate report. However, phrases
such as “Under preferences” or “under content”, present only
in S2R from report #619430 and shared with the duplicate
report, were removed, which led to not retrieving the duplicate.

Overall, we expected S2R terms to be common among
bugs. For example, “open a file” may be a necessary step for
replicating many bugs. However, we observed that the S2R
often contains terms that better indicate what the bug is about
and includes key terms for retrieval. We also hypothesized that

the bugs that can be reproduced in more than one way, would
benefit from removing the distinct S2R in the reports, while
preserving the OB. However, we did not find any of these
cases in the analyzed reports.

For several of the analyzed queries, we found that sources,
such as code snippets (in eight bug reports), stack traces (in
six reports), and the software’s expected behavior (in three
reports), contained relevant terms that should not be removed
by the reformulation. We hypothesize that code snippets are
good candidates to be preserved in the reformulated queries.
Our future work will investigate ways of leveraging code
snippets in combination with the BT and OB/S2R descriptions
for reformulating queries.

Finally, in seven of the analyzed queries, we also observed
that the frequency of some terms, present in the OB and/or
BT and relevant for retrieval, decreases when reformulating
the query with the strategies. Given that Lucene’s algorithm is
based on term frequencies, we conjecture that increasing the
frequency of these terms may lead to better retrieval. In the
future, we will increase the frequency of OB/BT terms based
on their entire document frequency.

V. THREATS TO VALIDITY

The main threat to the construct validity of the evaluation
is the subjectivity introduced in the coded set of bug reports,
as each bug report was coded by a single coder. We made this
choice to maximize the number of coded bug reports. Since
our past research revealed high agreement (i.e., +80% kappa
[19]) when each report is coded by multiple coders, we expect
minimal differences in the results when using multiple coders.

In order to mitigate threats to the conclusion validity, we
compared the performance of the initial and reduced queries
using Recall Rate@N and MRR/MAP, metrics widely used in
DD research [18, 43]. We also analyzed the trade-offs of the
reformulation strategies, to further strengthen our conclusions.
As in prior research [19, 36], we defined two query categories
(i.e., successful and unsuccessful) and analyzed the query
transitions between categories before and after reformulation.

The internal validity of our evaluation is mainly affected
by our selected data set. We built such a data set based
on two existing ones, previously used in duplicate detection
research [20, 80]. This data set contains bug reports with
duplicates, used as queries, with their set of duplicate reports
in the corresponding duplicate buckets. While these buckets
were extracted from the projects’ issue tracker, this does not
guarantee that all reports in a bucket are duplicates, either
because of incorrect references in the issue tracker or the way
we created the buckets (see Sec. III-C). To mitigate this issue,
we recreated the queries from the bug reports used in the
SDS data set by Sun et al. [80]. We identified inconsistencies
between the data set we constructed and SDS, based on
the same bug reports. We manually checked a subset of the
inconsistencies in favor of our data set. Given the small size
of the inconsistent buckets, compared to the size of SDS, we
believe that the impact on the results is minimal. As for the
CDS data set by Chaparro et al. [19], we used it as is.

We addressed the external validity of our evaluation by
using a large set of bug reports from the issue trackers of 20
open source projects that span different domains and software
types. We used one ranking-based duplicate detector, based on
Lucene. In the future, we will investigate how the reformula-
tion strategies help other DD approaches on retrieving more
duplicates. Those techniques that use BT as a separate feature
may benefit less from BT-DD, but we believe that OB-DD and
OBT-DD would still lead to better retrieval.

VI. CONCLUSIONS AND FUTURE WORK

We argue that duplicate bug report detection approaches,
based on text retrieval, should be viewed as a two-step process.
The process should allow for query reformulation, which
may lead to the retrieval of more duplicates or higher user
confidence when none are retrieved. The challenge is that any
reformulation strategy should be tool agnostic and independent
of the user’s knowledge.

We hypothesized that the description of the software’s
observed behavior (i.e., OB) in bug reports and the bug report
title (BT) contain relevant information that is bug specific,
while other parts of the description include less specific infor-
mation (i.e., noise) with respect to duplicate retrieval. Based
on this observation, we defined three query reformulation
techniques that are based on the user selecting the OB part of
the bug description and/or the BT. The reformulation strategies
are simple, they do not depend on any information outside the
bug report, and they can be applied in more than 97% of the
cases. Better yet, they retrieve more duplicates (i.e., for 23.6%-
26.8% of the cases, on average, equivalent to a 56.6%-78%
avg. improvement) than inspecting more candidate reports
retrieved by the initial query. We conclude that triagers should
use both the BT and OB from the bug report to reformulate the
initial low-quality query and expect to find duplicates for more
cases than without reformulation. The results bear evidence in
support of our conjecture about the OB, BT, and the proposed
two-step paradigm for duplicate detection, at least when using
Lucene as a duplicate bug report detector.

On the other hand, the results also revealed that relevant
information is present in the steps to reproduce (i.e., S2R)
and code snippets, which may improve duplicate retrieval.
This observation guides our future research plans. Specifi-
cally, we will evaluate additional reformulation strategies that
would combine information from the BT, OB, S2R, and code
snippets. Any of such strategies would still meet the main
challenge of being independent of the underlying duplicate
detector and other information external to the bug report. With
that in mind, we plan to also evaluate the proposed reformula-
tion strategies with duplicate detectors more sophisticated than
Lucene. Finally, our future work will focus on automatically
reducing queries based on specific bug descriptions.

ACKNOWLEDGMENTS

This research was supported by the grants CCF-1848608
and CCF-1526118 from the US National Science Foundation.

REFERENCES

[1] “Apache Lucene: https://lucene.apache.org/,” accessed on Oct. 10, 2018.
[2] “BRAT: http://brat.nlplab.org/,” accessed on Oct. 10, 2018.
[3] “Bugzilla: https://www.bugzilla.org/,” accessed on Oct. 10, 2018.
[4] “Eclipse project: https://www.eclipse.org/,” accessed on Oct. 10, 2018.
[5] “Firefox bug report #611991: https://bugzilla.mozilla.org/show_bug.cgi?

id=611991,” accessed on Oct. 10, 2018.
[6] “Firefox bug report #619430: https://bugzilla.mozilla.org/show_bug.cgi?

id=619430,” accessed on Oct. 10, 2018.
[7] “Jira: https://tinyurl.com/l5c9ctc,” accessed on Oct. 10, 2018.
[8] “Lucene’s DefaultSimilarity Javadoc - https://tinyurl.com/y84vawy5,”

accessed on Oct. 8, 2018.
[9] “Lucene’s TFIDFSimilarity Javadoc - https://tinyurl.com/ybhqqrqm,”

accessed on Oct. 8, 2018.
[10] K. Aggarwal, F. Timbers, T. Rutgers, A. Hindle, E. Stroulia, and

R. Greiner, “Detecting Duplicate Bug Reports with Software Engineer-
ing Domain Knowledge,” Journal of Software: Evolution and Process,
vol. 29, no. 3, 2017.

[11] M. Amoui, N. Kaushik, A. Al-Dabbagh, L. Tahvildari, S. Li, and W. Liu,
“Search-Based Duplicate Defect Detection: An Industrial Experience,”
in Proceedings of the Working Conference on Mining Software Reposi-
tories (MSR’13), 2013, pp. 173–182.

[12] B. Bassett and N. A. Kraft, “Structural Information Based Term Weight-
ing in Text Retrieval for Feature Location,” in Proceedings of the
International Conference on Program Comprehension (ICPC’13), 2013,
pp. 133–141.

[13] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful ... really?” in Proceedings of the In-
ternational Conference on Software Maintenance (ICSM’08), 2008, pp.
337–345.

[14] ——, “Extracting Structural Information from Bug Reports,” in Pro-
ceedings of the International Working Conference on Mining Software
Repositories (MSR’08), 2008, pp. 27–30.

[15] V. Boisselle and B. Adams, “The Impact of Cross-Distribution Bug
Duplicates, Empirical Study on Debian and Ubuntu,” in Proceedings
of the 15th International Working Conference on Source Code Analysis
and Manipulation (SCAM’15), 2015, pp. 131–140.

[16] M. Borg, P. Runeson, J. Johansson, and M. V. Mäntylä, “A Replicated
Study on Duplicate Detection: Using Apache Lucene to Search Among
Android Defects,” in Proceedings of the 8th International Symposium
on Empirical Software Engineering and Measurement (ESEM’14), 2014,
pp. 8:1–8:4.

[17] C. Carpineto and G. Romano, “A Survey of Automatic Query Expansion
in Information Retrieval,” Computing Surveys, vol. 44, no. 1, p. 1, 2012.

[18] Y. C. Cavalcanti, P. A. da Mota Silveira Neto, I. d. C. Machado,
T. F. Vale, E. S. de Almeida, and S. R. d. L. Meira, “Challenges and
Opportunities for Software Change Request Repositories: A Systematic
Mapping Study,” Journal of Software: Evolution and Process, vol. 26,
no. 7, pp. 620–653, 2014.

[19] O. Chaparro, J. M. Florez, and A. Marcus, “Using Observed Behavior to
Reformulate Queries during Text Retrieval-based Bug Localization,” in
Proceedings of the International Conference on Software Maintenance
and Evolution (ICSME’17), 2017, pp. 376–387.

[20] ——, “On the Vocabulary Agreement in Software Issue Descriptions,” in
Proceedings of the International Conference on Software Maintenance
and Evolution (ICSME’16), 2016, pp. 448–452.

[21] O. Chaparro, J. M. Florez, U. Singh, and A. Marcus, “Replication
package,” 2019. [Online]. Available: https://tinyurl.com/y8vylrpg

[22] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus,
G. Bavota, and V. Ng, “Detecting Missing Information in Bug Descrip-
tions,” in Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE’17), 2017, 396-407.

[23] O. Chaparro and A. Marcus, “On the Reduction of Verbose Queries
in Text Retrieval Based Software Maintenance,” in Proceedings of the
International Conference on Software Engineering (ICSE’16), 2016, pp.
716–718.

[24] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[25] J. L. Davidson, N. Mohan, and C. Jensen, “Coping with Duplicate
Bug Reports in Free/Open Source Software Projects,” in Proceedings
of the Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’11), 2011, pp. 101–108.

[26] S. Davies and M. Roper, “What’s in a Bug Report?” in Proceedings
of the International Symposium on Empirical Software Engineering and
Measurement (ESEM’14), 2014, pp. 26:1–26:10.

[27] A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk, “Information
Retrieval Methods for Automated Traceability Recovery,” in Software
and Systems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman,
Eds. Springer, 2012, pp. 71–98.

[28] T. Dietrich, J. Cleland-Huang, and Y. Shin, “Learning Effective Query
Transformations for Enhanced Requirements Trace Retrieval,” in Pro-
ceedings of the International Conference on Automated Software Engi-
neering (ASE’13), 2013, pp. 586–591.

[29] T. Dilshener, M. Wermelinger, and Y. Yu, “Locating Bugs Without
Looking Back,” in Proceedings of the International Conference on
Mining Software Repositories (MSR’16), 2016, pp. 286–290.

[30] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature Location in
Source code: A Taxonomy and Survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2012.

[31] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the Use of
Relevance Feedback in IR-based Concept Location,” in Proceedings
of the International Conference on Software Maintenance (ICSM’09),
2009, pp. 351–360.

[32] X. Ge, D. C. Shepherd, K. Damevski, and E. Murphy-Hill, “Design and
Evaluation of a Multi-recommendation System for Local Code Search,”
Journal of Visual Languages & Computing, 2016.

[33] M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards Mining
Replacement Queries for Hard-to-retrieve Traces,” in Proceedings of the
International Conference on Automated Software Engineering (ASE’10),
2010, pp. 245–254.

[34] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[35] J. Guo, M. Gibiec, and J. Cleland-Huang, “Tackling the term-mismatch
problem in automated trace retrieval,” Empirical Software Engineering,
vol. 22, no. 3, pp. 1103–1142, 2017.

[36] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic Query Reformulations for Text Retrieval in
Software Engineering,” in Proceedings of the International Conference
on Software Engineering (ICSE’13), 2013, pp. 842–851.

[37] E. Hatcher and O. Gospodnetic, Lucene in Action. Manning Publica-
tions, 2004.

[38] E. Hill, M. Roldan-Vega, J. A. Fails, and G. Mallet, “NL-Based Query
Refinement and Contextualized Code Search Results: A User Study,” in
Proceedings of the Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE’14), 2014, pp. 34–43.

[39] A. Hindle, A. Alipour, and E. Stroulia, “A Contextual Approach to-
wards More Accurate Duplicate Bug Report Detection and Ranking,”
Empirical Software Engineering, vol. 21, no. 2, pp. 368–410, 2016.

[40] A. Hindle and C. Onuczko, “Preventing duplicate bug reports by
continuously querying bug reports,” Empirical Software Engineering,
pp. 1–35, 2018.

[41] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013, vol. 751.

[42] S. Just, R. Premraj, and T. Zimmermann, “Towards the next generation
of bug tracking systems,” in Proceedings of the Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’18), 2008, pp. 82–
85.

[43] L. Kang, “Automated Duplicate Bug Reports Detection - An Experiment
at Axis Communication AB,” Master’s thesis, 2017.

[44] K. Kevic and T. Fritz, “Automatic Search Term Identification for Change
Tasks,” in Proceedings of the International Conference on Software
Engineering (ICSE’14), 2014, pp. 468–471.

[45] N. Klein, C. S. Corley, and N. A. Kraft, “New Features for Duplicate
Bug Detection,” in Proceedings of the 11th Working Conference on
Mining Software Repositories (MSR’14). ACM, 2014, pp. 324–327.

[46] A. J. Ko, B. A. Myers, and D. H. Chau, “A Linguistic Analysis of How
People Describe Software Problems,” in Proceedings of the Symposium
on Visual Languages and Human-Centric Computing (VL/HCC’06),
2006, pp. 127–134.

[47] A. Lazar, S. Ritchey, and B. Sharif, “Improving the Accuracy of
Duplicate Bug Report Detection Using Textual Similarity Measures,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR’14), 2014, pp. 308–311.

[48] O. A. L. Lemos, A. C. d. Paula, H. Sajnani, and C. V. Lopes, “Can
the Use of Types and Query Expansion Help Improve Large-scale Code

Search?” in Proceedings of the International Working Conference on
Source Code Analysis and Manipulation (SCAM’15), 2015, pp. 41–50.

[49] J. Lerch and M. Mezini, “Finding Duplicates of Your Yet Unwritten Bug
Report,” in Proceedings of the 17th European Conference on Software
Maintenance and Reengineering (CSMR’13), 2013, pp. 69–78.

[50] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and
Reliability, vol. 23, no. 8, pp. 613–646, 2013.

[51] Z. Li, T. Wang, Y. Zhang, Y. Zhan, and G. Yin, “Query Reformulation
by Leveraging Crowd Wisdom for Scenario-based Software Search,” in
Proceedings of the Asia-Pacific Symposium on Internetware (Internet-
ware’16), 2016, pp. 36–44.

[52] M.-J. Lin, C.-Z. Yang, C.-Y. Lee, and C.-C. Chen, “Enhancements
for Duplication Detection in Bug Reports with Manifold Correlation
Features,” Journal of Systems and Software, vol. 121, pp. 223–233, 2016.

[53] K. Liu, H. B. K. Tan, and H. Zhang, “Has This Bug Been Reported?”
in Proceedings of the 20th Working Conference on Reverse Engineering
(WCRE’13), 2013, pp. 82–91.

[54] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the "Hurried" bug
report reading process to summarize bug reports,” in Proceedings of the
International Conference on Software Maintenance (ICSM’12), 2012,
pp. 430–439.

[55] X. A. Lu and R. B. Keefer, “Query Expansion/Reduction and its Impact
on Retrieval Effectiveness,” NIST Special Publication, pp. 231–231,
1995.

[56] F. Lv, H. Zhang, J. g. Lou, S. Wang, D. Zhang, and J. Zhao, “CodeHow:
Effective Code Search Based on API Understanding and Extended
Boolean Model (E),” in Proceedings of the International Conference
on Automated Software Engineering (ASE’15), 2015, pp. 260–270.

[57] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An Information
Retrieval Approach to Concept Location in Source Code,” in Proceed-
ings of the Working Conference on Reverse Engineering (WCRE’04),
2004, pp. 214–223.

[58] A. Marcus and S. Haiduc, “Text Retrieval Approaches for Concept Lo-
cation in Source Code,” in Software Engineering: International Summer
Schools, ISSSE 2009-2011, Salerno, Italy. Revised Tutorial Lectures,
ser. Lecture Notes in Computer Science. Springer, 2013, vol. 7171, pp.
126–158.

[59] C. Mills, J. Pantiuchina, E. Parra, G. Bavota, and S. Haiduc, “Are Bug
Reports Enough for Text Retrieval-based Bug Localization?” in Pro-
ceedings of the 34th International Conference on Software Maintenance
and Evolution (ICSME’18), 2018, pp. 410–421.

[60] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate Bug Report Detection with a Combination of Information
Retrieval and Topic Modeling,” in Proceedings of the 27th International
Conference on Automated Software Engineering (ASE’12), 2012, pp. 70–
79.

[61] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query Expansion Based
on Crowd Knowledge for Code Search,” IEEE Transactions on Services
Computing, vol. 9, no. 5, pp. 771–783, 2016.

[62] A. Panichella, A. D. Lucia, and A. Zaidman, “Adaptive User Feedback
for IR-Based Traceability Recovery,” in Proceedings of the 8th Interna-
tional Symposium on Software and Systems Traceability (SST’15), 2015,
pp. 15–21.

[63] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[64] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using infor-
mation retrieval based coupling measures for impact analysis,” Empirical
software engineering, vol. 14, no. 1, pp. 5–32, 2009.

[65] T. Prifti, S. Banerjee, and B. Cukic, “Detecting Bug Duplicate Reports
Through Local References,” in Proceedings of the 7th International Con-
ference on Predictive Models in Software Engineering (PROMISE’11),
2011, pp. 8:1–8:9.

[66] M. M. Rahman and C. K. Roy, “QUICKAR: Automatic Query Re-
formulation for Concept Location using Crowdsourced Knowledge,” in
Proceedings of the International Conference on Automated Software
Engineering (ASE’16), 2016, pp. 220–225.

[67] ——, “Improved query reformulation for concept location using CodeR-
ank and document structures,” in Proceedings of the International
Conference on Automated Software Engineering (ASE’17), 2017, pp.
428–439.

[68] ——, “STRICT: Information Retrieval Based Search Term Identification
for Concept Location,” in Proceeding of the Conference on Software
Analysis, Evolution, and Reengineering (SANER’17), 2017, pp. 79–90.

[69] ——, “Improving IR-Based Bug Localization with Context-Aware
Query Reformulation,” in Proceedings of the 26th Joint Meeting on the
Foundations of Software Engineering (ESEC/FSE’18), 2018, pp. 621–
632.

[70] M. S. Rakha, C.-P. Bezemer, and A. E. Hassan, “Revisiting the Per-
formance Evaluation of Automated Approaches for the Retrieval of
Duplicate Issue Reports,” IEEE Transactions on Software Engineering,
vol. 44, no. 12, pp. 1245–1268, 2018.

[71] ——, “Revisiting the performance of automated approaches for the
retrieval of duplicate reports in issue tracking systems that perform just-
in-time duplicate retrieval,” Empirical Software Engineering, vol. 23,
no. 5, pp. 2597–2621, 2018.

[72] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails, “CONQUER: A
Tool for NL-Based Query Refinement and Contextualizing Code Search
Results.” in Proceedings of the International Conference on Software
Maintenance (ICSM’13), 2013, pp. 512–515.

[73] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
Cohen’s d for evaluating group differences on the NSSE and other
surveys,” in Annual meeting of the Florida Association of Institutional
Research, 2006, pp. 1–33.

[74] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of Duplicate
Defect Reports Using Natural Language Processing,” in Proceedings of
the 29th International Conference on Software Engineering (ICSE’07),
2007, pp. 499–510.

[75] M. Sadat, A. B. Bener, and A. V. Miranskyy, “Rediscovery Datasets:
Connecting Duplicate Reports,” in Proceedings of the 14th International
Conference on Mining Software Repositories (MSR’17), 2017, pp. 527–
530.

[76] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, 1975.

[77] C. B. Seaman, “Qualitative Methods in Empirical Studies of Software
Engineering,” IEEE Transactions on Software Engineering, vol. 25,
no. 4, pp. 557–572, 1999.

[78] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker, “Using
Natural Language Program Analysis to Locate and Understand Action-
oriented Concerns,” in Proceedings of the International Conference on
Aspect-oriented Software Development (AOSD’07), 2007, pp. 212–224.

[79] B. Sisman and A. C. Kak, “Assisting Code Search with Automatic Query
Reformulation for Bug Localization,” in Proceedings of the Working
Conference on Mining Software Repositories (MSR’13), 2013, pp. 309–
318.

[80] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards More Accurate
Retrieval of Duplicate Bug Reports,” in In Proceedings of the 26th
International Conference on Automated Software Engineering (ASE’11),
2011, pp. 253–262.

[81] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A Discriminative
Model Approach for Accurate Duplicate Bug Report Retrieval,” in Pro-
ceedings of the 32nd International Conference on Software Engineering
(ICSE’10), 2010, pp. 45–54.

[82] A. Sureka and P. Jalote, “Detecting Duplicate Bug Report Using
Character N-Gram-Based Features,” in Proceedings of the Asia Pacific
Software Engineering Conference (ASPEC’10), 2010, pp. 366–374.

[83] F. Thung, P. S. Kochhar, and D. Lo, “DupFinder: Integrated Tool
Support for Duplicate Bug Report Detection,” in Proceedings of the 29th
International Conference on Automated Software Engineering (ASE’14),
2014, pp. 871–874.

[84] Y. Tian, C. Sun, and D. Lo, “Improved Duplicate Bug Report Identifi-
cation,” in Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (CSMR’12), 2012, pp. 385–390.

[85] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An Approach to
Detecting Duplicate Bug Reports Using Natural Language and Execution
Information,” in Proceedings of the 30th International Conference on
Software Engineering (ICSE’08), 2008, pp. 461–470.

[86] J. Zhou and H. Zhang, “Learning to Rank Duplicate Bug Reports,” in
Proceedings of the 21st International Conference on Information and
Knowledge Management (CIKM’18), 2012, pp. 852–861.

[87] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What Makes a Good Bug Report?” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 618–643, 2010.

