
Assessing theQuality of the Steps to Reproduce in Bug Reports
Oscar Chaparro

College of William & Mary
USA

Carlos Bernal-Cárdenas
College of William & Mary

USA

Jing Lu
The University of Texas at Dallas

USA

Kevin Moran
College of William & Mary

USA

Andrian Marcus
The University of Texas at Dallas

USA

Massimiliano Di Penta
University of Sannio

Italy

Denys Poshyvanyk
College of William & Mary

USA

Vincent Ng
The University of Texas at Dallas

USA

ABSTRACT

A major problem with user-written bug reports, indicated by devel-
opers and documented by researchers, is the (lack of high) quality
of the reported steps to reproduce the bugs. Low-quality steps to
reproduce lead to excessive manual effort spent on bug triage and
resolution. This paper proposes Euler, an approach that automati-
cally identifies and assesses the quality of the steps to reproduce in
a bug report, providing feedback to the reporters, which they can
use to improve the bug report. The feedback provided by Eulerwas
assessed by external evaluators and the results indicate that Euler
correctly identified 98% of the existing steps to reproduce and 58%
of the missing ones, while 73% of its quality annotations are correct.

CCS CONCEPTS

• Software and its engineering→ Maintaining software.

KEYWORDS

Bug Report Quality, Textual Analysis, Dynamic Software Analysis
ACM Reference Format:

Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, Andrian
Marcus, Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019.
Assessing the Quality of the Steps to Reproduce in Bug Reports. In Pro-

ceedings of the 27th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),

August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3338906.3338947

1 INTRODUCTION

When software does not behave as expected, users and/or devel-
opers report the problems using issue trackers [60]. Specifically,
problems are frequently reported as bug reports, i.e., documents that
describe software bugs and are expected to contain the information
needed by the developers to triage and fix the bugs in the software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338947

Along with the observed and expected behavior, bug reports
often contain the steps to reproduce (S2Rs) the bug. The S2Rs
are essential in helping developers to replicate and correct the
bugs [39, 59]. Unfortunately, in many cases, the S2Rs are unclear,
incomplete, and/or ambiguous. So much so that developers are of-
ten unable to replicate the problems, let alone fix the bugs in the
software [1, 26, 31–33, 36, 58, 59]. Recently, developers from more
than 1.3k open-source projects wrote a letter to GitHub expressing
their frustration that the S2Rs are often missing in bug reports [1],
and asking for a solution that would make reporters include them in
the reports. In addition, prior research found that low-quality S2Rs
lead to non-reproducible bugs [31], unfixed bugs [58], and excessive
manual effort spent on bug triage and resolution [26, 31, 33, 59].
Low-quality S2Rs are also the main problem with automated ap-
proaches attempting to generate test cases from bug reports [32, 36].
For example, Fazzini et al. [32] report that a S2R may refer to an
interaction outside the system or it may be ambiguous and corre-
spond to multiple interactions. Similar problems were encountered
by Karagöz et al. [36], who even proposed the adoption of a semi-
formal format to express S2Rs, attempting to alleviate such issues.

Ideally, low-quality S2Rs in bug reports should be identified at
reporting time, such that reporters would have a chance to cor-
rect them. With that in mind, we propose Euler, an approach that
automatically analyzes the textual description of a bug report, as-
sesses the quality of the S2Rs, and provides actionable feedback to
reporters about: ambiguous steps, steps described with unexpected
vocabulary, and steps missing in the report. In this paper, we present
the approach and evaluate an implementation geared towards S2Rs
corresponding to GUI-level interactions in Android applications.
Euler can be adapted to support any GUI-based system.

Euler leverages neural sequence labeling [35, 38] in combination
with discourse patterns [27] and dependency parsing [42] to identify
S2R sentences and individual S2Rs. Next, it matches the S2Rs to
program states and GUI-level application interactions, represented
in a graph-based execution model. A successful match indicates
that the S2R precisely corresponds to an app interaction (i.e., it is of
high-quality). Conversely, a low-quality S2R may match to multiple
screen components or app events, may not match any application
state or interaction, or it may require the execution of additional
steps. Euler assigns to each S2R quality annotations that provide
specific feedback to the reporter about problems with the S2Rs.

https://doi.org/10.1145/3338906.3338947
https://doi.org/10.1145/3338906.3338947

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus, M. Di Penta, D. Poshyvanyk, and V. Ng

S2R
Identification

Execution
Model Generation

Sentence
Identification

Individual S2R
IdentificationBug Report

Systematic
Exploration

Quality Report Generation

S2R Resolution

Quality Report

2.3

Graph-based
Modeling

Event Resolution GUI Component
ResolutionInput Resolution

Random
Exploration

Quality
Assessment

Steps to Reproduce

Step Execution
and Inference

S1: [press] [“Go to”]
S2: [type] [number]

Sn: [press] [“Go”]

Execution Model

Step Matching

S33

S22

S11

Quality AnnotationsS2R#

2.1

2.2

2.4

App Installer

Figure 1: Euler’s workflow and main components.

We asked external evaluators to assess the accuracy and com-
pleteness of the quality reports produced by Euler for 24 bug
reports of six Android applications. The results indicate that: Eu-
ler correctly identifies 98% of the S2Rs; 73% of Euler’s quality
annotations are correct; and Euler successfully identifies 58% of
the missing S2Rs. The evaluators also provided feedback on the
perceived usefulness of the information included in the quality
reports, on the additional information that should be in them, as
well as on usability. The quantitative results of the evaluation and
qualitative analysis of the feedback, allowed us to define specific
future work for further improving Euler.

We envision Euler being successfully used in three different
scenarios: (1) providing automated feedback to the bug reporter
at reporting time, prompting a rewrite of the bug report; (2) pro-
viding useful information (e.g., the missing S2Rs) to the developers
attempting to reproduce the bug; and (3) supporting automated
approaches for test case generation (e.g., Yakusu [32]).

2 ASSESSING S2R QUALITY

We describe Euler (assEssing the qUaLity of the steps to
rEproduce in bug Reports), an approach that automatically iden-
tifies and assesses the quality of the steps to reproduce (S2Rs) in
bug reports. In this paper, we focus on bug reports for GUI-based
Android apps, yet Euler can be adapted to work for other plat-
forms. The input of Euler is the textual description of a bug report
and the executable file of the Android application affected by the
reported bug. The output is a Quality Report (QR), which contains a
set of Quality Annotations (QAs) for each S2R, automatically iden-
tified from the bug description. The QAs are described in Table 1 of
Sec. 2.4. Figure 1 shows Euler’s main components and workflow,
which are described in the following subsections.

2.1 Identifying S2Rs

The first step in Euler’s workflow is the automated identification
of sentences describing S2Rs. Then, Euler performs a grammatical
analysis on these sentences to identify individual S2Rs. The output
is a list of individual S2Rs identified from the bug report.

2.1.1 Identification of S2R Sentences. Euler identifies S2R sen-
tences in a bug report using a neural sequence labeling model [35,
38], which contains the following components:

Model Input. The model input consists of paragraphs in the
bug report. Each paragraph is a sequence of sentences, and each

sentence is a sequence of words. As there are dependencies between
S2R sentences (i.e., often they appear in sentence groups), we use
the Beginning-Inside-Outside (BIO) tagging approach [47], where
for each sentence in a paragraph, we assign: (1) the label [B-S2R] if
the sentence begins a S2R description; (2) the label [I-S2R] if the
sentence is inside the S2R description; or (3) the label [O] if it is
outside (i.e., not part of) the S2R description.

Word Representations. We represent each word by concate-
nating two components: word and character embeddings. We use
pre-trained word vectors from a corpus of 819K bug reports, col-
lected from 358 open source projects, to capture word-level repre-
sentations. In order to handle vocabulary outside of this corpus, we
use a one-layer Convolutional Neural Network (CNN) with max-
pooling to capture character-level representations [41]. We model
word sequences in a sentence by feeding the above word represen-
tations into a Bidirectional Long Short-Term Memory (Bi-LSTM),
which has been shown to outperform alternative structures [52].
The hidden states of the forward/backward LSTMs are concatenated
for each word to obtain the final word sequence representation.

SentenceRepresentations.As suggested byConneau et al. [28],
we adopt the simple (yet effective) approach of averaging the vec-
tors of words composing a sentence for capturing sentence-level
properties. We represent each sentence by concatenating the aver-
aged word representations from the previous step and a one-hot
feature vector that encodes the discourse patterns inferred by Cha-
parro et al. [27], which capture the syntax and semantics of S2R
descriptions as well as sentences describing the system’s observed
behavior (OB) and expected behavior (EB).

Inference Layer. In order to model label dependencies, we use a
Conditional Random Field (CRF) for inference instead of classifying
each sentence independently. CRFs have been found to outperform
alternative models [52]. The output of the inference layer is a label
for each sentence where the [B/I-S2R] labels indicate a S2R sentence
and the [O] label indicates a non-S2R sentence. Section 3.3 details
the model implementation, training, and evaluation.

2.1.2 Identification of Individual S2Rs. Once the S2R sentences are
identified, Euler uses dependency parsing [42] to determine the
grammatical relations between the words in each sentence and
extract the individual S2R from them. Euler utilizes the Stanford
CoreNLP toolkit [42] for extracting the grammatical dependency
tree of S2R sentences. This tree varies across different types of
sentences (e.g., conditional, imperative, passive voice, etc.). There-
fore, Euler implements a set of algorithms that extract the relevant
terms from the dependency trees of each sentence type.

An individual S2R complies with the following format:
[action] [object] [preposition] [object2]

where the [action] is the operation performed by the user (e.g., tap,
minimize, display, etc.), the [object] is an “entity” directly affected
by the [action], and [object2] is another “entity” related to the [ob-
ject] by the [preposition]. An “entity” is a noun phrase that may
represent numeric and textual system input, domain concepts, GUI
components, etc.A S2R example is: “[create] [entry] [for] [purchase]”.

We illustrate Euler’s algorithm to identify individual S2Rs from
conditional S2R sentences. The bug report #256 [2] from Gnu-
Cash [7] contains the conditional S2R sentence: “When I create

an entry for a purchase, the autocomplete list shows up” . To extract

Assessing theQuality of the Steps to Reproduce in Bug Reports ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

the S2R from the parsed grammatical tree, Euler first locates the
adverb ‘When’ that is the adverbial modifier (advmod) of the verb
(‘create’). Then Euler verifies the existence of an adverbial clause
modifier (advcl) between the verb and its parent word. Next, Euler
captures the verb (‘create’) as the S2R’s [action]. Otherwise, the sen-
tence is discarded, as it does not follow the grammatical structure
of a conditional sentence. Next, Euler locates the nominal subject
(nsubj), in this case, the word ‘I’. Euler captures the [object] by
locating the verb’s direct object (dobj), ‘entry’ in the example, and
identifies the nominal modifier of the direct object (nmod:for) as
the [object2], and the [preposition] of the nominal modifier (case).
The resulting S2R is: “[create] [entry] [for] [purchase]”.

The final result of the S2R identification is a sequence of S2Rs ex-
tracted from the bug report, S2Rs = {s1, s2, s3, ..., sn }. The sequence
order is determined by the order in which the S2Rs appear in the
bug description, from top to down and left to right, except for a few
cases, such as “I do x after I do y", where the order is right to left.

2.2 Execution Model Generation

Euler’s quality assessment strategy is based on an execution model
that captures sequential GUI-level application interactions and the
application’s response to those interactions.

In its current implementation, Euler utilizes a modified version
of CrashScope’s GUI-ripping Engine [43, 45] to generate a database
of application execution data in the form of sequential interactions.
This Engine is an automated system for dynamic analysis of An-
droid applications that utilizes a set of systematic exploration strate-
gies and has been shown to exhibit comparable coverage to other
automated mobile testing techniques [43]. A detailed description
of the engine can be found in Moran et al.’s previous work [43, 45].

Euler’s next task is the generation of a graph that abstracts the
sequential execution database produced by CrashScope’s Engine.
The granularity of states in this graph is important, as it will serve
as an index for matching the identified natural language S2Rs with
execution information. For instance, if the graph were built at the
activity-level (meaning that each activity recorded by CrashScope
represents a unique state in the graph), then there is potential for
information loss, as the GUI-hierarchy of a single activity may
change as a result of actions performed on it [23].

To avoid information loss, Euler generates a directed graph
G = (V ,E), whereV is the set of unique application screens with
complete GUI hierarchies, and E is a set of application interac-

tions performed on the screens’ GUI components. In this model,
two screens with the same number, type, size, and hierarchical struc-
ture of GUI components are considered a single vertex. E is a set
of unique tuples of the form (vx ,vy , e, c), where e is an application
event (e.g., tap, type, swipe, etc.) performed on a GUI component
c from screen vx , and vy is the resulting screen right after the in-
teraction execution. Similar execution models have been proposed
in prior research on mobile app testing [54]. Each edge stores ad-
ditional information about the interaction, such as the data input
(only for type events) and the interaction execution order dictated
by the systematic exploration. The graph’s starting node has one
outgoing interaction only, which corresponds to the application
launch. A GUI component is uniquely represented by a type (e.g., a
button or a text field), an identifier, a label (‘OK’ or ‘Cancel’), and its

size/position in the screen. Additional information about a compo-
nent is stored in the graph, for example, the component description
given by the developer and the parent/children components.

2.3 S2R Resolution

Euler needs to identify the application interaction that most-likely
corresponds to a S2R (a.k.a. step resolution). Given a S2R s and
program state vx (i.e., graph vertex or screen), Euler determines
the most likely interaction i = (vx ,vy = null , e, c) for s , where
e is an event performed on component c from the screen vx . For
type events (i.e., text entry events), Euler identifies the input value
specified by s , if any. Step resolution can fail to resolve the interaction
for s . In that case, the result is either a mismatch (i.e., s does not
match a possible interaction in the current screen) or a multiple-
match (i.e., s matches multiple events or screen components).

2.3.1 Event Resolution. The first step in the Euler’s step resolution
workflow is determining the event e that a S2R refers to. Euler
supports the following Android events: tap, long tap, open app, tap
back/menu button, type, swipe up/down/left/right, and rotate to
landscape/portrait orientation.

First, Euler finds the action group that the [action] from the S2R
corresponds to. An action group is a category for verbs having a
similar meaning, used to express an app interaction. Euler finds
the action group by matching the [action]’s lemma to the lemma of
each verb in the group. Euler supports six action groups, namely
OPEN, LONG_CLICK, CLICK, SWIPE, TYPE, and ROTATE. Each
group has a set of verbs (e.g., edit, input, enter, insert, etc. for TYPE).
We defined the groups by analyzing the vocabulary used in the bug
reports and applications used by Moran et al. [43, 44].

When the [action]maps tomultiple action groups, Euler resolves
the correct group by analyzing the [object] and [object2] from the
S2R (e.g., by identifying GUI-component types in them or matching
these to screen components using the matching algorithm described
in Sec. 2.3.2). Only the groups TYPE, CLICK, and ROTATE have
common verbs. If Euler fails to disambiguate the action group,
then it flags the S2R’s [action] as matching multiple events and
saves the corresponding action groups for providing user feedback.

If the [action] does not match an action group, then the verb is
likely to refer to a generic interaction or an application feature (e.g.,
“[create] [purchase]”). In this case, Euler assumes the [action] is
expressed in the properties of a GUI component (i.e., its ID, descrip-
tion, or label). Then, Euler attempts to resolve a GUI component
that matches the whole S2R or the [action], by using the matching
approach defined in Sec. 2.3.2. If there is a matched component, the
action group is determined as CLICK (if the component is tappable),
as LONG_CLICK (if the component is long-tappable), or TYPE
(if the component is type-able). Otherwise, the event resolution
process fails with an event mismatch result.

Once the action group is determined, Euler proceeds with trans-
lating such a group into an event. The OPEN action group is trans-
lated as an ‘open app’ event if the [object] matches ‘app’, the current
app name, or a synonym (e.g., ‘application’). Otherwise, it is re-
solved as a ‘tap’ event. The CLICK group is translated as a ‘tap
back button’ event, if the [object] or [object2] contains the terms
‘back’, ‘leave’, or related terms, and as a ‘tap menu button’ event, if
the [object] or [object2] contains the terms ‘menu’, ‘more options’,

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus, M. Di Penta, D. Poshyvanyk, and V. Ng

‘three dots’, etc. Otherwise, it translated as a ‘tap’ event. The rest of
the action groups are translated to their corresponding event (e.g.,
TYPE as ‘type’). We also use keywords to determine the direction of
swipes and rotations (e.g., ‘landscape’, ‘portrait’, ‘up’, ‘right’, etc.).

All the keywords mentioned in this section are based on our
experience with Android apps and the analysis of Moran et al.’s
bug reports and apps [43, 44].

2.3.2 GUI Component Resolution. The next step in Euler’s step
resolution workflow is determining the GUI component in the
current screen that the event should perform on, according to the
S2R. This step is completed only for tap, long tap, tap on menu
button, and type events, as they are the only ones that require a
component. Before describing how the GUI component resolution
works, we describe the base algorithm used to match a textual
sequence (i.e., a query) to a GUI component.

Matching algorithm. The algorithm’s input is a textual query
q (i.e., a sequence of terms), a list of GUI componentsGC (sorted in
the order of appearance in a screen), and the application event e
identified from the S2R. The output is the GUI component (fromGC)
most relevant to the query. The relevancy is determined by a set
of heuristics and a scoring mechanism based on textual similarity.
The algorithm comprises the following steps:

(1) If q contains terms referring to the application or device
screen (e.g., ‘screen’, ‘phone’, etc.), then the first non-tappable
component of the current screen (from top to down) is se-
lected and returned as the most relevant component.

(2) If q contains terms that refer to a component type, such as
text field or button, then Euler checks if there is only one
component in GC of that type (the first type found in the
query). If that is the case, then the algorithm selects and
returns such a component as the most relevant component.

(3) If q does not contain any terms related to component types,
then Euler computes a similarity score between q and each
component c from GC and selects a set of candidates most-
relevant to the query. The similarity score is computed as:

similarity(s1, s2) =
|LCS(s1, s2)|

avд (|s1 | , |s2 |)
(1)

where s1 and s2 are two term sequences, LCS(s1, s2) is the
Longest Common Substring between the sequences at term
level (as opposed to character level), and avд (|s1 | , |s2 |) is the
average length of both sequences. If any of the sequences
is empty then the similarity score is zero. If two sequences
are exactly the same, then the score is 1 (i.e., the maximum
score), otherwise, the score varies from 0 to 1.

The similarity score accounts for common terms between the
sequences and the order in which they appear. The order is impor-
tant because the matching process should be as precise as possible
for producing an accurate S2R quality assessment. Before comput-
ing the similarity, Euler applies lemmatization to the input word
sequences (using the Stanford CoreNLP toolkit [42]).

The similarity between q and each component c in GC is taken
from the similarity computed between q and the component label,
description, and id, in that order. Specifically, the first non-zero
similarity score obtained from these sources is taken as the similar-
ity between q and c . Only the components whose similarity with

q is 0.5 or greater are considered similar to the query, yet Euler
recommends candidates in the order of their similarity score, with
the highest first.

From the candidate list, Euler determines the component that
is most relevant to the query. There are three cases to consider:

(1) There is one candidate. Euler returns such a component and
the matching algorithm ends.

(2) There is more than one candidate. To determine the most-
relevant component, Euler executes a set of heuristics. For
each component, if its type is Layout and it has only one
child in the GUI hierarchy, then the child is returned and
the process ends. If none of the candidates satisfy the condi-
tion above, but all candidates are of the same type (e.g., text
fields), then the component with the highest similarity score
is returned. Otherwise, Euler analyzes the candidates with
respect to the event e . If e is a typing event, and there is one
text field among the candidates, then the field is returned.
Otherwise, if e is a ‘tap’ or ‘long tap’ and there is only one
button among the candidates, then Euler returns such a
component. Otherwise, the algorithm ends with a multiple-
match result and the candidates are saved for providing the
quality feedback to the user.

(3) There are no candidates. Euler reformulates the query fol-
lowing a query replacement approach, where a set of pre-
defined synonyms for query terms are used as new queries.
If there are no synonyms for the query terms, then the al-
gorithm stops and returns a mismatch result. Each query is
executed and if any matches a component, then it is returned.
Otherwise, the process ends with a mismatch.

Query Formulation & Component Resolution. Euler uses
the S2R constituents as queries, depending on the identified event e
for a S2R. These queries are executed using the matching algorithm
to find the GUI component that the S2R most likely refers to.

For the ‘tap’, ‘long tap’, and ‘tap on menu button’ events, the first
formulated and executed query is the entire S2R (i.e., the concate-
nation of the S2R’s [action], [object], and [object2]). If the matching
algorithm fails to return a component, only [object] or [object2] are
executed as queries. In both cases, if the [action] corresponds to a
verb that means “selecting” (e.g., “select", “choose", “pick", “mark",
etc.), then only checkable or pickable components (e.g., drop-down
lists or check-boxes) in the current screen are used as search space.
The [object2]-based query is executed only if the [object]-based
one fails. If both queries fail, then the query “[action] + [object]” is
reformulated and executed. If any of these queries fail to match a
GUI component, then the step finishes with either a mismatch or a
multiple match, depending on the last matching result obtained.

For type events, Euler considers the following S2R cases:
(1) A S2R with a literal in [object], a non-literal in [object2], and

the [preposition] is one of the following: “on”, “in”, “into”,
“for”, “of”, “as”, etc. For these cases, the [object2] is used as
query. For example, for the S2R “[enter] [‘10’] [on] [price]”,
the term price is used as query.

(2) A S2R with a non-literal in [object], a literal in [object2], and
the [preposition] is one of the following: “to” or “with”. Then,
the [object] is used as query. For example, for the S2R “[set]

[price] [to] [10]”, the term price is used as query.

Assessing theQuality of the Steps to Reproduce in Bug Reports ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

(3) A S2R where the [object] is a literal and the [preposition]

and [object2] are null (e.g., “[enter] [‘10’]”), Euler selects and
returns the focused component in the current screen, if any.

In any case, the resolution process ends with either a resolved GUI
component or a mismatch/multiple-match result.

2.3.3 Application Input Resolution. For type events, Euler extracts
the input values from the [object] or [object2]. Specifically, Euler
identifies literal values or quoted text. If the input value is missing or
generic (i.e., not a literal or “text”), then Euler generates a numeric
input value from a counter (a simple, yet effective approach).

2.4 Quality Report Generation

Euler’s S2R quality assessment algorithm receives as input the
identified S2Rs from the bug report and the system execution graph
G . The output is a Quality Report (QR), providing an assessment and
feedback for each S2R. The algorithm comprises four major steps:
(1) step matching; (2) step execution and inference; (3) random
application exploration; and (4) quality assessment.

2.4.1 Step Matching. Euler attempts to match the S2Rs with appli-
cation states and interactions. Starting with the first identified S2R,
Euler resolves an interaction using a set of screens from the graph.
First, if the first S2R corresponds to an ‘open app’ interaction, then
Euler marks the S2R as analyzed and proceeds to the next S2R.
Otherwise, Euler builds the interaction. Either way, Euler exe-
cutes an ‘open app’ event, and the target state from this interaction
is marked as the current execution state. Euler makes sure that
the current state corresponds to the screen shown on the device.

Starting from the current state, Euler traverses the graph in a
depth-first manner untiln levels have been reached. Euler performs
step resolution on each state (Sec. 2.3). The result is a set of resolved
interactions for the S2R on the selected states. If the S2R resolution
fails for these states (either with a mismatch or a multiple-match
result), then it means that either: (1) more states in the graph need
to be inspected, hence, the parameter n should increase; (2) there
are app states uncovered by the systematic exploration (i.e., not
present in the execution model); or (3) the S2R is of low-quality. The
parameter n needs to be calibrated per each app. Euler discovers
additional app states via random app exploration (Sec. 2.4.3).

Ideally, only one interaction is resolved for the S2R (i.e., on one
state only). However, it is possible to resolve multiple interactions,
each one on different app states. This is due to variations in the
states resulting from different interactions. For example, when
providing various app inputs, one screen could have a slightly
different GUI hierarchy. The resolved interactions are matched
against the interactions from the graph, by matching their source
state vx , the event e , and the component c . If a pair of interactions
match on these properties, then they are considered to be the same
interaction. The matching returns a set of interactions from the
graph thatmatch the resolved ones. If this set is empty, then it means
that the resolved interactions were not covered by the systematic
exploration approach, and Euler assumes they are new interactions
in the graph. Euler proceeds with selecting the most relevant
interaction that corresponds to the S2R, by selecting the one whose
source state is the nearest to the current execution state in the graph.
In particular, Euler computes a relevant score = 1/(d + 1), for each

Table 1: Quality annotations for the S2Rs in bug reports

High Quality (HQ):

A step that precisely matches an application interaction
Low Quality (LQ) - Ambiguous Step (AS):

A step that matches more than one GUI component or event
Low Quality (LQ) - Vocabulary Mismatch (VM):

A step that does not match any application interaction
Missing Step (MS):

A step required to reproduce the bug, not described in the bug report

interaction, where d is the distance, in terms of number of levels
apart in the graph, between the current state and the source state
of the interaction. Euler selects the interaction with the highest
score as the one that matches the S2R. This decision is made to
minimize the number of steps required for reaching the state where
the interaction is executed, as described below.

2.4.2 Step Execution and Inference. Each identified interaction
from the graph is executed in the device. Any new application
screens/interactions are added to the graph during the execution.

The identified interaction in the graph for a S2R could be located
in a state far away from the current state. This means that Euler
needs to execute intermediate interactions for reaching the state
where the interaction is executed on. There may be more than one
way to reach such a state. Therefore, Euler selects the shortest
path between the current state and the state where the interaction
occurs. The interactions in the shortest path are assumed by Euler
as inferred steps, missing in the bug report. Euler executes each
one of the interactions in the shortest path. At each state, Euler
determines the enabled components in the device screen and only
the interactions to such components are executed, in the order that
they were executed by the systematic exploration approach or the
current execution. All the interactions executed correspond to the
list of inferred interactions or missing steps in the bug report.

2.4.3 Random System Exploration. As mentioned before, if the step
resolution fails for all the inspected states, then it means that the
systematic app execution approach (Sec. 2.2) failed to discover app
states/screens. To address this issue, Euler performs a random app
exploration, starting from the current app screen (shown on the
device). The goal is to discover additional app states that could lead
to successfully resolving the interaction for a S2R. To do so, Euler
identifies the components (different than Layouts and List Views)
that have not been executed in the current screen, and randomly
selects and executes one clickable component from this set.

The random exploration is performed iteratively y times. At
each iteration, x interactions are executed, unless there are no
components left to interact with in the current screen. Right after
each iteration, Euler updates the graph, the app is restored to the
state before the random execution, and the S2Rmatching, execution,
and inference are performed again on the graph’s new version. If the
S2R ismatched against the graph (Sec. 2.4.1), then nomore iterations
are executed. Else, the random exploration process continues.

2.4.4 Quality Assessment. Euler assigns a set of Quality Annota-
tions (QAs) to each S2R. The QAs are defined in Table 1. If the S2R
is resolved/matched against the execution model successfully, then
Euler labels the S2R as High Quality (HQ) - a.k.a. Exact Match (EM).

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus, M. Di Penta, D. Poshyvanyk, and V. Ng

If there are inferred application interactions between the previ-
ous S2R and the current one, then the current S2R is labeled with
Missing Steps (MS). The inferred steps are attached to the annota-
tion for informing the reporter about them. The feedback given to
the users is that there are application interactions missing in the
bug report that should be executed before the current S2R. Note
that the MS annotation does not indicate a problem about this S2R
but about the entire list of S2Rs.

If a S2R is not resolved in any of the graph states because of
a multiple-component or -event match, then it is labeled as an
Ambiguous Step (AS). The feedback given to the users is that either
the S2R’s [action] corresponds to multiple events, or the [object] or
[object2] match multiples GUI components. Examples of matched
events or components are shown to the user.

If a S2R is not resolved in any of the graph states because of a
mismatch of the S2R with the application, then it is labeled with
VocabularyMismatch (VM). In the feedback given to the user, Euler
specifies the problematic vocabulary from the S2R constituents (i.e.,
the [action], [object], [object2], or any combination of these).

Euler generates a web-based Quality Report (QR) with the qual-
ity assessment for the S2Rs in a bug report, containing the feedback
described above (Fig. 2). The user can click on the matched/inferred
interactions to open a pop-up window showing a screen capture of
the app, highlighting the GUI component being interacted with.

Legend for the Quality Annotations

Identified S2R Quality Annotations

1 Add favorites EM This S2R matches the following app interaction:
1. Tap the "item fav (Add to favorites)" text view

MS There are app interactions that are missing in the bug report
and should be executed before this S2R:

1. Tap the image button
2. Tap the "Chaos Communication Camp Opening" view

2 Go into favorites EM This S2R matches the following app interaction:
1. Tap the "item starred list (Show favorites)" text view

MS There are app interactions that are missing in the bug report
and should be executed before this S2R:

1. Tap the "Navigate up" image button
2. Tap the image button
3. Tap the drop down list
4. Tap the list view

3 Select event AS This S2R matches multiple actions (e.g., "long click" or "click").

4 Remove event in event details
screen

VM The term "event in event details screen" does not match a GUI
 component from the app.

5 Hit BACK button to return EM This S2R matches the following app interaction:
1. Tap the back button

Exact Match: EM Ambiguous Step: AS Vocabulary Mismatch: VM Missing Steps: MS

Figure 2: Euler’s Quality Report for Schedule #154 [17].

3 EMPIRICAL EVALUATION

We conducted an empirical evaluation to determine how accurately
Euler identifies and assesses the quality of S2Rs in bug reports,
and to understand the perceived usefulness, readability, and under-
standability of the information included in Euler’s Quality Reports
(QRs). We aim to answer the following research questions (RQs):

RQ1 What is the accuracy of Euler in identifying and

assessing the quality of the S2Rs in bug reports?

RQ2 What is the perceived usefulness and quality of

the information provided in Euler’s quality reports?

The answer to RQ1 will inform us on improvements to Euler’s
accuracy. RQ2 will inform us on the presentation and perceived
usefulness of the information provided by the QRs.

In order to answer the RQs, we selected a set of bug reports
(Sec. 3.1), collected human-produced reproduction scenarios for
them (Sec. 3.2), used Euler to identify and assess the quality of
each S2R (Sec. 3.3), and asked external evaluators to assess Euler’s
QRs (Sec. 3.4). We analyze the resulting evaluation data and answer
the RQs using a set of evaluation metrics, defined in Sec. 3.5.

3.1 Bug Report Sample

We used 24 bug reports from six Android apps [43, 44]: (1) Aard
Dictionary, a dictionary and Wikipedia reader [3], (2) Droid Weight,
a body weight tracker [6], (3) GnuCash, a finance expense manager
[7], Mileage, a vehicle mileage tracker [12], Schedule, a conference
scheduler [16], and (6) A Time Tracker [19]. The apps were selected
to cover different domains, as well as involve multiple events (e.g.,
taps, types, swipes, etc.) for using their functionality. These apps
are also well-studied, having been utilized in several past works on
mobile testing and bug reporting [43, 44].

We collected the entire set of issues (i.e., 785, excluding pull
requests) from the issue trackers of the six apps. We randomly
sampled 56 issues (i.e., about 10% of the data for each app except
GnuCash, which had the largest issue set, and its sample amounts
to 5% of the issues). We read the issues and discarded 32, which
correspond to new feature requests, enhancements, etc., or bug
reports with no S2Rs included. The remaining 24 issues correspond
to bug reports, and out of these, 20 describe reproducible bugs and
4 describe non-reproducible bugs. The reports describe different
types of bugs, namely crashes (5 reports), functional problems (14
reports), and look-and-feel problems (5 reports). The reports include
88 S2Rs total, 3-4 S2Rs per report on avg., with min. 1 and max. 8.

We manually inspected the 88 S2Rs and estimated that 68 steps
are of high-quality, 16 are ambiguous, and four use unexpected
vocabulary, while there are many missing steps.

3.2 Ideal Reproduction Scenarios

In order to assess the quality of the S2Rs from the sampled reports,
we need a baseline: the ideal list of S2Rs (a.k.a. ideal reproduction
scenarios). To build the scenarios, we asked six graduate students
to reproduce the reported bugs by following the S2Rs provided in
the reports. Each bug was reproduced by two students. For each
bug report, a student had to (1) (re)install the buggy version of the
app on an Android emulator, and (2) try to replicate the reported
bug, while writing (in a spreadsheet) each specific step followed. In
some cases, the students attempted to replicate the bug more than
once. On each attempt, they annotated the detailed reproduction
sequence, including any missing steps in the bug report. In most
cases, the students succeeded reproducing the reported bug on their
second attempt (for the reproducible bugs). The scenarios across
the two students per report were highly similar, if not the same. We
found only small variations in the scenarios for a single bug (e.g.,
input values, or cases such as tap back button vs. tap cancel button).

From the collected reproduction scenarios, we created the ideal
reproduction scenario (i.e., the ideal S2Rs) for each bug report,
which includes the set of missing steps in the report and the cor-
respondence for each app interaction/step (in the scenario) with

Assessing theQuality of the Steps to Reproduce in Bug Reports ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

the S2Rs from the report. For each reproducible bug, we selected
the steps that are more clearly-written, among the submitted sce-
narios. When necessary, we decomposed the steps into atomic app
interactions and added step details (e.g., the location of the GUI-
components).We also normalized the vocabulary (e.g., ‘hit’ or ‘press’
are changed to ‘tap’). For each report describing a non-reproducible
bug, we selected the two most similar scenarios to the bug report
scenario, and performed the same normalization procedure.

3.3 Euler Implementation and Calibration

We implemented Euler’s S2R identification component by adapting
the NCRF++ toolkit [53]. We trained the word embeddings with
dimension 200 on 819K bug reports collected from 358 open source
projects using the fastText’s skip-gram model implementation [25].
We used data from Chaparro et al. [27] to train the model, using
data from GUI-based systems only. The character embedding layer
consists of one convolution layer with kernel size of 3. The size of
the character vectors is 50, the size of bi-LSTM vectors is 40, and
the size of the discourse patterns vector is 154 [27].

For learning, we use a mini-batch of size 4 using stochastic
gradient descent with a 0.05 decayed learning rate to update the
parameters. The learning rate is 0.015. We apply 0.5 dropout to the
word embeddings and character CNN outputs. We find the best
hyperparameters by performing a 10-fold cross validation with 80%,
10%, and 10% of the data for model training, validation, and testing,
respectively. The model is trained for up to 500 epochs, with early
stopping if the performance (based on F1 score) on the validation
set does not change within 25 epochs. The model achieves 73%
precision and 81% recall at identifying S2R sentences.

We implemented the remaining Euler components using the
Stanford CoreNLP library [42], Chaparro et al.’s implementation
of the discourse patterns [27], and CrashScope [43]. We used the
bug reports by Moran et al. [43, 44] to test our implementation and
calibrate the parameters. In particular, Euler executes 3 random
exploration iterations, with 10 steps each. The depth of graph ex-
ploration for the step matching is 6 levels from the current program
state. These represent the best parameters, according to our tests.

3.4 Methodology

To address our RQs, we asked human evaluators to assess the quality
reports generated by Euler. The study subjects (a.k.a. participants)
are six PhD students, one business analyst, three professors, one
postdoc, and one MSc student. The participants have been selected
through direct contacts of the authors, taking into account that (i)
participants require to have some development experience; and (ii)
they need to be available for a task of about two hours.

Based on the ideal reproduction scenario, we created a repro-
duction screencast showing how the bug can be reproduced, or,
for the non-reproducible bugs, how the sequence of steps could be
followed. For each bug report, each participant had the following
information available: (1) the original bug report; (2) the quality
report generated by Euler; (3) the ideal reproduction scenario; and
(4) a screencast showing how the bug can be reproduced on a device.
Before starting the task, we instructed the participants in a training
session (also made available to them through a video), in which we
explained the quality annotations and the task to be performed.

We randomly assigned six bug reports to each participant, for
which he/she had to evaluate the QR; each QR is evaluated by
three participants. The survey questionnaire, implemented through
Qualtrics [15], consists of a demographics section and a section for
each QRs to evaluate. In the demographics section we ask questions
about years of experience on (i) non-mobile app development, (ii)
mobile app development, (iii) Android app development in particu-
lar, and (iv) use of Android phone. We also ask approximately how
many bug reports the participant has ever reported.

For each QR, the questionnaire contains two sections. The first
section contains, for each S2R, three questions, for answering RQ1:

(1) A yes/no question for checking whether Euler correctly
identified the S2R (in case of a negative answer, questions
(2) and (3) are skipped).

(2) For each annotation produced by Euler for a given S2R,
an agree/disagree question aimed at checking its correct-
ness. In case the answer was negative, the respondents were
instructed to explain their answer in a free-text form.

(3) In case of missing steps, a third (four check-box) question is
formulated for assessing whether Euler’s suggested list of
missing steps is: (i) correct; (ii) contains extra steps; (iii) is
lacking one or more steps; or (iv) some steps are incorrectly
ordered. We ask the respondents to use a free-text form to
provide an explanation for their answer.

The second section of the survey addresses RQ2, by asking:

(1) Whether Euler’s quality report is easy to read and under-
stand (using a 5-level Likert scale [46]).

(2) Whether the quality report is likely to help users to better
write bug reports (using a 5-level Likert scale).

(3) Four free-text questions to indicate what information was
perceived useful, useless, and what information should be
added to or dropped from the QR.

3.5 Metrics

For addressing RQ1, we measure Euler’s precision and recall at
identifying the S2Rs from the bug report by comparing Euler’s
output with the ideal reproduction scenario (Sec. 3.2). We also
measure the proportion of correctly identified S2Rs judged by the
participants. Since we involve three participants for each bug report,
we consider the correctness assessment provided by the majority.

For each step, we compute, for each QA type (Tab. 1), the propor-
tion of annotations judged as correct. We consider the assessment
of the majority of participants requiring at least two positive an-
swers. Note that, in this case, a respondent might not have answered
question #2 if she judged the S2R as incorrectly identified. For MS
annotations, we measure the proportion of MS annotations sug-
gesting correct, extra, lacking, and unordered missing steps. We
also use majority assessment.

To address RQ2, for each bug report we have two questions,
expressed in a 5-level Likert scale. We compute the cumulative
number of responses for each of the five levels and we represent
them using an asymmetric stacked bar chart. Regarding the free-text
questions related to the usability/quality of the QRs information,
we categorized the responses using a card-sorting approach [50]
and analyzed each category.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus, M. Di Penta, D. Poshyvanyk, and V. Ng

Table 2: Accuracy results for Euler’s Quality Annotations (QAs).

App

of

S2Rs

QAs # AS # HQ # MS # VM

Bug rep. Correct/Tot. Correct/Tot. Correct/Tot. Correct/Tot. Not Reported Extra Correct/Tot.

Aard Dictionary 2 6 5/8 0/1 4/4 1/3 0 3 -
A Time Tracker 5 22 23/29 - 15/18 5/8 2 8 3/3
Droid Weight 2 6 7/7 - 5/5 1/1 1 1 1/1
GnuCash 9 35 34/53 1/2 16/26 12/19 5 13 5/6
Mileage 4 12 12/17 2/2 4/6 4/5 0 5 2/4
Schedule 2 8 10/10 1/1 5/6 3/3 0 3 1/1
Total 24 89 91/124 4/6 49/64 26/39 8 33 12/15

% - - 73% 67% 77% 67% 21% 85% 80%

3.6 Results and Analysis

Table 2 summarizes the evaluation results of Euler’s quality assess-
ment and feedback1. It reports the number of S2Rs (identified by
Euler) for each bug report (3rd column - # S2Rs), the (correct/total)
number of quality annotations for all S2Rs (4th column - # QAs),
the (correct/total) number of annotations across the quality cat-
egories from Table 1 (5th-10th columns), and the number of MS
annotations for which there are unreported and extra steps in the
list of missing/inferred steps (8th and 9th columns, respectively).

3.6.1 S2R Identification Results. Euler identified 89 S2Rs in the
24 bug reports (Table 2). Only four S2Rs were judged as incorrect,
resulting in 96% overall precision. More specifically, the precision is
100% for 20 bug reports, with the exception of four: Aard Dict. #81
(80%) [5], A Time Tracker #1 (75%) [20], GnuCash #471 (80%) [8],
and Schedule #169 (67%) [18]. In 73/89 (i.e., 88%) answers there is a
perfect consensus among the evaluators across bug reports. We also
found that two S2Rs were not identified by Euler (i.e., 98% recall).

We manually analyzed the four misidentified S2Rs and found
that the sentences where they were identified from follow the gram-
matical structure of an S2R (i.e., conditional, imperative, etc.), but
either: (1) they do not describe an S2R (e.g., “Change so the week...
is restored”, from A Time Tracker #1, is addressed to the developer
for fixing the bug); (2) they indicate an app behavior (e.g., “when
dictionary is being verified” fromAard Dict. #81); (3) they are generic
actions (e.g., “When I perform these sequences of events”); or (4) they
indicate steps to further show how the app correctly behaves in
certain circumstances (e.g., “It shows up again, when you leave the

account...” from GnuCash #471). The two S2Rs not identified by
Euler are misspelled or written using noun phrases.

3.6.2 Quality Assessment Results. Table 2 shows that (overall) 73%
of the provided QAs/feedback were considered correct by the eval-
uators, with a percentage ranging between 67% and 80% of correct
MS and VM annotations, respectively. The participants reached a
perfect consensus in 56% of the cases. For 12 bug reports, Euler
achieves 100% accuracy. For the remaining 12 reports, Euler’s ac-
curacy ranged from 0% to 80%. We determined the causes of such
performance by manually analyzing the participants’ answers and
Euler’s algorithm for those 12 cases, across the QA types.

For two bug reports (i.e., Aard Dict. #104 [4] and GnuCash
#620 [10]), Euler incorrectly produced two AS annotations (i.e.,

1Our replication package [14] contains evaluation data and additional results.

for two S2Rs). According to the participants’ explanations of their
judgment, we found that the annotations were confusing to them,
specifically, it was not clear which components Euler’s feedback
was referring to. For instance, for the Aard Dict. #104’s only S2R:
“Tap link to another Wikipedia article”, Euler produced the AS an-
notation: “This S2R matches multiple GUI components (e.g., the “1st

Link” and "2st Link " views)”. In this case, Euler reached aWikipedia
webpage with multiple links having the labels shown in the annota-
tion. This webpage was unknown to the participants (as it was not
shown in the video), hence they did not understand the suggested
matched components. In addition, we found that the AS annotation
produced for GnuCash #620’s 1st S2R: “Set the color of an account”
did not suggest the correct GUI component (i.e., the color picker
in the "creating/editing accounts" screens). The cause for such a
mismatch lies in the priority that Euler gives to resolved interac-
tions from program states closer to the current one. One possible
improvement is to weight in the similarity score obtained by the
resolved components across multiple program states, in such a way
that candidates with higher similarity in screens further away from
the current one are more likely to be suggested.

In six bug reports, Euler incorrectly assessed the quality of
15 S2Rs as High quality (HQ), which means that the interactions
matched/suggested by Euler do not correspond to the S2Rs. We
manually analyzed these cases, and found four main reasons: (1) the
similarity threshold defined in Sec. 2.3.2 (i.e., 0.5) is too restrictive
for some reports; (2) the similarity used to resolve an S2R to a screen
(i.e., Formula 1) does not account for small term differences between
the S2R (i.e., the query) and GUI components; (3) the synonyms for
some terms, used to reformulate the query, may incorrectly boost
the similarity score of unexpected GUI components; and (4) the
quality of screen information for some applications is low.

We illustrate the first three problems with the report A Time
Tracker #35 [22]. The first S2R for this report was identified as
“Restore backup” and the expected component for the S2R is the
menu option “Restore from backup”, whose similarity to the S2R
is 0.4 (the LCS is ‘restore‘ and the average size of both strings
is 2.5 - see Formula 1). Because the similarity is lower than the
threshold, the component is not returned as a candidate. Next, using
the predefined query synonyms, Euler reformulates the query by
expanding the S2R to “Restore back up” which returns the menu
option “Back up to SD card”, whose similarity to the query is 0.54. In
this case, the synonym for backup, “back up”, boosted the similarity
of the menu option, which was returned as most similar to the S2R.

Assessing theQuality of the Steps to Reproduce in Bug Reports ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

To address these problems, we plan to improve Euler’s similarity
formula for cases with little term variations, by utilizing shared
term frequency and how many terms are in-between the shared
terms. To illustrate the fourth problem, consider the case of the 5th
S2R from GnuCash #701 [11]: “Click ‘save’". The incorrect matched
component for this S2R was the button “Delete” from the "delete
account" screen. The component ID given by GnuCash developers
was “btn save”, which matches the query. In this case, the mismatch
could be used as feedback for developers about problems with the
app screens information. Studying the impact of low-quality app
information on Euler is subject of future work.

The three S2Rs (from three bug reports) for which Euler incor-
rectly detected a vocabulary mismatch (VM), involve more than one
interaction. For instance, for the 2nd S2R from GnuCash #616 [9]:
“Select export to ‘Google Drive’”, Euler failed tomatch “Google Drive”
because of uncovered application states/screen and imprecise S2R
parsing and matching.

3.6.3 Analysis of MS annotations. We analyze the results for the
MS annotations, which include the steps inferred by Euler.

The participants reached a perfect consensus in 53% of the cases
with MS annotations. For six bug reports, Euler incorrectly flagged
13 S2Rs as having missing steps (i.e., they were assigned an MS
annotation). For the remaining 26 S2Rs (i.e., 66.7%), from 16 bug
reports, theMS annotationwas correct (i.e., indeed there aremissing
steps). For the 13 S2Rs with incorrect MS annotations, all the MSs
suggested by Euler are unnecessary for bug reproduction. For the
26 S2Rs with correct MS annotation, Euler suggested extra MSs
for 20 of them (i.e., 77%), according to the external evaluators. This
means that 33 S2Rs, in total, were judged to have extra missing steps
(see the 9th column of Table 2), which represents 85% of the cases.
In addition, for 8 S2Rs total, the list of suggested missing steps lacks
additional steps (i.e., not detected by Euler), which represents 21%.
In all MS annotations, the order of the suggested MSs is correct,
meaning that Euler suggests feasible execution paths. However, in
all cases, the suggested MSs lack some or have extra steps.

In order to further understand the ability of Euler at inferring
and detecting missing steps (MSs), we compared the steps suggested
by Euler against theMSs from the ideal bug reproduction scenarios,
and computed precision and recall. Euler is designed to favor high
recall, because it would be easier for a reporter to just select from
the list of missing steps, the ones she actually did and failed to
report, as opposed to trying to infer what steps may be missing.
Across the 24 bug reports, Euler inferred and suggested 293 MSs
(14 steps per bug report on avg.), and there are 158 MSs (6.6 steps
on avg.) in the ideal reproduction scenarios. Our analysis reveals
that 92 (4.8 on avg.) suggested MSs are correct (i.e., true positives),
which represents 31% precision & 58% recall. The results mean that
Euler was able to infer more than half of the expected MSs.

We analyzed the 13 cases (from 6 bug reports) for which Euler
incorrectly indicated missing steps, and from the correct MS cases,
the 20 cases with extra steps. Our analysis reveals two main rea-
sons for such cases, namely, excessive application exploration, and
imprecise S2R resolution/matching. Regarding the first limitation,
we found that the systematic and random exploration strategies
execute more interactions than needed. While this is done by de-
sign, trying to uncover as many program states/screens as possible,

7%

15%

87%

83%

6%

1%

Comp.

Useful.

100 50 0 50 100
Percentage

Response Disagree Somewhat disagree Not agree nor disagree Somewhat agree Agree

Figure 3: Perceived Comprehensibility & Usefulness of QRs

it leads to excessive inferred steps. Regarding the second problem,
any mismatch in the first S2Rs from a bug report can divert Euler’s
execution, thus producing even more mismatches or no matching at
all for the remaining S2Rs. In the latter case, the random exploration
takes place, thus producing unnecessary inferred steps. We found
that the reason for such mismatches comes from the inability of the
similarity scoring formula (i.e., Formula 1) to match the query with
single-term text sequences (from the components), and also, from
the fact that, in some cases, the random exploration is executed
late (after the first S2R matching fails) and unexpected components,
with similar vocabulary to the S2R, are returned. Improving the
systematic application exploration to uncover as many program
states as possible may help to alleviate this problem.

Finally, we manually analyzed 10 bug reports for which Euler
obtained the lowest recall (within the [33% - 78%] range) when in-
ferring the expected MSs. The main reasons for these cases include:
(1) incorrect detection of the S2Rs’ order from the bug report, and
(2) failing to handle special S2Rs. We illustrate the first issue with A
Time Tracker #10 [21]. The S2R sentence “If I press the Back button
while viewing the Preferences” implies the S2Rs “view preferences”
and “press back button” are executed in that order. Euler failed to
identify the correct order in this case, provoking to not execute one
of the MSs: “click OK button”. One exemplar of the second problem
is repetitive S2Rs (e.g., “enter few fill ups” from Mileage #53 [13]),
which in its current version, Euler does not support.

3.6.4 Perceived Usefulness. Figure 3 shows an asymmetric stacked
bar chart depicting the perceived comprehensibility and usefulness
of Euler’s quality reports. The figure shows positive results. In
particular, the study participants agree and somewhat agree that:
• The quality reports are easy to understand (in 59% and 28% of
the cases, respectively — 87% on aggregate).

• The quality report can help users write better bug reports (in
58% and 25% of the cases, respectively — 83% on aggregate).
To better understand these results, we analyzed the participants’

answers to the open-ended questions about useful/useless informa-
tion in the QAs, and information that should be added/removed.
Our card-sorting analysis resulted in the following categories of
useful information produced by Euler:
• Explicit, clear, and fine-grained S2R feedback. One participant
mentions that the matched/suggested “S2Rs are pretty descrip-

tive and would guide the user to complete better the bug descrip-

tion”. Another participant states that the suggested S2Rs “are a
good example of how to write steps-to-reproduce”. Another per-
son acknowledges that “Developers/maintainers would find this

tool *very* useful for their debugging process”.
• Feedback about incorrect S2R vocabulary. For example, one
participant indicated that the tool correctly “flags words such
as ‘find’ and ‘fix’ that do not directly translate to an app action”.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus, M. Di Penta, D. Poshyvanyk, and V. Ng

Another person notes that Euler detects cases that “the user
could improve including some more details in his error report”.

• Feedback about missing steps. For instance, one participant
mentions that the suggested missing steps “can guide the user

to list them better” in the report. Another person mentions that
“They help avoid the guessing part when reproducing the bug”.

• Screenshots for the matched interactions. Some evaluators con-
sidered the screenshots helpful for “identifying the right scenario
for reproducing the bug” and they were found to “complement

the description of each suggested missing step”.
Regarding information that should be added to Euler’s quality

reports, the participants suggest that Euler should assess the qual-
ity of the application observed and expected behaviors, “because the
user described them but they are not clear”. They also suggest clearer
wording of the S2Rs (e.g., “instead of "Tap the ‘menu save (Export)’
text view" » ‘Tap Export in menu’ ”), and visual improvements to
the quality report (e.g., adding “image or some sort of representation

of ‘navigation drawer’ to help locate the button”).
The participants also provided feedback about useless/unclear

information in Euler’s QAs that should be improved or discarded.
Besides incorrect feedback, resulting from Euler’s inaccuracy, the
participants remarked that:
• Some feedback is unclear. One participant mentions that some
S2Rs “have strange names”. We confirmed that a few AS annota-
tions are confusing and found that the suggested missing steps
may be give “little information so the user always needs to click

on them and see the image to fully understand the nature of the

step”. Euler phrases the suggested/matched S2Rs based on the
app internal data. In some cases, this information is unavailable
or confusing (i.e., using “btn save” instead of “Save button”).

• Setup application steps are not needed. One participant com-
mented that “some steps that describe the app initial configura-

tion... are not needed to reproduce the bug”.

3.7 Threats to Validity

The main threat to the construct validity is the subjectivity intro-
duced in the ideal bug reproduction scenarios given to the study
participants. To minimize bias, we created them based on the bug
reproduction performed by third-parties, i.e., graduate students.
Another threat is that the evaluation methodology only assesses
the perceived usefulness of Euler. Investigating how users actually
benefit from Euler when reporting bugs is subject of future work.

Euler’s calibration impacts the internal validity of our conclu-
sions. As explained in Sec. 3.3, we used different bug reports (to the
ones used in the evaluation) to test and find the best parameters of
the approach. Another threat is subjectivity and error-proneness
of the human-based evaluation. To mitigate this threat, we relied
on three evaluators per bug report, and decided upon majority.

Given a relatively expensive nature of our evaluation, we limited
it to 24 bug reports and three evaluators for each report, which
affects the external validity of our conclusions. A larger evaluation,
possibly performed by a diverse (in terms of experience) sample of
evaluators on additional bug reports, would be desirable.

4 RELATEDWORK

Bug Report Quality Assessment. Zimmermann et al. [59] conducted
a survey exploring the most useful information in bug reports and

proposed an approach to predict the overall quality level of a bug
report (i.e., bad, neutral, or good). The approach relies on features,
such as readability, presence of keywords, code snippets, etc. Dit
et al. [30] and Linstead et al. [40] measured the semantic coher-
ence in bug report discussions based on textual similarity and topic
models. Hooimeijer et al. [34] measured quality properties of bug
reports (e.g., readability) to predict when a report would be triaged.
Zanetti et al. [55] identified valid bug reports, as opposed to dupli-
cate, invalid, or incomplete, by relying on reporters’ collaboration
information. To enhance bug reports, Moran et al. focused on aug-
menting S2Rs via app images [44]. Zhang et al. [56] enriched new
bug reports with textually similar sentences from past reports.

Textual Analysis of Bug Reports. Existing research focused on
determining the structure of bug reports and its importance in bug
triaging and fixing [24, 29, 39, 48, 49, 59, 60]. The work by Ko et

al. [37] on linguistic analysis of bug report titles is complemented
by discourse pattern identification in bug descriptions [27]. Sureka
et al. [51] analyzed the part-of-speech and distribution of words in
titles to find vocabulary patterns for predicting bug severity.

Test Case Generation and Crash Reproduction from Bug Reports.

Fazzini et al. [32] and Karagöz et al. [36] proposed approaches to
generate executable test cases from bug reports. Zhao et al. [57] pro-
posed a technique to reproduce crashes from bug reports. Different
from these approaches, Euler is capable of automatically identify-
ing S2Rs in free-form bug report text, and inferring steps missing
in the report. Euler is complementary to these techniques, as it
is aimed at improving the quality of reported S2Rs. High-quality
S2Rs can help improve the effectiveness of these approaches.

5 CONCLUSIONS AND FUTUREWORK

Euler is an approach for the automated quality assessment of the
steps to reproduce (S2Rs) in bug reports. Euler identifies individual
S2Rs in bug reports with high accuracy (98%), and produces a qual-
ity report (QR), where for each S2R, provides quality annotations
(QAs), indicating whether the S2R is well-written, ambiguous, or
uses unusual vocabulary. The QR includes a list of missing S2Rs, au-
tomatically inferred by Euler, that are needed for reproducing the
reported bug. External evaluators found the QRs easy to understand
(they agreed in 87% of the cases), while they rated the accuracy
of the QAs. 73% of the QAs were deemed accurate, while Euler
reported 58% of the missing S2Rs (albeit with a 31% precision). The
evaluators consider Euler to be potentially useful (they agreed in
83% of the cases) in helping reporters improve their bug reports.

Future extrinsic studies will confirm the reported perceived use-
fulness. Before such studies, improvements to Euler’s accuracy and
to the information included in the QRs are planned, based on the
evaluators’ feedback. Specifically, we plan to improve the quality
of Euler’s QR, with: (i) more complete application step sequences;
and (ii) additional screenshots to help guide reporters. We also plan
to tune Euler’s matching algorithm to account for minor varia-
tions between text sequences and matches in different parts of the
execution model. As discussed in Section 3.6, optimizations to the
application exploration strategies are also planned.

ACKNOWLEDGMENTS

This work was partially supported by the NSF grants IIS-1528037
and CCF-1815186, 1815336, 1525902, 1848608, and 1526118.

Assessing theQuality of the Steps to Reproduce in Bug Reports ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] 2016. An open letter to GitHub from the maintainers of open source projects.
https://github.com/dear-github/dear-github.

[2] 2017. GnuCash’s bug report #256. https://tinyurl.com/y3df92g7.
[3] 2019. Aard Dictionary. https://tinyurl.com/mwpxshz.
[4] 2019. Aard Dictionary’s bug report #104. https://tinyurl.com/y3xhlky3.
[5] 2019. Aard Dictionary’s bug report #81. https://tinyurl.com/y3xvqf3j.
[6] 2019. Droid Weight. https://tinyurl.com/lxazk36.
[7] 2019. GnuCash. https://tinyurl.com/ku9dqq8.
[8] 2019. GnuCash’s bug report #471. https://tinyurl.com/y6luonwp.
[9] 2019. GnuCash’s bug report #616. https://tinyurl.com/y5edsasv.
[10] 2019. GnuCash’s bug report #620. https://tinyurl.com/y3pw69ac.
[11] 2019. GnuCash’s bug report #701. https://tinyurl.com/y4e4ny9a.
[12] 2019. Mileage. https://tinyurl.com/cw3uttu.
[13] 2019. Mileage’s bug report #53. https://tinyurl.com/y6mo92cm.
[14] 2019. Online replication package. https://seers.utdallas.edu/projects/s2r-quality.
[15] 2019. Qualtrics online survey system. https://tinyurl.com/y4fumc6g.
[16] 2019. Schedule. https://tinyurl.com/bsw89ud.
[17] 2019. Schedule’s bug report #154. https://tinyurl.com/y3pg92fr.
[18] 2019. Schedule’s bug report #169. https://tinyurl.com/y46l44vr.
[19] 2019. A Time Tracker. https://tinyurl.com/lt4ztgp.
[20] 2019. A Time Tracker’s bug report #1. https://tinyurl.com/y4skjrp6.
[21] 2019. A Time Tracker’s bug report #10. https://tinyurl.com/y4a698hb.
[22] 2019. A Time Tracker’s bug report #35. https://tinyurl.com/y3tvylgs.
[23] Young-Min Baek and Doo-Hwan Bae. 2016. Automated Model-based Android

GUI Testing Using Multi-level GUI Comparison Criteria. In Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering (ASE’16).
238–249.

[24] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. 2008. What Makes a Good Bug Report?. In Proceedings
of the 16th International Symposium on the Foundations of Software Engineering

(FSE’08). 308–318.
[25] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-

riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146.

[26] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. 2010.
Information Needs in Bug Reports: Improving Cooperation Between Developers
and Users. In Proceedings of the Conference on Computer Supported Cooperative

Work (CSCW’10). 301–310.
[27] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,

Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting Missing
Information in Bug Descriptions. In Proceedings of the 11th Joint Meeting on the

Foundations of Software Engineering (ESEC/FSE’17). 396–407.
[28] Alexis Conneau, Germán Kruszewski, Guillaume Lample, Loïc Barrault, and

Marco Baroni. 2018. What you can cram into a single vector: Probing sentence
embeddings for linguistic properties. CoRR abs/1805.01070 (2018).

[29] Steven Davies andMarc Roper. 2014. What’s in a bug report?. In Proceedings of the
8th International Symposium on Empirical Software Engineering and Measurement

(ESEM’14). 26:1–26:10.
[30] Bogdan Dit, Denys Poshyvanyk, and Andrian Marcus. 2008. Measuring the

semantic similarity of comments in bug reports. In Proceedings of the 1st Inter-

national Workshop on Semantic Technologies in System Maintenance (STSM’08).
265–280.

[31] Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. 2014. Works for
Me! Characterizing Non-reproducible Bug Reports. In Proceedings of the Working

Conference on Mining Software Repositories (MSR’14). 62–71.
[32] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.

Automatically translating bug reports into test cases for mobile apps. In Pro-

ceedings of the 27th International Symposium on Software Testing and Analysis

(ISSTA’18). 141–152.
[33] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Mur-

phy. 2010. Characterizing and predicting which bugs get fixed: an empirical
study of Microsoft Windows. In Proceedings of the 32nd International Conference

on Software Engineering (ICSE’10), Vol. 1. 495–504.
[34] Pieter Hooimeijer and Westley Weimer. 2007. Modeling Bug Report Quality. In

Proceedings of the 22nd International Conference on Automated Software Engineer-

ing (ASE’07). 34–43.
[35] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for

Sequence Tagging. CoRR abs/1508.01991 (2015).
[36] Gün Karagöz and Hasan Sözer. 2017. Reproducing failures based on semiformal

failure scenario descriptions. Software Quality Journal 25, 1 (2017), 111–129.
[37] Andrew J. Ko, Brad A Myers, and Duen Horng Chau. 2006. A Linguistic Analysis

of How People Describe Software Problems. In Proceedings of the Symposium on

Visual Languages and Human-Centric Computing (VL/HCC’06). 127–134.
[38] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,

and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition.

In Proceedings of North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT’16). 260–270.
[39] Eero I. Laukkanen and Mika V. Mäntylä. 2011. Survey Reproduction of Defect

Reporting in Industrial Software Development. In Proceedings of the International

Symposium on Empirical Software Engineering and Measurement (ESEM’11). 197–
206.

[40] Erik Linstead and Pierre Baldi. 2009. Mining the coherence of GNOME bug reports
with statistical topic models. In Proceedings of the 6th International Working

Conference on Mining Software Repositories (MSR’09). 99–102.
[41] Xuezhe Ma and Eduard Hovy. 2016. End-to-end Sequence Labeling via Bi-

directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (ACL’16), Vol. 1. 1064–1074.
[42] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven

Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (ACL’14). 55–60.
[43] Kevin Moran, Mario Linares-Váquez, Carlos Bernal-Cárdenas, Christopher Ven-

dome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting and
Reproducing Android Application Crashes. In Proceedings of the International

Conference on Software Testing, Verification and Validation (ICST’16). 33–44.
[44] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and Denys Poshy-

vanyk. 2015. Auto-completing Bug Reports for Android Applications. In Pro-

ceedings of the Joint Meeting on Foundations of Software Engineering (FSE’15).
673–686.

[45] Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas, Cristopher Ven-
dome, and Denys Poshyvanyk. 2017. CrashScope: A Practical Tool for Automated
Testing of Android Applications. In Proceedings of the IEEE/ACM 39th International

Conference on Software Engineering (ICSE’17). 15–18.
[46] Abraham Naftali Oppenheim. 1992. Questionnaire Design, Interviewing and Atti-

tude Measurement. Pinter Publishers.
[47] Lance A Ramshaw and Mitchell P Marcus. 1999. Text chunking using

transformation-based learning. In Natural language processing using very large

corpora. 157–176.
[48] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. 2010. An empirical

study of reported bugs in server software with implications for automated bug
diagnosis. In Proceedings of the International Conference on Software Engineering

(ICSE’10). 485–494.
[49] Tommaso Dal Sasso, Andrea Mocci, and Michele Lanza. 2016. What Makes a

Satisficing Bug Report?. In Proceedings of the International Conference on Software

Quality, Reliability and Security (QRS’16). 164–174.
[50] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[51] Ashish Sureka and Pankaj Jalote. 2010. Detecting Duplicate Bug Report Using

Character N-Gram-Based Features. In Proceedings of the Asia Pacific Software

Engineering Conference (APSEC’10). 366–374.
[52] Jie Yang, Shuailong Liang, and Yue Zhang. 2018. Design Challenges and Miscon-

ceptions in Neural Sequence Labeling. In Proceedings of the 27th International

Conference on Computational Linguistics (COLING’18). 3879–3889.
[53] Jie Yang and Yue Zhang. 2018. NCRF++: An Open-source Neural Sequence

Labeling Toolkit. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (ACL’18).
[54] Razieh Nokhbeh Zaeem, Mukul R. Prasad, and Sarfraz Khurshid. 2014. Automated

Generation of Oracles for Testing User-Interaction Features of Mobile Apps. In
Proceedings of the 7th International Conference on Software Testing, Verification

and Validation (ICST’14). 183–192.
[55] Marcelo Serrano Zanetti, Ingo Scholtes, Claudio Juan Tessone, and Frank

Schweitzer. 2013. Categorizing Bugs with Social Networks: A Case Study on
Four Open Source Software Communities. In Proceedings of the International

Conference on Software Engineering (ICSE’13). 1032–1041.
[56] Tao Zhang, Jiachi Chen, He Jiang, Xiapu Luo, and Xin Xia. 2017. Bug Report

Enrichment with Application of Automated Fixer Recommendation. In Proceed-

ings of the 25th International Conference on Program Comprehension (ICPC’17).
230–240.

[57] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and
William G.J. Halfond. 2019. ReCDroid: Automatically Reproducing Android
Application Crashes from Bug Reports. In Proceedings of the 41st ACM/IEEE

International Conference on Software Engineering (ICSE’19). 128–139.
[58] Thomas Zimmermann, Nachiappan Nagappan, Philip J. Guo, and Brendan Mur-

phy. 2012. Characterizing and predicting which bugs get reopened. In Proceedings

of the International Conference on Software Engineering (ICSE’12). 1074–1083.
[59] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian

Schröter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? IEEE

Transactions on Software Engineering 36, 5 (2010), 618–643.
[60] Thomas Zimmermann, Rahul Premraj, Jonathan Sillito, and Silvia Breu. 2009.

Improving bug tracking systems. In Proceedings of the 31st International Conference
on Software Engineering (ICSE’09). 247–250.

https://github.com/dear-github/dear-github
https://tinyurl.com/y3df92g7
https://tinyurl.com/mwpxshz
https://tinyurl.com/y3xhlky3
https://tinyurl.com/y3xvqf3j
https://tinyurl.com/lxazk36
https://tinyurl.com/ku9dqq8
https://tinyurl.com/y6luonwp
https://tinyurl.com/y5edsasv
https://tinyurl.com/y3pw69ac
https://tinyurl.com/y4e4ny9a
https://tinyurl.com/cw3uttu
https://tinyurl.com/y6mo92cm
https://seers.utdallas.edu/projects/s2r-quality
https://tinyurl.com/y4fumc6g
https://tinyurl.com/bsw89ud
https://tinyurl.com/y3pg92fr
https://tinyurl.com/y46l44vr
https://tinyurl.com/lt4ztgp
https://tinyurl.com/y4skjrp6
https://tinyurl.com/y4a698hb
https://tinyurl.com/y3tvylgs

	Abstract
	1 Introduction
	2 Assessing S2R quality
	2.1 Identifying S2Rs
	2.2 Execution Model Generation
	2.3 S2R Resolution
	2.4 Quality Report Generation

	3 Empirical Evaluation
	3.1 Bug Report Sample
	3.2 Ideal Reproduction Scenarios
	3.3 Euler Implementation and Calibration
	3.4 Methodology
	3.5 Metrics
	3.6 Results and Analysis
	3.7 Threats to Validity

	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

