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ABSTRACT

This paper introduces Bee, a tool that automatically analyzes user-
written bug reports and provides feedback to reporters and develop-
ers about the system’s observed behavior (OB), expected behavior
(EB), and the steps to reproduce the bug (S2R). Bee employsmachine
learning to (i) detect if an issue describes a bug, an enhancement,
or a question; (ii) identify the structure of bug descriptions by au-
tomatically labeling the sentences that correspond to the OB, EB,
or S2R; and (iii) detect when bug reports fail to provide these el-
ements. Bee is integrated with GitHub and offers a public web
API that researchers can use to investigate bug management tasks
based on bug reports. We evaluated Bee’s underlying models on
more than 5k existing bug reports and found they can correctly
detect OB, EB, and S2R sentences as well as missing information
in bug reports. Bee is an open-source project that can be found at
https://git.io/JfFnN. A screencast showing the full capabilities of
Bee can be found at https://youtu.be/8pC48f_hClw.
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1 INTRODUCTION

Bug reports are essential in helping developers triage, replicate,
locate, and fix the bugs in the software [3, 10, 11, 21, 36, 37, 46, 47].
From the information that reporters provide in bug reports, the
system’s observed (unexpected) behavior (OB), the steps to reproduce
the bug (S2R), and the software expected behavior (EB) are among
the most important elements for developers [11, 15, 19, 21, 46].
These elements are typically expressed by end-users or developers
in free-form natural language through issue trackers.
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While these elements are essential, they are often incomplete,
unclear, or not provided at all by the reporters [3, 12, 46]. Indeed, in
2016, developers from more than 1.3k open-source projects wrote a
letter to GitHub expressing their frustration that bug reports are
often submitted without the S2R and the system version [3]. The
consequence of this is that developers often spend too much effort
triaging and fixing the problems [12, 25, 46], and often, they cannot
even reproduce and fix the bugs in the code [22, 45]. One of the main
reasons for having low-quality bug reports is the lack of feedback
and quality verification of issue trackers. In the GitHub letter [3],
developers demand improvements to GitHub’s issue tracker to
ensure higher-quality bug reports. However, as of today, no major
improvements have been made by GitHub. The alternative for some
projects is to provide templates in the issues, explicitly asking for the
OB, EB, S2R, and other information. Unfortunately, this approach
does not guarantee that reporters will submit high-quality bug
reports and developers still need to reach out to reporters asking
for clarifications or more information.

In this paper, we introduce Bee (Bug rEport analyzEr), a tool
that provides feedback to reporters and developers about the OB, EB,
and S2R in bug reports. Bee is an app that extends the capabilities
of GitHub’s issue tracker, by analyzing incoming issues submitted
by end-users on GitHub repositories. Through its machine learning
models, Bee can detect if an issue reports a bug, an enhancement
(e.g., a feature), or a question. For bug reports, Bee can automatically
identify the sentences that describe the OB, EB, and/or S2R, and
detect if the reporter does not provide any of these elements.

Bee adds comments and labels to the bug report to alert re-
porters (and developers) about missing elements so that they can
provide the information timely. Bee is meant to assist developers,
by structuring the bug descriptions via automated identification
and labeling of OB, EB, and S2R sentences, allowing them to quickly
spot these elements. Bee is also meant to assist researchers through
a public web API for OB, EB, and S2R identification, which they can
use for investigating and automating tasks that are based on these el-
ements, such as bug reproduction [31, 43], test case generation [23],
bug localization [16, 17], duplicate bug report detection [18], and
bug report quality assessment [15, 19].

Bee can analyze any bug report, written in any textual form and
format, for any software system. Bee can be installed in seconds,
in any GitHub repository. Inspired by prior work (including ours)
[13, 15, 26, 33, 40, 41, 46], Bee’s main vision is to perform fine-
grained quality assessment of bug reports and support reporters
and developers in bug reporting and management.

2 TOOL DESCRIPTION

Bee (Bug rEport analyzEr) is a GitHub app that analyzes incom-
ing GitHub issues submitted by end-users, and provides feedback
to reporters and developers about the system’s OB, EB, and S2R.

https://git.io/JfFnN
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2.1 BEE’s Usage Scenario and Features

Bee can be installed easily in any repository through Bee’s instal-
lation website [8]. The users just have to follow a few steps for
installing the app in their repositories. The current version of Bee
does not require any configuration from the user.

Once installed, Bee analyzes any issue reported by the project
users or developers, as shown in Figure 1. Since Bee focuses on bug
reports, the first step of the tool, right after an issue is submitted 1 ,
is to automatically check if the issue describes a bug, as opposed to
an enhancement (e.g., a feature) or a question. If so, Bee tags the
issue with the label bug 2 and proceeds with further analysis of
the bug report. Figure 1 illustrates a report submitted onGitHub that
describes a bug for the Eclipse project [1]. Such a bug was originally
submitted by one developer on Eclipse’s issue tracker [2]. If the issue
is not a bug report, Bee tags the issue with a label corresponding to
the type (enhancement or question), without further analyzing its
content. This initial categorization of the issue is intended to help
developers prioritize and manage the reported problems.

Bee analyzes the title and description of a bug report, focusing
on the OB, EB, S2R. Bee can detect when any of these elements is
not provided by the reporter. In that case, Bee makes a comment in
the issue 3 , alerting the reporter about the missing information
and asking her to provide the information. Besides, Bee assigns
the issue to the reporter 4 and tags the issue with the label info-

needed 5 . This feedback encourages reporters to provide the
information needed by the developers. If all the three elements are
provided by the user, Bee makes a comment indicating the bug
report appears to be complete.

Bee provides additional feedback by structuring the bug descrip-
tion. This feature is meant to support developers (and reporters) in
understanding and assessing the quality of the OB, EB, and S2R, by
helping them easily identify these elements in the bug report. The
bug report is structured automatically by Bee in an additional com-
ment 6 , which contains the bug title and description as provided
in the original issue (with the same format), but with the sentences
labeled as OB , EB , or S2R (see Figure 1). Bee labels the
sentences with the respective icon(s), at the end of the sentences,
only if they convey the OB, EB, or S2R. Notice that a single sen-
tence can convey one or more of the three types of information.
The decision of labeling the sentences rather than re-organizing
them into sections is made so that the (structured) bug description
is easier to understand.

Bee supports any issue format, including GitHub’s Markdown
format, and does not impose any particular discourse on the users.
This means that reporters can write their issues as they normally
do. Bee treats each code snippet in the issue as a single piece of
text, and identifies if they provide information about the OB, EB,
and S2R. When this is the case, Bee tags the snippets at the end
of the code block. Reporters get alerted about Bee’s feedback via
email if they have email notifications enabled on GitHub.

Finally, Bee offers a public web API for automated OB/EB/S2R
identification in textual documents. Users can send API requests
containing any piece of text, Bee parses the text into sentences and
returns them to the user, each one marked as OB, EB, and/or S2R.
These elements can be incorporated in existing or new tools, and
can be leveraged to perform automated bug localization [16, 17],

Figure 1: Bee’s feedback generated for bug report #95598

from Eclipse [2], which is submitted on GitHub [1].

duplicate bug report detection [18], bug report quality assessment
[15, 19], and other tasks that rely on bug reports [23, 31, 43].

2.2 Under the Hood of BEE

Bee performs automated textual classification to determine the type
of issue (bug, enhancement, or question) and the type of sentence
(OB, EB, and/or S2R) for bug reports. Based on the sentence-level
classification, Bee determines if the bug report does not contain
any of the three elements.

2.2.1 Issue Classification. For classifying issues, Bee relies on the
classification model of Ticket Tagger [30], which is based on fast-
Text [29]. The model is a multi-class linear neural model that re-
ceives the set of n-grams (i.e., sequences of n consecutive words)
extracted from the issue title and description, and outputs the prob-
ability distribution of the issue over the predefined categories [30].
The model is pre-trained using 30k issues from 12k GitHub projects
and classifies an issue into one of three categories: bug report, en-
hancement, or question. These categories are among the default
labels of GitHub Issues [4]. The model can detect bug reports, en-
hancements, and questions with more than 82%, 76%, and 78%
precision/recall, respectively, as indicated by its evaluation [30].

2.2.2 Sentence Classification. If an issue is detected as a bug report,
Bee proceeds to classify each one of its sentences.
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Sentence representation. The sentences of a bug report are repre-
sented as binary vectors based on n-grams and part-of-speech (POS)
tags. This representation captures sentence vocabulary, word types,
relations between consecutive words, and syntactic patterns that
can help with the classification. To represent the sentences, Bee
first parses the text of the bug report using the Stanford CoreNLP
library [32]. The bug description is split up into sentences, consid-
ering the title as a single sentence. Then, n-grams and POS tags are
extracted from each sentence using tokenization, lemmatization,
and POS tagging. Bee extracts {1,2,3}-grams and {1,2,3}-POS tags,
which correspond to sequences of one, two, and three consecu-
tive words and POS tags, respectively. Each element of the vector
represents an n-gram or a POS tag and takes the value one (1) if
the sentence contains the element, and the value zero (0) other-
wise. The size of the vector for a sentence is 902,565, which is the
number of n-grams + POS tags found in the data we used to train
the classification models. Bee keeps an index of n-grams and POS
tags for building the vector representation of the sentences. Stop
word removal is not performed as (some of) these words can help
determine the meaning of the sentences (OB, EB, and S2R) [19].

Classification models. Inspired by our prior work [19], we use
linear Support VectorMachines (SVMs) for classifying the sentences.
SVMs are robust learning algorithms for high-dimensional and
sparse data, used in text classification [28, 34]. Since the sentences
in bug reports are relatively short, which means their vectors are
highly sparse, SVMs are a good option for their classification.

Rather than relying on one multi-class SVM for classifying the
sentences, Bee implements three binary SVMs, one for each of
the information types (OB, EB, S2R). For example, the SVM for OB
classifies a sentence as OB (the sentence conveys the OB) or non-OB
(the sentence conveys other information than the OB). The SVMs
for EB and S2R work the same way for their respective elements.
By using three classifiers, Bee can detect if a sentence conveys
any combination of information elements (e.g., OB and EB, OB and
EB and S2R, etc.). Also, this approach allows us to evaluate Bee’s
classification performance easily.

Each SVM is trained using 116,084 sentences from 5,067 bug
reports, where each sentence is represented as vectors, as described
above. Section 3.1 provides more details about this dataset. Since
the data is imbalanced, we train the SVMs by tuning their parameter
𝑗 = 𝐶+/𝐶−, which balances the cost factors for incorrect predictions
of positive (𝐶+) and negative sentences (𝐶−) [34]. Larger 𝑗 means
higher penalty on false positives (e.g., non-OB sentences predicted
as OB), while lower 𝑗 means higher penalty on false negatives (e.g.,
OB sentences predicted as non-OB). We select the best parameters
𝑗 during the training of all three models (see Section 3.2).

Once the sentences of a bug report are represented as vectors, as
described above, Bee executes each SVM model on each sentence
to determine its respective information type (OB, EB, S2R, a combi-
nation of these, or other information). Based on these results, Bee
can tag each sentence on GitHub.

2.2.3 Detecting Missing Elements. Since each sentence of the bug
report is identified as OB, EB, S2R, or other information, Bee can
use these categories to determine if the entire report fails to provide
any of the three elements. If no sentence is detected as OB/EB/S2R,
then it means the bug report does not provide the OB/EB/S2R. If

this is the case, Bee makes a comment about this situation, alerting
the user and encouraging her to provide the missing information.

2.3 Implementation

Bee is mainly implemented using Node.js runtime environment,
ensuring fast, real-time processing. Bee is built as a GitHub App,
which uses GitHub’s Webhooks and REST API that allows integra-
tion with GitHub’s issues tracker [5]. These technologies are used
to obtain newly-submitted issues (their text, reporter, and other
data), make comments on the issues, and assign users and labels
to them. Bee’s underlying classification models are implemented
using the fastText [29] and the SVM𝑙𝑖𝑔ℎ𝑡 frameworks [27], which
are also known for being fast during training and execution. Bee
currently analyzes a bug report in around 3-5 seconds.

3 TOOL EVALUATION

We evaluated Bee’s models to measure their expected performance
in identifying the OB, EB, and S2R in bug reports. Bee’s website
contains the replication package of the evaluation [7].

3.1 Data

We compiled the bug reports used in our prior research [16–19],
which amount to 5,067 reports from 35 different software systems
(e.g., Eclipse, Firefox, Docker, WordPress Android, OpenJPA), span-
ning different domains (e.g., data storage, software development,
machine learning, virtualization, web browsing) and types (e.g.,
desktop, web, mobile, libraries). The bug reports contain 116,084
sentences total (including the title), where the ones describing the
OB, EB, and S2R are manually annotated to make up the ground
truth. Nearly 12% of the sentences describe the OB, 2% describe
the EB, and 6% describe the S2R; 82% of the sentences describe
other types of information. The proportion of positive and negative
instances for OB, EB, and S2R is close to 1:8, 1:54, and 1:16, respec-
tively. This indicates the data is extremely imbalanced, which may
lead to biased and less effective models. We address this issue in
two ways: (1) we tune the parameter 𝑗 of the SVMs; and (2) we
use oversampling of the positive sentences (OB, EB, and S2R) us-
ing SMOTE [20], which generates synthetic instances nearby the
positive sentences in the vector space. Although undersampling
may also be helpful, it has the risk of discarding useful sentences
for training the models, hence we prefer using oversampling. The
average (median) # of sentences in a bug report is 23 (9), and out
of these, 3 (2) are marked as OB, 1 (1) is marked as EB, and 2 (2)
are marked as S2R. On average (median), 21 (6) sentences are not
marked as OB, EB, or S2R.

For evaluating the detection of missing elements, we use the
same data and consider a bug report missing OB, EB, and S2R as
one without sentences marked as OB, EB, and S2R, respectively.
Only 2% of the bug reports do not provide any OB, and nearly 69%
and 45% of them do not provide any EB and any S2R, respectively.

3.2 Methodology

We performed 10-fold cross validation (10-CV) [14, 35] to measure
the expected detection accuracy of each of the three SVMs models
(for OB, EB, and S2R). We randomly partitioned the data into 10
equal folds, using 8 folds for training, one fold for validation, and the
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remaining fold for testing. At each execution of the 10-CV approach,
different folds compose the data sets, thus guaranteeing that all the
sentences are used for model training, validation, and testing. The
validation sets as disjoint and are used for SVM tuning. The testing
sets are also disjoint and used for accuracy measurement. Note that
we perform 10-CV on all the sentences in our data, as opposed to the
sentences of each software system. We followed this approach since
our prior work revealed similar performance between project-based
and cross-project evaluation settings [19]. We applied SMOTE only
to the training sets, which allowed measuring the models’ accuracy
on actual data, without synthetic sentences.

We measured the models’ detection performance using precision,
recall, accuracy, and 𝐹1 score.We tuned the parameter 𝑗 of each SVM
model with the values 0.1, 0.2, ..., and 1, on each validation set. For
each element type (OB, EB, S2R), we train 10 SVMmodels (i.e., for 10
𝑗 values), select the best model using the validation set, and estimate
its accuracy on the testing set using the selected metrics. The best
model is the one achieving the highest 𝐹1 score. This process is
repeated 10 times, following the 10-CV approach. The best SVM
parameter 𝑗 is 0.2 for OB and S2R, and 0.1 for EB. The overall results
are computed by aggregating the true/false positives and negatives
across the 10 testing sets, and then computing the metrics.

3.3 Results

The overall results of sentence classification are shown in Table 1.
Bee’s SVMmodels achieve 87%+ recall, which indicates their ability
in correctly detecting OB, EB, and S2R sentences. Note that recall is
most almost perfect for EB (about 98%). The results mean that Bee
correctly detects the 3 OB, 1 EB, and 2 S2R sentences (out of 23 on
average) expected in a typical bug report (according to our data).
However, recall comes at the cost of precision, which is nearly 70%
for all three models. The positive prediction rate of the models
is 14.2%, 2.5%, and 7.4% for OB, EB, and S2R, respectively. This
indicates that, on average, nearly 3, 1, and 2 sentences of a typical
bug report are predicted as OB, EB, and S2R, however, the prediction
is correct for ≈2.1, 0.7, and 1.4 sentences (on avg.), respectively.

Table 1 also shows the overall performance of Bee at detecting
missing OB, EB, or S2R in an entire bug report. The results show
low performance when detecting missing OB. However, only 2%
of the bug reports are expected to lack this information, therefore,
we anticipate a negligible effect of the misclassifications produced
by the tool in practice. This observation is supported by Bee’s high
accuracy (≈97%). When detecting missing EB and S2R, Bee achieves
substantially higher precision (93%+) and recall (70%+). Precision
is almost perfect when detecting missing EB. Given the results, we
can expect a few cases in which reporters are bothered with false
alerts. The recall results mean that in about 1 (and 3) out of 10 bug
reports, the tool fails to detect missing EB (and S2R). Since Bee
is accurate in most bug reports, we expect Bee to have a positive
effect on bug report quality and the bug resolution process.

In summary,Bee’s models are conservative as they try not tomiss
any of the OB, EB, and S2R sentences in a bug report. This produces
fewer false negatives, at the expense of more false positives (at
sentence level). This phenomenon translates into high precision
(i.e., few false alarms) and lower recall (i.e., more misdetections)
when detecting missing elements in entire bug reports.

Table 1: Detection performance ofOB, EB, and S2R sentences

and missing elements in bug reports

Sentences Missing elements

OB EB S2R OB EB S2R

Precision 72.6% 70.0% 72.0% 33.3% 99.7% 93.4%
Recall 87.9% 98.4% 90.8% 33.7% 88.7% 70.4%

Accuracy 94.7% 99.2% 97.4% 97.4% 92.0% 84.4%

4 RELATEDWORK

A few efforts have been made to automatically identify and extract
the OB, EB, and S2R from bug reports, by using heuristics and
machine learning [11, 15, 19, 21, 42, 46]. Examples of heuristics
include matching keywords such as “observed results” to identify
the OB, or using regular expressions to detect bullets as proxies to
the S2R [11, 21, 46]. Since these approaches often fail to capture the
diverse discourse [19] found in bug reports, machine-learning-based
approaches, like the ones Bee implements, have been proposed [15,
19, 42]. Our prior work [19] used SVMs based on textual features
to detect when bug reports lack the EB and S2R. More recently,
SVM- and sequence-labeling-based techniques have been proposed
to identify S2R sentences in bug reports from mobile apps [15, 42].

Many approaches have been proposed to classify issues into
bug reports, feature requests, enhancements, questions, and other
categories [6, 9, 24, 25, 30, 38, 39, 44]. These approaches typically
implement machine learning models that use textual features for
classification. Bee uses Ticket Tacker’s pre-trained model [30] to
identify if a newly-submitted issue reports a bug.

Different from prior work, Bee identifies the OB, EB, and S2R, at
sentence level, in bug reports written by end-users in any form and
for any software system. Bee’s features enable many applications
in bug management, as indicated by prior work [15–19, 23, 31, 43].

5 CONCLUSIONS AND FUTUREWORK

Bee is an open-source tool, integrated with GitHub, that uses ma-
chine learning to automatically (1) detect the type of user-written
GitHub issues (bug report, enhancement, or question), (2) identify
and label sentences describing the system’s observed behavior (OB),
expected behavior (OB), the steps to reproduce (S2R) the bug in
bug reports, and (3) detect if these elements are not provided by the
reporters. Bee is meant to alert reporters about missing information
in their bug reports, assist developers on bug triage and resolution,
and foster new research developments on automated bug manage-
ment. The evaluation of Bee’s underlying models, using 5k+ bug
reports, provides evidence of its high accuracy in identifying the
OB, EB, and S2R in bug reports. Given the results, we anticipate
Bee can have a positive effect on bug report quality and bug man-
agement, yet this is to be confirmed by our planned user studies.
Improvements to Bee include the implementation of a mechanism
to automatically retrain Bee’s models based on user feedback and
autocompleting missing bug report elements.
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