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ABSTRACT
Screen recordings of mobile applications are easy to obtain and
capture a wealth of information pertinent to software developers
(e.g., bugs or feature requests), making them a popular mechanism
for crowdsourced app feedback. Thus, these videos are becoming a
common artifact that developers must manage. In light of unique
mobile development constraints, including swift release cycles and
rapidly evolving platforms, automated techniques for analyzing all
types of rich software artifacts provide bene�t to mobile developers.
Unfortunately, automatically analyzing screen recordings presents
serious challenges, due to their graphical nature, compared to other
types of (textual) artifacts. To address these challenges, this paper
introduces V2S, a lightweight, automated approach for translating
video recordings of Android app usages into replayable scenarios.
V2S is based primarily on computer vision techniques and adapts
recent solutions for object detection and image classi�cation to
detect and classify user actions captured in a video, and convert
these into a replayable test scenario. We performed an extensive
evaluation of V2S involving 175 videos depicting 3,534 GUI-based
actions collected from users exercising features and reproducing
bugs from over 80 popular Android apps. Our results illustrate that
V2S can accurately replay scenarios from screen recordings, and is
capable of reproducing ⇡ 89% of our collected videos with minimal
overhead. A case study with three industrial partners illustrates the
potential usefulness of V2S from the viewpoint of developers.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software veri�cation and validation; Application speci�c develop-
ment environments.
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1 INTRODUCTION
Mobile application developers rely on a diverse set of software
artifacts to help them make informed decisions throughout the de-
velopment process. These information sources include user reviews,
crash reports, bug reports, and emails, among others. An increas-
ingly common component of these software artifacts is graphi-
cal information, such as screenshots or screen recordings. This is
primarily due to the fact that they are relatively easy to collect
and, due to the GUI-driven nature of mobile apps, they contain
rich information that can easily demonstrate complex concepts,
such as a bug or a feature request. In fact, many crowd-testing
and bug reporting frameworks have built-in screen recording fea-
tures to help developers collect mobile application usage data and
faults [6, 7, 21, 22]. Screen recordings that depict application usages
are used by developers to: (i) help understand how users interact
with apps [14, 68]; (ii) process bug reports and feature requests
from end-users [27]; and (iii) aid in bug comprehension for testing
related tasks [53]. However, despite the growing prevalence of vi-
sual mobile development artifacts, developers must still manually
inspect and interpret screenshots and videos in order to glean rele-
vant information, which can be time consuming and ambiguous.
The manual e�ort required by this comprehension process com-
plicates a development work�ow that is already constrained by
language dichotomies [55] and several challenges unique to mobile
software, including: (i) pressure for frequent releases [39, 43], (ii)
rapidly evolving platforms and APIs [24, 49], (iii) constant noisy
feedback from users [30, 31, 62–64], and (iv) fragmentation in the
mobile device ecosystem [1, 37, 72] among others [51]. Automation
for processing graphical software artifacts is necessary and would
help developers shift their focus toward core development tasks.

To improve and automate the analysis of video-related mobile
development artifacts, we introduce Video to Scenario (V2S), a light-
weight automated approach for translating video screen recordings
of Android app usages into replayable scenarios. We designed V2S
to operate solely on a video �le recorded from an Android device,
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and as such, it is based primarily on computer vision techniques.
V2S adapts recent Deep Learning (DL) models for object detection
and image classi�cation to accurately detect and classify di�erent
types of user actions performed on the screen. These classi�ed
actions are then translated into replayable scenarios that can auto-
matically reproduce user interactions on a target device, making
V2S the �rst purely graphical Android record-and-replay technique.

In addition to helping automatically process the graphical data
that is already present in mobile development artifacts, V2S can
also be used for improving or enhancing additional development
tasks that do not currently take full advantage of screen-recordings,
such as: creating and maintaining automated GUI-based test suites;
and crowdsourcing functional and usability testing.

We conducted a comprehensive evaluation of V2S using both
videos collected from users reproducing bugs as well as general
usage videos from the top-rated apps of 32 categories in the Google
Play market. As part of this evaluation, we examined the e�ective-
ness of the di�erent components that comprise V2S as well as the
accuracy of the generated scenarios. Additionally, we assessed the
overhead of our technique and conducted a case study with three
industrial partners to understand the practical applicability of V2S.
The results of our evaluation indicate that V2S is accurate, and is
able to correctly reproduce 89% of events across collected videos.
The approach is also robust in that it is applicable to a wide range of
popular native and non-native apps currently available on Google
Play. In terms of e�ciency, we found that V2S imposes acceptable
overhead, and is perceived as potentially useful by developers.

In summary, the main contributions of our work are as follows:
• V2S, the �rst record-and-replay approach for Android that
functions purely on screen-recordings of app usages. V2S
adapts computer vision solutions for object detection, and
image classi�cation, to e�ectively recognize and classify user
actions in the video frames of a screen recording;

• An automated pipeline for dataset generation and model
training to identify user interactions from screen recordings;

• The results of an extensive empirical evaluation of V2S that
measures the accuracy, robustness, and e�ciency across 175
videos from 80 applications;

• The results of a case study with three industrial partners,
who develop commercial apps, highlighting V2S’� potential
usefulness, as well as areas for improvement and extension;

• An online appendix [26], which contains examples of videos
replayed by V2S, experimental data, source code, trained
models, and our evaluation infrastructure to facilitate repro-
ducibility of the approach and the results.

2 BACKGROUND
We brie�y discuss DL techniques for image classi�cation and object
detection that we adapt for touch/gesture recognition in V2S.

2.1 Image Classi�cation
Recently, DL techniques that make use of neural networks con-
sisting of specialized layers have shown great promise in classi-
fying diverse sets of images into speci�ed categories. Advanced
approaches leveraging Convolutional Neural Networks (CNNs) for
highly precise image recognition [38, 45, 69, 70, 73] have reached
human levels of accuracy for image classi�cation tasks.

VGGNet

Resultant
Feature Map

RP Network

RoI
Pooling

Classifier

Input Image

Figure 1: Illustration of the F����� R�CNN Architecture

Typically, each layer in a CNN performs some form of compu-
tational transformation to the data fed into the model. The initial
layer usually receives an input image. This layer is typically fol-
lowed by a convolutional layer that extracts features from the pixels
of the image, by applying �lters (a.k.a. kernels) of a prede�ned size,
wherein the contents of the �lter are transformed via a pair-wise
matrix multiplication (i.e., the convolution operation). Each �lter is
passed throughout the entire image using a �xed stride as sliding
window to extract feature maps. Convolutional layers are used in
conjunction with “max pooling” layers to further reduce the dimen-
sionality of the data passing through the network. The convolution
operation is linear in nature. Since images are generally non-linear
data sources, activation functions such as Recti�ed Linear Units
(ReLUs) are typically used to introduce a degree of non-linearity.
Finally, a fully-connected layer (or series of these layers) are used in
conjunction with a Softmax classi�er to predict an image class. The
training process for CNNs is usually done by updating the weights
that connect the layers of the network using gradient descent and
back-propagating error gradients.

V2S implements a customized CNN for the speci�c task of clas-
sifying the opacity of an image to help segment GUI-interactions
represented by a touch indicator (see Section 3.2).

2.2 Object Detection
In the task of image classi�cation, a single, usually more general
label (e.g., bird or person) is assigned to an entire image. However,
images are typically multi-compositional, containing di�erent ob-
jects to be identi�ed. Similar to image classi�cation, DL models
for object detection have advanced dramatically in recent years,
enabling object tracking and counting, as well as face and pose
detection among other applications. One of the most in�uential
neural architectures that has enabled such advancements is the
R�CNN introduced by Girshick et al. [34]. The R�CNN architecture
combines algorithms for image region proposals (RPs), which aim
to identify image regions where content of interest is likely to re-
side, with the classi�cation prowess of a CNN. An R�CNN generates
a set of RP bounding-boxes using a selective search algorithm [71].
Then, all identi�ed image regions are fed through a pre-trained
A���N�� [45] (i.e., the extractor) to extract image features into
vectors. These vectors are fed into a support vector machine (i.e.,
the classi�er) that determines whether or not each image region
contains a class of interest. Finally, a greedy non-maximum sup-
pression algorithm (i.e., the regressor) is used to select the highest
likelihood, non-overlapping regions, as classi�ed objects.
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Figure 2: The V2S Approach and Components

In this paper, we utilize the the F����� R�CNN [66] architec-
ture (Fig. 1), which improves upon R�CNN architecture through the
introduction of a separate NN to predict image region proposals.
By integrating the training of the region proposal network into the
end-to-end training of the network, both the speed and accuracy of
the model increase. In V2S, we adapt the F����� R�CNN model to
detect a touch indicator representing a user action in video frames.

3 THE V2S APPROACH
This section outlines theV2S approach for automatically translating
Android screen recordings into replayable scenarios. Fig. 2 depicts
V2S’� architecture, which is divided into three main phases: (i) the
Touch Detection phase, which identi�es user touches in each frame
of an input video; (ii) the Action Classi�cation phase that groups
and classi�es the detected touches into discrete user actions (i.e.,
tap, long-tap, and swipe), and (iii) the Scenario Generation phase
that exports and formats these actions into a replayable script.
Before discussing each phase in detail, we discuss some preliminary
aspects of our approach, input speci�cations, and requirements.

3.1 Input Video Speci�cations
In order for a video to be consumable by V2S, it must meet a few
lightweight requirements to ensure proper functioning with our
computer vision (CV) models. First, the video frame size must match
the full-resolution screen size of the target Android device, in or-
der to be compatible with a speci�ed pre-trained object-detection
network. This requirement is met by nearly every modern Android
device that has shipped within the last few years. These videos can
be recorded either by the built-in Android screenrecord utility, or
via third-party applications [11]. The second requirement is that
input videos must be recorded at least 30 “frames per second” (FPS),
which again, is met or exceeded by a majority of modern Android
devices. This requirement is due to the fact that the frame-rate di-
rectly corresponds to the accuracy with which “quick” gestures (e.g.,
fast scrolling) can be physically resolved in constituent video frames.
Finally, the videos must be recorded with the “Show Touches” op-
tion enabled on the device, which is accessed through an advanced
settings menu [4], and is available by default on nearly all Android
devices since at least Android 4.1. This option renders a touch indi-
cator, which is a small semi-transparent circle, that gives a visual
feedback when the user presses her �nger on the device screen.

100% 40%

Finger Touching Finger Li!ing 

Figure 3: Illustration of touch indicator opacity levels

The opacity of the indicator is fully solid from the moment the user
�rst touches the screen and then fades from more to less opaque
when a �nger is lifted o� the screen (Fig. 3).

3.2 Phase 1: Touch Detection
The goal of this phase is to accurately identify the locations where
a user touched the device screen during a video recording. To ac-
complish this, V2S leverages the DL techniques outlined in Sec. 2 to
both accurately �nd the position of the touch indicator appearing
in video frames, and identify its opacity to determine whether a
user’s �nger is being pressed or lifted from the screen. More speci�-
cally, we adapt an implementation of F����� R�CNN [66, 67], which
makes use of VGGN�� [69] for feature extraction of RPs in order
to perform touch indicator detection. To di�erentiate between low
and high-opacity detected touch indicators, we build an O������
CNN, which is a modi�ed version of A���N�� [45]. Given that we
adapt well-known DL architectures, here we focus on describing
our adaptions, and provide model specs in our appendix [26].

The Touch Detection Phase begins by accepting as input a video
that meets the speci�cations outlined in Sec. 3.1. First, the video
is parsed and decomposed into its constituent frames. Then the
F����� R�CNN network is utilized to detect the presence of the
touch indicator, if any, in every frame. Finally, the O������ CNN
classi�es each detected touch indicator as having either low or high-
opacity. The output of this phase is a structured JSON with a set of
touch indicator bounding boxes in individual video frames wherein
each detected touch indicator is classi�ed based on the opacity.

3.2.1 Parsing Videos. Before V2S parses the video to extract single
frames, it must �rst normalize the frame-rate for those videos where
it may be variable, to ensure a constant FPS. Certain Android devices
may record variable frame-rate video for e�ciency [18]. This may
lead to inconsistencies in the time between frames, which V2S
utilizes in the classi�cation phase to synthesize the timing of touch
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actions. Thus, to avoid this issue, we normalize the frame rate to
30fps and extract individual frames using the FFmpeg [10] tool.

3.2.2 Faster R-CNN. After the individual frames have been parsed
from the input video, V2S applies its object detection network to
localize the bounding boxes of touch indicators. However, before
using the object detection, it must be trained. As described in Sec. 2
the DL models that we utilize typically require large, manually
labeled datasets to be e�ective. However, to avoid the manual cura-
tion of data, and make the V2S approach practical, we designed a
fully automated dataset generation and training process. To boot-
strap the generation of V2S’� object detection training dataset, we
make use of the existing large-scale R�D��� dataset of Android
screenshots [59]. This dataset includes over 14k screens extracted
from the most popular Android applications on Google Play using
a fully-automated execution technique.

Next, we randomly sample 5k unique screenshots of di�erent
apps and programmatically superimpose an image of the touch indi-
cator at a random location in each screenshot. During this process,
we took two steps to ensure that our synthesized dataset re�ects
actual usage of the touch indicator: (i) we varied the opacity of the
indicator icon between 40%-100% to ensure our model is trained to
detect instances where a �nger is lifted o� the screen; (ii) we placed
indicator icons on the edges of the screen to capture instances
where the indicator may be occluded. This process is repeated three
times per screenshot to generate 15k unique images. We then split
this dataset 70%/30% to create training and testing sets respectively.
We performed this partitioning such that all screenshots expect
one appear only in the testing set, wherein the one screenshot that
overlapped had a di�erent location and opacity value for the touch
indicator. During testing, we found that a training set of 15k screens
was large enough to train the model to extremely high levels of
accuracy (i.e., > 97%). To train the model we use the TensorFlow Ob-
ject Detection API [19] that provides functions and con�gurations
of well-known DL architectures. We provide details regarding our
training process for V2S’� object detection network in Sec. 4.1. Note
that, despite the training procedure being completely automated,
it needs to be run only once for a given device screen size, after
which it can be re-used for inference. After the model is trained,
inference is run on each frame, resulting in a set of output bounding
box predictions for each screen, with a con�dence score.

3.2.3 Opacity CNN. Once V2S has localized the screen touches
that exist in each video frame, it must then determine the opacity
of each detected touch indicator to aid in the Action Classi�ca-
tion phase. This will help V2S in identifying instances where there
are multiple actions in consecutive frames with very similar lo-
cations (e.g., double tapping). To di�erentiate between low and
high-opacity touch indicators, V2S adopts a modi�ed version of
the A���N�� [45] architecture as an O������ CNN that predicts
whether a cropped image of the touch indicator is fully opaque (i.e.,
�nger touching screen) or low opacity (i.e., indicating a �nger being
lifted o� the screen). Similar to the object detection network, we
fully automate the generation of the training dataset and training
process for practicality. We again make use of the R�D��� dataset
and randomly select 10k unique screenshots, randomly crop a re-
gion of the screenshot to the size of a touch indicator, and an equal
number of full and partial opacity examples are generated. For the

A

B A

B B BA
t t+1 t+2 t+3 t+4

Figure 4: Illustration of the graph traversal problem for split-
ting discrete actions. Faded nodes with dotted lines repre-
sent touches where a �nger is being lifted o� the screen.

low-opacity examples, we varied the transparency levels between
20%-80% to increase the diversity of samples in the training set.
During initial experiments, we found that our O������ CNN re-
quired fewer training samples than the object detection network to
achieve a high accuracy (i.e., > 97%). Similar to the F����� R�CNN
model, this is a one-time training process, however, this model can
be re-used across varying screen dimensions. Finally, V2S runs the
classi�cation for all the detected touch indicators found in the previ-
ous step. Then V2S generates a JSON �le containing all the detected
bounding boxes, con�dence levels, and opacity classi�cations.

3.3 Phase 2: Action Classi�cation
The JSON �le generated by the Touch Detection phase contains de-
tailed data about the bounding boxes, opacity information, and the
frame of each detected touch indicator (note we use the term “touch
indicator” and “touch” interchangeably moving forward). This JSON
�le is used as input into the Action Classi�cation phase where sin-
gle touches are grouped and classi�ed as high-level actions. The
classi�cation of these actions involves two main parts: (i) a group-
ing algorithm that associates touches across subsequent frames as
a discrete action; and (ii) action translation, which identi�es the
grouped touches as a single action type. The output of this step is
a series of touch groups, each corresponding to an action type: (i)
Tap, (ii) Long Tap, or (iii) Gesture (e.g., swipes, pinches, etc).

3.3.1 Action Grouping. The �rst step of V2S’� action grouping �l-
ters out detected touches where the model’s con�dence is lower
than 0.7. The second step groups touches belonging to the same
atomic action according to a tailored heuristic and a graph con-
nection algorithm. This procedure is necessary because discrete
actions performed on the screen will persist across several frames,
and thus, need to be grouped and segmented accordingly.
GroupingConsecutive Touches. The �rst heuristic groups touch
indicators present in consecutive frames into the same group. As a
measure taken to avoid (the rare occurrence of) a falsely detected
touch indicator, touches that exist across two or fewer frames are
discarded. This is due to the fact that, we observed in practice, even
the quickest of touchscreen taps last across at least �ve frames.
DiscreteAction Segmentation.Theremay exist successive touches
that were carried out extremely fast, such that there is no empty
frame between two touches. In other cases, the touch indicator of
one action may not fully disappear before the user starts a new
action, leading to two or more touch indicators appearing in the
same frame. These two situations are common when a user is swip-
ing a list and quickly tapping an option, or typing quickly on the
keyboard, respectively. However, it can be hard to determine where
one action ends and another begins.
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V2S analyzes groups of consecutive or overlapping touches and
segments them into discrete actions using a heuristic-based ap-
proach. We model the grouping of touch indicators as a graph
connectivity problem (see Fig. 4). In this formulation, touch indica-
tors are represented as nodes, vertical lines separate consecutive
frames, and edges are possible connections between consecutive
touches that make up a discrete action. The goal is to derive the
proper edges for traversing the graph such all touches for action A

are in one group and all touches for action B are in another group
(illustrated in green in Fig. 4). Our algorithm decomposes the lists
of consecutive touches grouped together into a graph. Starting
from the �rst node, our algorithm visits each subsequent node and
attempts to link it to the previous node. If there is only one node in
a subsequent frame, then two successive nodes are linked. If there
is more than one node in a subsequent frame, our algorithm looks
at the spatial distance between the previous node and both subse-
quent nodes, and groups previous nodes to their closer neighbors
(as shown between frame t and t + 1). However, if multiple nodes
in one frame are at similar distance from the previous node (as
between frames t + 1 and t + 2 in Fig. 4), then the opacity of the
nodes is used to perform the connection. For example, it is clear
that node A in frame t + 2 is a �nger being lifted o� the screen.
Thus, it must be connected to the previously occurring action A

(i.e., in t + 1), and not the action B that just started.
Finally, after this process, the opacity of all linked nodes are

analyzed to determine further splits. There exist multiple actions
with no empty frame between them. Therefore, if a low-opacity
node is detected in a sequence of successively connected nodes,
they are split into distinct groups representing di�erent actions.

3.3.2 Action Translation. This process analyzes the derived groups
of touches and classi�es them based on the number and touch
locations in each group. For touches that start and end in the same
spatial location on the screen (e.g., the center of subsequent touch
indicator bounding boxes varies by less than 20 pixels) the action
is classi�ed as a Tap or a Long Tap. Taps are recognized if the
action lasts across 20 or fewer frames, and Long-Taps otherwise.
Everything else is classi�ed as a Gesture.
Filtering. V2S removes actions that have touch indicators with low
average opacity (e.g., < 0.1%) across a group, as this could represent a
rare series of misclassi�ed touch indicators from the F����� R�CNN.
V2S also removes groups whose size is below or equals a threshold
of two frames, as these might also indicate rare misclassi�cations.
The result of the Action Classi�cation phase is a structured list of
actions (i.e., Tap, Long Tap, or Gesture), where each action is a
series of touches associated to video frames and screen locations.

3.4 Phase 3: Scenario Generation
After all the actions have been derived by the Action Classi�cation
phase, V2S proceeds by generating commands using the Android
Debug Bridge (adb) that replay the classi�ed actions on a device. To
accomplish this, V2S converts the classi�ed, high-level actions into
low-level instructions in the sendevent command format, which
is a utility included in Android’s Linux kernel. Then, V2S uses a
modi�ed RERAN [35] binary to replay the events on a device.

Generating the Scenario Script. The sendevent command uses
a very limited instruction set in order to control the UI of an An-
droid device. Themain instructions of interest are the start_event,
end_event, x and � coordinates where the user’s �nger touched
the screen, and certain special instructions required by devices with
older API levels. To create the script, each action is exported start-
ing with the start_event command. Then, for actions classi�ed
as a Tap, V2S provides a single (x ,�) coordinate pair, derived from
the center of the detected bounding box of the Tap. For Gestures,
V2S iterates over each touch that makes up the Gesture action
and appends the (x ,�) pairs of each touch indicator to the list of
instructions. For Long Taps, V2S performs similar processing to
that of Gestures, but instead uses only a single (x ,�) pair from the
initial detected touch indicator bounding box.

Then, V2S ends the set of instructions for an action with the
appropriate end_event command. For Gestures and Long Taps
the speed and duration of each instruction is extremely important in
order to accurately replay the user’s actions. To derive the speed and
duration of these actions, V2S adds timestamps to each (x ,�) touch
location based on the timing between video frames (i.e., for 30fps,
there is a 33 millisecond delay between each frame), which will
temporally separate each touch command sent to the device. The
same concept applies for Long Tap, however, since this action type
uses a single (x ,�) touch location, the timing a�ects the duration
that the touch event lasts on the screen.

Finally, in order to determine the delays between successive
actions, the timing between video frames is again used. Our required
30fps frame-rate provides V2S with millisecond-level resolution of
event timings, whereas higher frame-rates will only increase the
�delity of replay timing.
Scenario Replay. Once all the actions have been converted into
low-level sendevent instructions, they are written to a log �le.
This log �le is then fed into a translator which converts the �le
into a runnable format that can be directly replayed on a device.
This converted �le along with a modi�ed version of the RERAN
engine [35] is pushed to the target device. We optimized the original
RERAN binary to replay event traces more e�ciently. Finally, the
binary is executed using the converted �le to faithfully replay the
user actions originally recorded in the initial input video. We pro-
vide examples of V2S’s generated sendevent scripts, alongside our
updated version of the RERAN binary in our online appendix [26].

4 DESIGN OF THE EXPERIMENTS
In this section, we describe the procedure we used to evaluate V2S.
The goal of our empirical study is to assess the accuracy, robustness,
performance, and industrial utility of the approach. The context of
this evaluation consists of: (i) sets of 15,000 and 10,000 images, cor-
responding to the evaluation of V2S’� F����� R�CNN and O������
CNN respectively; (ii) a set of 83 Android applications including
68 of the top-rated apps from Google Play, �ve open source apps
with real crashes, �ve open source apps with known bugs, and �ve
open source apps with controlled crashes; (iii) two popular target
Android devices (the Nexus 5 and Nexus 6P)1. The main quality fo-
cus of our study is the extent to which V2S can generate replayable

1It should be noted that V2S can be used with emulators via minor modi�cations to
the script generation process
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scenarios that mimic original user GUI inputs. To achieve our study
goals, we formulated the following �ve research questions:

• RQ1: How accurate is V2S in identifying the location of the
touch indicator?

• RQ2: How accurate is V2S in identifying the opacity of the
touch indicator?

• RQ3: How e�ective is V2S in generating a sequence of events
that accurately mimics the user behavior from video recordings
of di�erent applications?

• RQ4: What is V2S’s overhead in terms of scenario generation?
• RQ5: Do practitioners perceive V2S as useful?

4.1 RQ1: Accuracy of Faster R-CNN
To answer RQ1, we �rst evaluated the ability of V2S’� F����� R�
CNN to accurately identify and localize the touch indicators present
in screen recording frames with bounding boxes. To accomplish this,
we followed the procedure to generate training data outlined in
Sec. 3.2 complete with the 70%–30% split for the training and testing
sets, respectively. The implementation of the F����� R�CNN object
detection used by V2S is coupled to the size of the images used
for training and inference. Thus, to ensure V2S’� model functions
across di�erent devices, we trained two separate F����� R�CNN
models (i.e., one for the Nexus 5 and one for the Nexus 6P), by
resizing the images from the R�D��� dataset to the target device
image size. As we show in the course of answering other RQs, we
found that resizing the images in the already large R�D��� dataset,
as opposed to re-collecting natively sized images for each device,
resulted in highly accurate detections in practice.

We used the TensorFlow Object Detection API [19] to train our
model. Moreover, for the training process, we modi�ed several of
the hyper-parameters after conducting an initial set of experiments.
These changes a�ected the number of classes (i.e., 1), maximum
number of detections per class or image (i.e., 10), and the learning
rate after 50k (i.e., 3 ⇥ 10�5) and 100k (i.e., 3 ⇥ 10�6) iterations.
The training process was run for 150k steps with a batch size of 1,
and our implementation of F����� R�CNN utilized a VGGN�� [69]
instance pre-trained on the MSCOCO dataset [48]. We provide our
full set of model parameters in our online appendix [26].

To validate the accuracy of V2S’� F����� R�CNN models we
utilize Mean Average Precision (mAP) which is commonly used to
evaluate techniques for the object detection task. This metric is
typically computed by averaging the precision over all the cate-
gories in the data, however, given we have a single class (the touch
indicator icon), we report results only for this class. Thus, our mAP
is computed as mAP = TP/(TP + FP) where TP corresponds to
an identi�ed image region with a correct corresponding label, and
FP corresponds to the identi�ed image regions with the incorrect
label (which in our case would be an image region that is falsely
identi�ed as a touch indicator). Additionally, we evaluate the Aver-
age Recall of our model in order to determine if our model misses
detecting any instances of the touch indicator. This is computed by
AR = TP/k where TP is the same de�nition stated above, and the
k corresponds to the total number of possible TP predictions.

During preliminary experiments with F����� R�CNN using the
default touch indicator (see Fig. 5a), we found that, due to the de-
fault touch indicator’s likeness to other icons and images present

Default Custom

(a) Touch indicators (b) False positive detections

Figure 5: Touch indicators and failed detections
in apps, it was prone to very occasional false positive detections
(Fig. 5b). Thus, we analyzed particular cases in which the default
touch indicator failed and replaced it with a more distinct, high-
contrast touch indicator. We found that this custom touch indicator
marginally improved the accuracy of our models. It should be noted
that replacing the touch indicator on a device, requires the device
to be rooted. While this is an acceptable option for most develop-
ers, it may prove di�cult for end-users. However, even with the
default touch indicator, V2S’� F����� R�CNN model still achieves
extremely high levels of accuracy.

4.2 RQ2: Accuracy of Opacity CNN
To answer RQ2, we evaluated the ability of V2S’s O������ CNN to
predict whether the opacity of the touch indicator is solid or semi-
transparent. To accomplish this, we followed dataset generation
procedure outlined in Sec. 3.2, where equal number of full and
partial opacity examples are generated. Thus, the generated dataset
contains equal numbers of full and partial opacity examples for
a total of 10k, which are evenly split into 70%–30% training and
testing sets. We used the TensorFlow framework in combination
with Keras to implement the O������ CNN. In contrast to the
F����� R�CNN model used previously, we do not need to create a
separate model for each device. This is due to the touch indicator
being resized when fed into the O������ CNN. Similarly to the
F����� R�CNN, we evaluate O������ CNN using mAP across our
two classes.

4.3 RQ3: Accuracy on Di�erent Scenarios
To answer RQ3, we carried out two studies designed to assess
both the depth, and breadth of V2S’� abilities to reproduce user
events depicted in screen recordings. The �rst, Controlled Study,
measures the depth of V2S’� abilities through a user study during
which we collected real videos from end users depicting: bugs, real
crashes, synthetically injected crashes, and normal usage scenarios
for 20 apps. Next in the Popular Applications Study we measured
the breadth of V2S’� abilities by recording scenarios for a larger,
more diverse set of 64 most popular apps from the Google Play. We
provide the full details of these apps in our online appendix [26].

4.3.1 Controlled Study. In this study we, considered four types of
recorded usage scenarios depicting: (i) normal usages, (ii) bugs, (iii)
real crashes, and (iv) controlled crashes. Normal usage scenarios
refer to video recordings exercising di�erent features on popular
apps. Bug scenarios refer to video recordings that exhibit a bug
on open source apps. Finally, controlled crashes refer to injected
crashes into open source apps. This allows us to control the number
of steps before the crash is triggered.

For this study, eight participants including 1 undergraduate, 3
masters, and 4 doctoral students were recruited from William &
Mary (approved by the Protection of Human Subjects Committee
(PHSC) at W&M under protocol PHSC-2019-01-22-13374) to record
the videos, with each participant recording eight separate videos,
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two from each of the categories listed above. Four participants
recorded videos on the Nexus 5 and four used the Nexus 6P. This
accounts for a total of 64 videos, from 20 apps evenly distributed
across all scenarios. Before recording each app, participants were
either asked to use the app to become familiar with it, or read a
bug/crash report before reproducing the fault. All of the real bugs
and crashes were taken from established past studies on mobile
testing and bug reporting [28, 57, 58].

4.3.2 Popular Applications Study. For the next study, we considered
a larger more diverse set of apps fromGoogle Play. More speci�cally
we downloaded the two highest-rated apps from each non-game
category (i.e., 32) for a total of 64 applications.

Two of the authors then recorded two scenarios per app ac-
counting for 32 apps each, one using the Nexus 5 and the other
using a Nexus 6P. The authors strived to use the apps as natu-
rally as possible, and this evaluation procedure is in line with past
evaluations of Android record-and-replay techniques [35, 65]. The
recorded scenarios represented speci�c use cases of the apps that
exercise at least one of the major features, and were independent of
one another. During our experiments, we noticed certain instances
where our recorded scenarios were not replicable, either due to
non-determinism or dynamic content (e.g., random popup appear-
ing). Thus, we discarded these instances and were left with 111 app
usage scenarios from 60 apps. It is worth noting that it would be
nearly impossible for existing techniques such as RERAN [35] or
Barista [32] to reproduce the scenarios due to the nondeterminism
of the dynamic content, hence our decision to exclude them.

To measure how accurately V2S replays videos, we use three
di�erent metrics. To compute these metrics, we manually derived
the ground truth sequence of action types for each recorded video.
First, we use Levenshtein distance, which is commonly used to com-
pute distances between words at character level, to compare the
original list of action types to the list of classi�ed actions generated
by V2S. Thus, we consider each type of action being represented as
a character, and scenarios as sequences of characters which repre-
sent series of actions. A low Levenshtein distance value indicates
fewer required changes to transform V2S’� output to the ground
truth set of actions. Additionally, we compute the longest common
subsequence (LCS) to �nd the largest sequence of each scenario
from V2S’� output that aligns with the ground truth scenario from
the video recording. For this LCS measure, the higher the percent-
age, the closer V2S’� trace is to a perfect match of the original trace.
Moreover, we also computed the precision and recall for V2S to
predict each type of action across all scenarios when compared
to the ground truth. Finally, in order to validate the �delity of the
replayed scenarios generated by V2S compared to the original video
recording, we manually compared each original video to each re-
produced scenario from V2S, and determined the number of actions
for each video that were faithfully replayed.

4.4 RQ4: Performance
To investigate RQ4, we evaluated V2S by calculating the average
time it takes for a video to pass through each of the three phases of
the V2S approach on commodity hardware (i.e., a single NVIDIA
GTX 1080Ti). We see this as a worst case scenario for V2S per-
formance, as our approach could perform substantially faster on

Table 1: Touch Indicator Detection Accuracy

Model Device mAP mAP@.75 AR
F����� R�CNN-Original Nexus 5 97.36% 99.01% 98.57%
F����� R�CNN-Original Nexus 6P 96.94% 99.01% 98.19%
F����� R�CNN-Modi�ed Nexus 5 97.98% 99.01% 99.33%
F����� R�CNN-Modi�ed Nexus 6P 97.49% 99.01% 99.07%

specialized hardware. Note that since our replay engine is an en-
hancement of the RERAN engine, we expect our scripts to have
similar or better overhead as reported in its respective paper [35].

4.5 RQ5: Perceived Usefulness
Ultimately, our goal is to integrate V2S into real-world develop-
ment environments. Thus, as part of our evaluation, we investigated
V2S’� perceived usefulness with three developers who build An-
droid apps (or web apps for mobile) for their respective companies.

The developers (a.k.a. participants) were contacted through di-
rect contact of the authors. Participant #1 (P1) was a front-end
developer on the image search team of the Google Search app [12],
participant #2 (P2) is a developer of the 7-Eleven Android app [2],
and participant #3 (P3) is a backend developer for the Proximus
shopping basket app [16]. We interviewed the participants using a
set of questions organized in two sections. The �rst section aimed
to collect information on participants’ background, including their
role at the company, the information used to complete their tasks,
the quality of this information, the challenges of collecting it, and
how they use videos in their every-day activities. The second section
aimed to assess V2S’� potential usefulness as well as its accuracy in
generating replayable scenarios. This section also asked the partici-
pants for feedback to improve V2S including likert scale questions.
We provide the complete list of interview questions used in our
online appendix [26], and discuss selected questions in Sec. 5.5.

The participants answered questions from the second section by
comparing two videos showing the same usage scenario for their
respective app: one video displaying the scenariomanually executed
on the app, and the other one displaying the scenario executed
automatically via V2S’� generated script. Speci�cally, we de�ned,
recorded, and manually executed a usage scenario on each app.
Then, we ran V2S on the resulting video recordings. To de�ne the
scenarios, we identi�ed a feature on each app involving any of the
action types (i.e., taps, long taps, and gestures). Then, we generated
a video showing the original scenario (i.e., video recording) and next
to it the replayed scenario generated when executing V2S’� script.
Both recordings highlight the actions performed on the app. We
presented the video to participants as well as V2S’� script with the
high-level actions automatically identi�ed from the original video.

5 EMPIRICAL RESULTS
5.1 RQ1: Accuracy of F����� R�CNN
Table 1 depicts the precision and recall for V2S’� F����� R�CNN net-
work for touch indicator detection on di�erent devices and datasets.
The �rst column identi�es the usage of either the default touch
indicator or the modi�ed version. The second column describes the
target device for each trained model. The third column provides
the mAP regardless of the Intersection Over Union (IoU) [66] be-
tween the area of the prediction and the ground truth. The forth
column presents the AP giving the proportion of TP out of the
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Table 2: Confusion Matrix for Opacity CNN. Low Opacity
Original (L-Op.-Orig.), High Opacity Original (H-Op.-Orig.),
Low Opacity Custom (L-Op.-Cust.), High Opacity Custom
(H-Op.-Cust.)

Total L-Op.-Orig. H-Op.-Orig. L-Op.-Cust. H-Op.-Cust.
Low Op 5000 97.8% 2.2% 99.7% 0.3%
High Op 5000 1.4% 98.6% 0.8% 99.2%

possible positives. All models achieve ⇡97% mAP, indicating that
V2S’� object detection network is highly accurate. The mAP only
improves when we consider bounding box IoUs that match the
ground truth bounding boxes by at least 75%, which illustrates that
when the model is able to predict a reasonably accurate bounding
box, it nearly always properly detects the touch indicator (⇡99%).
As illustrated by the last column in Table 1, the model also achieves
extremely high recall, detecting at least ⇡98% of the inserted touch
indicators.

Answer to RQ1: V2S bene�ts from the strong perfor-
mance of its object detection technique to detect touch
indicators. All F����� R�CNN models achieved at least ⇡
97% precision and at least ⇡ 98% recall across devices.

5.2 RQ2: Accuracy of the O������ CNN
To illustrate the O������ N������’s accuracy in classifying the
two opacity levels of touch indicators, we present the confusion
matrix in Table 2. The results are presented for both the default
and modi�ed touch indicator. The overall top-1 precision for the
original touch indicator is 98.2% whereas for the custom touch
indicator is 99.4%. These percentages are computed by aggregating
the correct identi�cations for both classes (i.e., Low/High-Opacity)
together for the original and custom touch indicators. Hence, it
is clear V2S’� O������ CNN is highly e�ective at distinguishing
between di�ering opacity levels.

Answer to RQ2: V2S bene�ts from the CNN� accuracy
in classifying levels of opacity. O������ CNN achieved an
average precision above 98% for both touch indicators.

5.3 RQ3: Scenario Replay Accuracy
LevenshteinDistance. Fig. 6a and 6b depict the number of changes
required to transform the output event trace into the ground truth
for the apps used in the controlled study and the popular apps study,
respectively. For the controlled study apps, on average it requires
0.85 changes per user trace to transform V2S’� output into ground
truth event trace, whereas for the popular apps it requires slightly
more with 1.17 changes. Overall, V2S requires minimal changes
per event trace, being very similar to the ground truth.
Longest Common Subsequence. Fig. 6c and 6d presents the per-
centage of events for each trace that match those in the original
recording trace for the controlled study and popular apps study
respectively. On average V2S is able to correctly match 95.1% of
sequential events on the ground truth for the controlled study apps
and 90.2% for popular apps. These results suggest that V2S is able
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Figure 8: Precision and Recall - Popular Apps

to generate sequences of actions that closely match the original
trace in terms of action types.
Precision and Recall. Fig. 7 and 8 show the precision and recall
results for the controlled study and popular apps study, respectively.
These plots were constructed by creating an order agnostic “bag
of actions” for each predicted action type, for each scenario in our
datasets. Then the precision and recall are calculated by comparing
the actions to a ground truth “bag of actions” to compute precision
and recall metrics. Finally, an overall average precision and recall
are calculated across all action types. The results indicate that on
average, the precision of the event traces is 95.3% for the controlled
study apps and 95% for popular apps. This is also supported for each
type of event showing also a high level of precision across types
except for the precision on Long Taps for the popular apps. This
is mainly due to the small number (i.e., 9 Long Taps) of this event
type across all the popular app traces. Also, Fig. 7 and 8 illustrate
that the recall across action types is high with an average of 99.3%
on controlled study apps and 97.8% on the popular apps for all types
of events. In general, we conclude that V2S can accurately predict
the correct number of event types across traces.
Success Rate. Finally, we also evaluated success rate of each re-
played action for all scenarios across both RQ3 studies. The 175
videos were analyzed manually and each action was marked as
successful if the replayable scenario faithfully exercised the app
features according to the original video. This means that in certain
cases videos will not exactly match the original video recording (e.g.,
due to a single keyboard keystroke error that still led to the same
feature result). Thus, after validating all 64 videos for the controlled
study, V2S fully reproduces 93.75% of the scenarios, and 94.48% of
the consecutive actions. V2S fully reproduced 96.67% of the scenar-
ios for bugs and crashes and 91.18% of apps usages. Detailed results
for the popular apps study are shown in Table 3, where each app,
scenario (with total number of actions), and successfully replayed
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Table 3: Detailed Results for RQ3 popular applications study. Green cells indicate fully reproduced videos, orange cells >50%
reproduced, andRedCells <50% reproduced. Blue cells shownon-reproduced videos due to non-determinism/dynamic content.

AppName Rep. Actions AppName Rep. Actions App Name Rep. Actions App Name Rep. Actions App Name Rep. Actions
Ibis Paint X 11/11 36/36 Firefox 22/22 N/A Tasty 20/20 14/36 SoundCloud 12/12 13/13 LetGo 17/17 15/15
Pixel Art Pro 20/20 9/9 MarcoPolo 12/12 30/30 Postmates 26/26 12/12 Shazam 12/15 20/20 TikTok 14/14 11/11
Car-Part.com 20/20 16/16 Dig 13/13 N/A Calm 9/9 11/16 Twitter 14/14 19/19 LinkedIn 18/18 13/13
CDL Practice 8/8 13/13 Clover 15/15 19/19 Lose It! 36/36 N/A News Break 1/18 9/9 CBSSports 25/25 16/16
Sephora 4/9 13/13 PlantSnap 39/39 18/24 U Remote 14/14 18/18 FamAlbum 19/19 8/26 MLBatBat 11/13 N/A
SceneLook 14/14 16/16 Translator 20/20 28/28 LEGO 52/52 24/24 Baby-Track 14/14 12/12 G-Translate 14/17 15/15
KJ Bible 16/16 19/19 Tubi 2/19 30/30 Dev Libs 35/35 22/22 Walli 8/8 N/A G-Podcast 9/9 15/15
Bible App 12/12 15/15 Scan Radio 24/27 N/A Horoscope 24/24 19/19 ZEDGE 9/9 18/18 Airbnb 9/9 14/14
Indeed Jobs 15/15 19/19 Tktmaster 30/30 14/14 Waze 17/17 19/19 G-Photo 18/18 18/18 G-Earth 8/13 1/30
UPS Mobile 16/16 19/24 Greet Cards 23/23 N/A Transit 26/26 18/18 PicsArt 18/18 39/39 DU Record 15/15 9/9
Webtoon 17/17 15/21 QuickBooks 47/47 28/28 WebMD 7/34 7/26 G-Docs 3/26 N/A AccuWeath 13/13 21/21
MangaToon 16/16 28/28 Yahoo Fin 23/23 N/A K-Health 10/10 15/24 M. Outlook 27/27 21/26 W. Radar 14/14 13/13

actions are displayed. Green cells indicate a fully reproduced video,
Orange cells indicate more than 50% of events reproduced, and Red
cells indicate less than 50% of reproduced events. Blue cells show
non-reproduced videos due to non-determinism/dynamic content.
For the 111 scenarios recorded for the popular apps, V2S fully repro-
duced 81.98% scenarios, and 89% of the consecutive actions. Overall,
this signals strong replay-ability performance across a highly di-
verse set of applications. Instances where V2S failed to reproduce
scenarios are largely due to minor inaccuracies in Gesture events
due to our video resolution of 30fps. We discuss potential solutions
to this limitation in Sec. 6.

Answer to RQ3: V2S is capable of generating event traces
that require on average ⇡ 1 change to match original user
scenarios. Moreover, at least 90.2% of events match the
ground truth, when considering the sequence of event
types. Overall, precision and recall are ⇡95% and ⇡98%
respectively for event types produced by V2S. Finally, in
96.67% and 91.18% of the cases,V2S successfully reproduces
bugs/crashes- and app-usage-related videos, respectively.

5.4 RQ4: Approach Performance
To measure the performance of V2S, we measured the average time
in seconds/frame (s/f) for a single video frame to be processed
across all recorded videos for three components: (i) the frame ex-
traction process (0.045 s/f), (ii) the touch indicator detection process
(1.09 s/f), and (iii) the opacity classi�cation process (0.032 s/f). The
script generation time is negligible compared to these other pro-
cessing times, and is only performed once per video. This means
that an average video around 3 mins in length would take V2S ⇡105
minutes to fully process and generate the script. However, this
process is fully automated, can run in the background, and can be
accelerated by more advanced hardware. We expect the overhead
of our replayed scripts to be similar or better than RERAN since
V2S replay engine is essentially an improved version of RERAN’s.

Answer to RQ4: V2S is capable of fully processing an
average 3-min screen recording in ⇡105 mins.

5.5 RQ5: Perceived Usefulness
The three industry participants agreed that further tool support
is needed for helping QA members and other stakeholders with
generating video recordings. For example, P3 mentions that while
videos are "more useful than images" (in some cases), they “may be
di�cult to record” because of “time constraints”. All participants
also (strongly) agreed that the scenarios produced by V2S (in the
generated scripts) are accurate with respect to the scenarios that
were manually executed.

Regarding V2S’s usefulness, P1 remarked that the QA team
could use V2S to help them create videos more optimally. P2 sup-
ported this claim as he mentions that V2S could help “the QA team
write/provide commands or steps, then the tool would read and
execute these while recording a video of the scenario and problem.
This solution could be integrated in the continuous integration
pipeline”. In addition, P3 mentions that V2S could be used during
app demos:V2S could “automatically execute a script that shows the
app functionality and record a video. In this way, the demo would
focus on business explanation rather than on manually providing
input to the app or execute a user scenario”.

P2 also indicated that V2S could be used to analyze user behavior
within the app, which can help improve certain app screens and
navigation. He mentions that V2S “could collect the type of inter-
actions, # of taps, etc. to detect, for example, if certain screens are
frequently used or if users often go back after they go to a particular
screen”. He mentions that this data “could be useful for marketing
purposes”. P3 �nds V2S potentially useful for helping reproduce
hard-to-replicate bugs.

The participants provided valuable and speci�c feedback for im-
proving V2S. They suggested to enrich the videos produced when
executing V2S’� script with a bounding box of the GUI components
or screen areas being interacted with at each step. They also men-
tion that the video could show (popup) comments that explain what
is going on in the app (e.g., a comment such as “after 10 seconds,
button X throws an error”), which can help replicate bugs. They
would like to see additional information in the script, such as GUI
metadata that provides more in-depth and easy-to-read information
about each step. For example, the script could use the names or IDs
of the GUI components being interacted with and produce steps
such as “the user tapped on the send button” instead of “the user
tapped at (10.111,34.56)”. P3 mentioned that “it would be nice to
change the script programmatically by using the GUI components’
metadata instead of coordinates, so the script is easier to maintain”.



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea C. Bernal-Cárdenas, N. Cooper, K. Moran, O. Chapparo, A. Marcus & D. Poshyvanyk

They suggest to include an interpreter of commands/steps, written
in a simple and easy-to-write language, which would be translated
into low-level commands.

Answer to RQ5: Developers �nd V2S accurate in replicat-
ing app usage scenarios from input videos, and potentially
useful for supporting several development tasks, including
automatically replicating bugs, analyzing usage app be-
havior, helping users/QA members generate high-quality
videos, and automating scenario executions.

6 LIMITATIONS & THREATS TO VALIDITY

Limitations. Our approach has various limitations that serve as
motivation for future work. One current limitation of the F�����
R�CNN implementation our approach utilizes is that it is tied to the
screen size of a single device, and thus a separate model must be
trained for each screen size to which V2S is applied. However, as
described in Sec. 3.2, the training data process is fully automated
andmodels can be trained once and used for any device with a given
screen size. This limitation could be mitigated by increasing dataset
size including all type of screen sizes with a trade-o� on the training
time. To facilitate the use of our model by the research community,
we have released our trained models for the two popular screen
sizes of the Nexus 5 and Nexus 6P in our online appendix [26].

Another limitation, which we will address in future work, is
that our replayable traces are currently tied to the dimensions of
a particular screen, and are not easily human readable. However,
combining V2S with existing techniques for device-agnostic test
case translation [32], and GUI analysis techniques for generating
natural language reports [58] could mitigate these limitations.

Finally, as discussed in Sec. 5.3, one limitation that a�ects the
ability of V2S to faithfully replay swipes is the video frame-rate.
During the evaluation, our devices were limited to 30fps, which
made it di�cult to completely resolve a small subset of gesture
actions that were performed very quickly. However, this limitation
could be addressed by improved Android hardware or software ca-
pable of recording video at or above 60fps, which, in our experience,
should be enough to resolve nearly all rapid user gestures.

Internal Validity. In our experiments evaluating V2S, threats to
internal validity may arise from our manual validation of the cor-
rectness of replayed videos. To mitigate any potential subjectivity
or errors, we had at least two authors manually verify the correct-
ness of the replayed scenarios. Furthermore, we have released all of
our experimental data and code [26], to facilitate the reproducibility
of our experiments.

Construct Validity. The main threat to construct validity arises
from the potential bias in our manual creation of videos for the
popular apps study carried out to answer RQ3. It is possible that
the author’s knowledge of V2S in�uenced the manner in which
we recorded videos. To help mitigate this threat, we took care to
record videos as naturally as possible (e.g., normal speed, included
natural quick gestures). Furthermore, we carried out an orthogonal
controlled study in the course of answering RQ3, where users un-
familiar with V2S naturally recorded videos on a physical device,

representing an unbiased set of videos. Another potential confound-
ing factor concerns the quality of the dataset of screens used to
train, test, and evaluate V2S’� F����� R�CNN and Opacity CNN. To
mitigate this threat, we utilize the R�D��� dataset [59] of screens
which have undergone several �ltering and quality control mech-
anisms to ensure a diverse set of real GUIs. One more potential
threat concerns our methodology for assessing the utility of V2S.
Our developer interviews only assess the perceived usefulness of
our technique, determining whether developers actually receive
bene�t from V2S is left for future work.

External Validity. Threats to the generalizability of our conclu-
sions are mainly related to: (i) the number and diversity apps used
in our evaluation; (ii) the representativeness of usage scenarios
depicted in our experimental videos; and (iii) the generalizability of
the responses given by the interviewed developers. To help mitigate
the �rst threat, we performed a large-scale study with 64 of the
top applications on Google Play mined from 32 categories. While
performing additional experiments with more applications is ideal,
our experimental set of applications represents a reasonably large
number of apps with di�erent functionalities, which illustrate the
relatively applicability of V2S. To mitigate the second threat, we col-
lected scenarios illustrating bugs, natural apps usages, real crashes,
and controlled crashes from eight participants. Finally, we do not
claim that the feedback we received from developers generalizes
broadly across industrial teams. However, the positive feedback and
suggestions for future work we received in our interviews illustrate
the potential practical usefulness of V2S.

7 RELATEDWORK
Analysis of video and screen captures. Lin et al. [47] proposed
an approach called Screenmilker to automatically extract screen-
shots of sensitive information (e.g., user entering a password) by
using the Android Debug Bridge. This technique focuses on the
extraction of keyboard inputs from "real-time" screenshots. Screen-
milker is primarily focused upon extracting sensitive information,
whereas V2S analyzes every single frame of a video to generate a
high �delity replay script from a sequence of video frames.

Krieter et al. [44] use video analysis to extract high-level de-
scriptions of events from user video recordings on Android apps.
Their approach generates log �les that describe what events are
happening at the app level. Compared to our work, this technique is
not able to produce a script that would automatically replay the ac-
tions on a device, but instead simply describe high-level app events
(e.g., “WhatsApp chat list closed” ). Moreover, our work focuses on
video analysis to help with bug reproduction and generation of test
scenarios, rather than describing usage scenarios at a high level.

Bao et al. [23] and Frisson et al. [33] focus on the extraction
of user interactions to facilitate behavioral analysis of developers
during programming tasks using CV techniques. In our work, rather
than focusing upon recording developers interactions, we instead
focus on understanding and extracting generic user actions on
mobile apps in order to generate high-�delity replay scripts.

Other researchers have proposed approaches that focus on the
generation of source code for Android applications from screen-
shots or mock-ups. These approaches rely on techniques that vary
solely from CV-based [60] to DL-based [25, 29, 59].
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The most related work to V2S is the AppFlow approach intro-
duced by Hu et al. [40]. AppFlow leverages machine learning tech-
niques to analyze Android screens and categorize types of test cases
that could be performed on them (i.e., a sign in screen whose test
case would be a user attempting to sign in). However, this tech-
nique is focused on the generation of semantically meaningful test
cases in conjunction with automated dynamic analysis. In contrast,
V2S is focused upon the automated replication of any type of user
interaction on an Android device, whether this depicts a usage sce-
nario or bug. Thus, V2S could be applied to automatically reproduce
crowdsourced mobile app videos, whereas AppFlow is primarily
concerned with the generation of tests rather than the reproduction
of existing scenarios.

Record and replay.Many tools assist in recording and replay-
ing tests for mobile platforms [3, 8, 35, 42, 56]. However, many
of these tools require the recording of low-level events using adb,
which usually requires rooting of a device, or loading a custom
operating system (OS) to capture user actions/events that are oth-
erwise not available through standard tools such as adb. While our
approach uses RERAN [35] to replay system-level events, we rely on
video frames to transform touch overlays to low-level events. This
facilitates bug reporting for users by minimizing the requirement
of specialized programs to record and replay user scenarios.

Hu et al. [41] developed VALERA for replaying device actions,
sensor and network inputs (e.g., GPS, accelerometer, etc.), event
schedules, and inter-app communication. This approach requires
a rooted target device and the installation of a modi�ed Android
runtime environment. These requirements may lead to practical
limitations, such as device con�guration overhead and the potential
security concerns of rooted devices. Such requirements are often
undesirable for developers [46]. Conversely, our approach is able
to work on any unmodi�ed Android version without the necessity
of a rooted device, requiring just a screen recording.

Nurmuradov et al. [61] introduced a record and replay tool for
Android applications that captures user interactions by displaying
the device screen in a web browser. This technique uses event data
captured during the recording process to generate a heatmap that
facilitate developers’ understanding on how users are interacting
with an application. This approach is limited in that users must
interact with a virtual Android device through a web application,
which could result in unnatural usage patterns. This technique is
more focused towards session-based usability testing, whereas V2S
is focused upon replaying "in-�eld" app usages from users or crowd-
sourced testers collected from real devices via screen recordings.

Other work has focused on capturing high-level interactions in
order to replay events [3, 9, 36, 54]. For instance Mosaic [36], uses
an intermediate representation of user interactions to make replays
device agnostic. Additional tools including HiroMacro [13] and
Barista [32] are Android applications that allow for a user to record
and replay interactions. They require the installation or inclusion
of underlying frameworks such as replaykit [8], AirTest [3], or
troyd [42]. Android Bot Maker [17] is an Android application that
allows for the automation of individual device actions, however, it
does not allow for recording high-level interactions, instead one
must enter manually the type of action and raw (x ,�) coordinates.
In contrast to these techniques, one of V2S’� primary aims is to

create an Android record and replay solution which an inherently
low barrier to usage. For instance, there are no frameworks to install,
or instrumentation to add, the only input is an easily collectable
screen recording. This makes V2S suitable for use in crowd- or beta-
testing scenarios, and improves the likelihood of its adoption among
developers for automated testing, given its ease of use relative to
developer’s perceptions of other tools [50].

Finally, as crowdsourcing information from mobile app users
has become more common with the advent of a number of testing
services [5, 15, 20], researchers have turned to utilizing usage data
recorded from crowd-testers to enhance techniques related to au-
tomated test case generation for mobile apps. Linares-Vásquez et
al. �rst introduced the notion of recording crowd-sourced data to
enhance input generation strategies for mobile testing through the
introduction of the M�����L�� framework [52]. This technique
adapted N-gram language models trained on recorded user data
to predict event sequences for automated mobile test case genera-
tion. Mao et al. developed the P������ approach which is able to
infer “motif” event sequences collected from the crowd that are
applicable across di�erent apps [53]. The authors found that the
activity-based coverage of the S������ automated testing tool can
be improved through a combination of crowd-based and search-
based techniques. The two approaches discussed above require
either instrumented or rooted devices (M�����L��), or interaction
with apps via a web-browser (P������). Thus, V2S is complemen-
tary to these techniques as it provides a frictionless mechanism by
which developers can collect user data in the form of videos.

8 CONCLUSION & FUTUREWORK
We have presented V2S, an approach for automatically translating
video recordings of Android app usages into replayable scenarios.
A comprehensive evaluation indicates that V2S: (i) accurately iden-
ti�es touch indicators and it is able to di�erentiate between opacity
levels, (ii) is capable of reproducing a high percentage of complete
scenarios related to crashes and other bugs, with promising results
for general user scenarios as well, and (iii) is potentially useful to
support real developers during a variety of tasks.

Future work can make V2S applicable to di�erent software
maintenance tasks, such as: (i) producing scripts with coordinate-
agnostic actions, (ii) generating natural language user scenarios, (iii)
improving user experience via behavior analysis, (iv) facilitating
additional maintenance tasks via GUI-based information, etc.
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