
Combining Query Reduction and Expansion for
Text-Retrieval-Based Bug Localization

Juan Manuel Florez1, Oscar Chaparro2, Christoph Treude3, Andrian Marcus1

1The University of Texas at Dallas, 2College of William & Mary, 3The University of Adelaide
jflorez@utdallas.edu, oscarch@wm.edu, christoph.treude@adelaide.edu.au, amarcus@utdallas.edu

Abstract—Automated text-retrieval-based bug localization
(TRBL) techniques normally use the full text of a bug report
to formulate a query and retrieve parts of the code that are
buggy. Previous research has shown that reducing the size of
the query increases the effectiveness of TRBL. On the other
hand, researchers also found improvements when expanding the
query (i.e., adding more terms). In this paper, we bring these
two views together to reformulate queries for TRBL. Specif-
ically, we improve discourse-based query reduction strategies,
by adopting a combinatorial approach and using task phrases
from bug reports, and combine them with a state-of-the-art
query expansion technique, resulting in 970 query reformulation
strategies. We investigate the benefits of these strategies for
localizing buggy code elements and define a new approach, called
QREX, based on the most effective strategy. We evaluated the
reformulation strategies, including QREX, on 1,217 queries from
different software systems to retrieve buggy code artifacts at
three code granularities, using five state-of-the-art automated
TRBL approaches. The results indicate that QREX increases
TRBL effectiveness by 4% - 12.6%, compared to applying query
reduction and expansion in isolation, and by 32.1%, compared
to the no-reformulation baseline.

I. INTRODUCTION

Many techniques for bug localization leverage the fact
that bug reports and source code share a substantial amount
of vocabulary and use text retrieval techniques to find the
buggy code artifacts [1–3]. A common problem faced by text-
retrieval-based bug localization (TRBL) techniques is that bug
reports are not written to be used as queries in a retrieval
task. Instead, bug reporters focus on describing the observed
(unexpected) software behavior (OB), the expected behavior
(EB), and the steps to reproduce (S2R) the bug, often adding
code snippets (CODE) and other information (OTHER), aim-
ing to help developers reproduce and understand the bugs. In
consequence, the performance of TRBL techniques is hindered
by the presence of information that acts as noise.

One way to address this problem is reformulating the
queries generated from bug reports (a.k.a. query reformu-
lation [4]), which is an effective approach for improving
TRBL [1, 5]. Two common reformulation methods are query
reduction and query expansion. The former removes non-
relevant terms from the initial query while the latter adds
extra relevant terms. A recent query reformulation approach,
BLIZZARD by Rahman et al. [6], selects the statistically
most important terms from a bug report and adds terms
extracted from the code documents retrieved by the entire
report (i.e., query expansion via pseudo-relevance feedback).

More recently, Chaparro et al. [7] proposed a query reduction
technique that relies on selecting the structural parts from a
bug report (OB, EB, S2R, CODE, or the report TITLE) and
discarding OTHER parts. At the same time, Haiduc et al. [8, 9]
showed that some queries benefit from reduction, while others
benefit from expansion.

A reasonable inference from this body of work is that
combining query reduction and expansion techniques may lead
to better query reformulations for TRBL. In this paper, we
investigate this conjecture by evaluating 970 query reformula-
tion strategies. These strategies come from the refinement of
a query reduction approach that selects terms from bug report
parts [7] combined with a query expansion technique [6].

The 970 query reformulation strategies were empirically
evaluated by using five state-of-the-art TRBL approaches and
1,217 bug reports from multiple software systems to retrieve
buggy code artifacts at three code granularities, namely file,
class, and method. This data was manually curated and used
in previous research [7], which allowed for comparing against
previously proposed reformulation strategies.

We named the best performing strategy (of the 970) QREX.
QREX first composes a reduced query by selecting (1) the
most information-rich structural parts of the bug report [7],
and (2) task phrases [10] from the remaining components. The
reduction step is an improvement over the approach proposed
by Chaparro et al. [7]. Finally, QREX selects the statistically
important terms from the reduced query and adds related terms
to produce a final query, using BLIZZARD [6]. QREX improves
the effectiveness of TRBL by 32.1% over the baseline where
the initial queries are not reformulated, and by 4% - 12.6%
compared to the two techniques [6, 7] used individually.

In summary, the main contributions of the paper are:
1) A comprehensive investigation of 970 query reformulation

strategies that implement query reduction and/or query
expansion techniques to reformulate initial queries, and
their impact on the effectiveness for TRBL; and

2) QREX, a new query reformulation technique for TRBL,
which blends query reduction and expansion techniques,
and is more effective than prior reformulation approaches
[6, 7]. QREX combines new and existing reformulation
techniques in an innovative way: (i) a new combinatorial
approach for selecting the structural parts of the bug report
for query reduction; (ii) a new reduction strategy that uses
terms from task phrases [10] found in the OTHER parts of
the bug report; and (iii) query expansion using BLIZZARD.

II. QUERY REFORMULATION STRATEGIES

We introduce a set of query reformulation strategies that
combines query reduction and expansion. The query reduction
part uses a set of new query reduction strategies that extracts
task phrases from different parts of a bug report using a combi-
natorial approach, while the query expansion uses BLIZZARD
[6], a state-of-the-art query expansion approach.

We describe the strategies in this section, while Sections III
and IV report their comprehensive evaluation, which allowed
us to define QREX as the most effective of the strategies.

A. Query Reformulation Usage Scenario

Query reformulation strategies must be easy to use by
developers and their usage should be well defined. With this
in mind, we adapt the usage scenario proposed by Chaparro
et al. [7], which is based on four steps:
1) First, the developer issues an initial query (manually or

automatically) using the full text of the bug report to
return a set of N (e.g., 10) code candidates with the
TRBL technique of their choice (e.g., BRTracer [11]). The
developer may use additional information required by the
technique (stack traces from the bug reports, past bug
report information, etc.).

2) Then, the developer inspects the N returned candidates,
and if any of them is deemed buggy or if she opts to use
another bug localization strategy (e.g., dependency search)
that leads to the buggy code, then the process ends and
reformulating the query is not required.

3) Otherwise, the developer reformulates the initial query by,
first, using a query reduction strategy, and second, using
BLIZZARD to expand the reduced query. While this step
is developer-initiated, it can be automated by integrating
techniques such as DEMIBUD [12, 13], TaskNav [10], and
BLIZZARD [6]. The developer runs the reformulated query
with the same TRBL engine to obtain additional N code
artifacts. The N results returned by the initial query are not
included in the new N results retrieved by the reformulated
query because they were deemed non-buggy.

4) Finally, the developer investigates the new N results. If
a buggy code artifact is found within the result list (or
it leads to the buggy code), then the bug localization
process ends and the reformulation is successful. If still
no buggy code artifacts are found, the reformulation is
unsuccessful. At this point, the developer may employ a
different reformulation strategy or switch to other methods
for finding the buggy code.

B. The Content of Bug Reports

The proposed reformulation strategies leverage the structure
of bug reports for query reduction, similarly to the work of
Chaparro et al. [7]. A bug report is composed of different parts,
notably the report title (TITLE), the observed (unexpected)
system behavior (OB), the expected software behavior (EB),
the steps to reproduce the bug (S2R), and code snippets
(CODE). Chaparro et al. selected and combined the terms
found in these parts as the reduced query. Their results suggest

that these parts contain more relevant information for TRBL
than the remaining content of the bug report (OTHER).

We contend that not all terms in the OTHER parts of the bug
descriptions are irrelevant. We propose to extract task phrases
[10, 14] from the OTHER parts of the report and use them in
the query. We define OTHER as any natural language sentence
that is not included in the TITLE, OB, EB, S2R, or CODE.

Task phrases (a.k.a. tasks) are natural language expressions
in software documents (including bug reports) that describe
how to accomplish some action [10, 14], e.g., in a system
or the source code. Task phrases are in the form of verbs
associated with a direct object and/or a prepositional phrase.
Specifically, task phrases are composed of three elements:
[action] [object] [predicate]. The [action] is a
verb phrase that indicates the operation performed by an
actor (i.e., the end-user, developer, or software system); the
[object] is a noun phrase that corresponds to the entity
affected by the action; and the [predicate] is a prepositional
phrase that gives further details about the action or the object.
For example, in the sentence “set thumbnail size in templates”,
“set” is the [action], “thumbnail size” is the [object],
and “in templates” is the [predicate]. The [predicate]

can be absent (e.g., “set thumbnail size”). Task phrases can
be automatically extracted from the bug report parts using
existing tool support (e.g., TaskNav [10]).

C. Query Reduction Strategies

We propose a set of query reduction strategies different from
the ones proposed by Chaparro et al. [7]. In order to explain
the differences, we formally define a query reduction strategy.

We define the set of bug report components C =
{T,O,E, S,C,R}, where each element denotes one of the six
parts of a bug report we focus on: T=TITLE, O=OB, E=EB,
S=S2R, C=CODE, and R=OTHER. Task phrases are extracted
from these parts except C. We denote the set of task phrases
from each part as T = {Tt, Ot, Et, St, Rt}. For example, tasks
extracted from the OB are denoted as Ot.

We represent a bug report as the set B ⊆ (C ∪ T). A set
B1 = {T,E,Et, R,Rt} would represent a bug report that
contains TITLE, EB, and OTHER. This report also contains
task phrases in its EB and OTHER. Note that Tt is absent;
this means that there are no tasks in the TITLE of this bug
report. Also, this bug report is missing OB, S2R, and CODE.
If a component X is not present in the bug report, naturally
there will be no tasks from that component (Xt) either.

A query reduction strategy indicates whether a bug report
component should be included fully in the reformulated query,
partially included (i.e., only tasks from it should be included),
or completely omitted. More formally, we define a strategy as:

S ∈ (P (C ∪ T)−∅),@X ∈ C | X ∈ S ∧Xt ∈ S (1)
This means that a strategy is a combination of parts in C

and T with the property that if a full component is included in
the strategy (e.g., O), then tasks from that component cannot
be part of the strategy (i.e., Ot) and vice-versa. A missing
component in the strategy indicates that it is omitted from
the reduced query. For conciseness, we denote a reduction

strategy as the concatenation of its components, e.g., Se =
{T,E,Rt} becomes TERt. This strategy indicates that the
reformulated query should include only the TITLE, EB, and
the tasks extracted from OTHER.

D. Combinatorial vs. Conjunctive Reformulations

Using the strategies defined above, we define two types of
query reduction approaches. This is both a formalization and
an improvement of the query reduction approach proposed by
Chaparro et al. [7]. Section III discusses the implication of our
improvement for the evaluation of the reformulation strategies.

A query reduction using strategy S applied to a bug report
B is defined in Equation (2).

r(S,B) = R⊂ (C ∪ T) (2)
The reformulated query (R) is obtained by selecting the

parts specified in S from the bug report B. If R is the empty
set, then B cannot be reformulated with the strategy S.

Our reformulations differ from those defined by Chaparro
et al. [7] in two major ways: (1) the inclusion of tasks
and OTHER, and (2) the applicability of the reformulations.
With respect to (1), our strategies include OTHER and tasks
extracted from the bug reports parts (i.e., the elements of T),
which are not considered by Chaparro et al. [7].

With respect to (2), the reformulations defined by Chaparro
et al. [7] can only be applied if and only if all parts from S
are present in B. We call such reformulation approaches con-
junctive, as they require all parts of the strategy to be present
in the bug report. In consequence, conjunctive reformulations
can only be applied to a subset of the bug reports, which limits
their applicability. For example, the best reformulation strategy
identified by Chaparro et al. [7] is TOE, but it can only be
applied to 22.5% of the bug reports (i.e., only so many reports
contain the T , O, and E components at the same time).

Conversely, we call our proposed reduction approaches
combinatorial, as they use the maximal subset of the parts
specified by S that are available in B. This means that in the
cases where a conjunctive reformulation cannot be applied
because some of the parts from S are not present in B, the
combinatorial approach will use the remaining elements from
S contained in B as the reformulated query. In consequence,
our reformulations can be applied to more bug reports, com-
pared to the conjunctive ones.

We formally define applying a combinatorial strategy as:

rcomb(S,B) = S ∩ B (3)
The combinatorial reduced query consists of the largest

subset of strategy (S) components found in the bug report B.
Similarly, we formally define applying a conjunctive strat-

egy to a bug report in Equation (4), which dictates that the
reduced query is generated only if all components from the
strategy S are present in the bug report B.

rconj(S,B) =

{
S if S ∩ B = S
∅ otherwise

(4)

As an example, consider the strategy S1 = {O,St}, which
indicates that the user should select the entire OB and the tasks

from the S2R. rcomb (S1, B) is the operation of applying S1 as
a combinatorial reformulation on a bug report. This operation
would result in one of the outcomes shown in Equation (5),
depending on the bug report.

rcomb(S1,B) =

{O} if O ∈ B ∧ St /∈ B
{St} if O /∈ B ∧ St ∈ B
{O,St} if O ∈ B ∧ St ∈ B
∅ if O /∈ B ∧ St /∈ B

(5)

Note that the options are all possible combinations of select-
ing and not selecting each one of the components in S1, hence
the name combinatorial. In contrast, applying rconj (S1, B),
i.e., the conjunctive reformulation S1 on an arbitrary bug report
B is shown in Equation (6).

rconj(S1,B) =

{
{O,St} if O ∈ B ∧ St ∈ B
∅ otherwise

(6)

E. Query Reformulation Strategies

We define 485 query reduction strategies based on the pos-
sible reformulation approaches specified above: each element
of C, except CODE (i.e., five components), can be selected
entirely, partially (only task phrases), or omitted; the CODE
can be either selected or not selected. This translates into
35 × 2 = 486 possibilities. We do not consider S0 = ∅
(i.e., nothing is selected), resulting in 485 reduction strategies,
including the 31 strategies proposed by Chaparro et al. [7]. All
485 query reduction strategies can be applied using either the
combinatorial or the conjunctive approach.

We propose to combine query reduction with statistical term
selection and query expansion, using BLIZZARD [6] on the
reduced queries. BLIZZARD is a query reformulation approach
that leverages stack traces and the natural language found
in bug reports, as well as code identifiers from the reports
and source code. This information is represented in a graph
that encodes relationships among the terms. The PageRank
algorithm is then applied on the graph to determine the most
important terms for TRBL. Depending on the bug report,
BLIZZARD can select terms that compose the reformulated
query and/or add extra terms to it.

Combining BLIZZARD with the query reduction strategies
results in 485 additional strategies. We denote the use of
BLIZZARD in combination with a reduction strategy by using
the b postfix in the strategy. For example, using BLIZZARD
with TERt is denoted as TERtb. Thus, in total, we define
and investigate 970 query reformulation strategies.

F. Query Reformulation Example

Figure 1 shows an example of a bug report from the SWT
project [15]. The sentences corresponding to the bug report
structural components have been highlighted and color-coded.
The fragments of sentences corresponding to tasks appear un-
derlined between square brackets. If a developer were to apply
the combinatorial reformulation with strategy TOStRt, she
would select (either manually or automatically): (1) the entire
TITLE, and (2) the entire OB, and (3) the tasks from OTHER

Fig. 1: Excerpt from bug report #81264 (SWT 3.1.) [15]

Bug report title: Table fails to setTopIndex after [new items are
added to the table] [TITLE]

Bug report description:
I am working on a table viewer that [keeps track of the scroll bar]
and [loads content into the table] dynamically as the user
[scrolls to the end] of the table. [Items could be added/removed]
from the table as the user scrolls.

Here’s my testcase to demonstrate the problem: [S2R]
public static void main(String[] args) {

...
} [CODE]

Table.setTopIndex fails to [position to the correct table item] if
[new items are added to the table] after the shell is opened. [OB]

Calling setTopIndex(40) should [move table item #40 to the top]
of the table. [EB]

Legend: TITLE CODE OB EB S2R [tasks]

(“keeps track of the scroll bar”, “loads content into the table”,
“scrolls to the end”, and “Items could be added/removed”).
Notice that the S2R sentences do not contain any task phrases
(i.e., St /∈ B). Still, the bug report is reformulated using
the combinatorial reformulation. In contrast, the conjunctive
reformulation with the same strategy cannot be applied in this
instance, as it requires all components to be present in the bug
report. Finally, once the bug report is reduced, BLIZZARD is
applied on the reduced query.

III. EMPIRICAL EVALUATION DESIGN

We conducted a comprehensive empirical study with four
goals in mind: (1) evaluating the new combinatorial reformula-
tions; (2) evaluating the use of task phrases for query reformu-
lation; (3) assessing the effect of using query expansion/term
selection; and (4) identifying the overall best reformulation
strategy for defining QREX. Given these goals, we define five
research questions (RQs):
• RQ1: What is the effect on TRBL of the combinatorial

reformulation approach, compared to the conjunctive one?
• RQ2: What is the effect on TRBL of adding the tasks from

OTHER into the existing reformulation strategies?
• RQ3: What is the effect on TRBL of using tasks from the

TITLE, OB, EB, and S2R for query reformulation?
• RQ4: What is the effect of applying query expansion/term

selection on the reduced queries?
• RQ5: Which are the query reformulation strategies that

lead to the best TRBL performance and how do they
compare to state-of-the-art reformulation approaches?

For answering the RQs we used 5 TRBL techniques (Sec-
tion III-A) to retrieve the buggy code artifacts for 1,217 low-
quality queries/bug reports (Section III-B). Then, we used the
proposed strategies to reformulate these queries, and compared
their performance against the baseline that does not reformu-
late the queries and existing reformulations (Section III-C).

A. TRBL Techniques

The proposed reformulation strategies are independent of
the TRBL technique, meaning that they can be used with any
existing TRBL approach. In order to strengthen the general-
ization of our evaluation, we use five TRBL approaches, also
used in prior empirical evaluations [7, 16]:
1) Lucene [17] combines the classical vector space model

and the boolean text retrieval model and it can be used
to retrieve code artifacts at any code granularity (i.e.,
methods, classes, or files).

2) Lobster [18] leverages stack traces from bug reports, by
boosting the relevance of code classes that appear in the
traces or near the trace elements in the program dependency
graph. Lobster works at class-level granularity.

3) BugLocator [19] leverages code information related to bugs
that were reported and fixed in the past and also takes into
account the length of code files. This technique boosts the
relevancy of code files that are textually similar to files
changed in previous bug fixes and to longer code files.
BugLocator works at file-level granularity.

4) BRTracer [11] augments BugLocator by utilizing stack
traces from bug reports and segmentation of code files.
Similar to Lobster, it increases the relevancy of code files
that appear in the traces. In addition, it compares segments
of code files to the bug report (as opposed to the whole
code file), and uses the highest similarity to represent the
entire code file. BRTracer works at file-level granularity.

5) Locus [20] uses fine-grained code segmentation of files
based on changes made in the project history. The relevancy
of code files is determined by the relevancy of the small
code segments and by the recency and frequency of these
changes. Locus works at file-level granularity.

This sample of TRBL approaches was chosen with the
intention of including multiple retrieval techniques that use
diverse sources of information. If a reformulation strategy
consistently improves the average performance for multiple
TRBL approaches, this will increase our confidence on the
robustness of the reformulation strategies, including QREX.

B. TRBL Data

We use the TRBL data used by Chaparro et al. [7], which
includes 1,405 queries generated from entire bug reports
(i.e., their title/summary and description). The data spans 198
versions of 30 open-source projects written in Java, which vary
in size and domain. Table I shows an overview of the dataset.

We used Chaparro et al.’s dataset for at least four reasons:
(1) its bug reports were manually analyzed by multiple people
to label the sentences corresponding to the TITLE, OB, EB,
S2R, and CODE; (2) it was adapted from multiple sources in
the existing research, including a recent TRBL reproducibility
study (Bench4BL [16]), and from query reformulation [21]
and fault localization [22] research; (3) it comes in three
code granularities: file, class, and method; and (4) low-quality
queries are already identified in the dataset; out of the 1,405
queries, 1,217 are low-quality, i.e., they fail to retrieve the

TABLE I: Overview of the TRBL data used in the evaluation
Code # of # of # of # of

granularity systems* versions* queries* lqa queries
Class 13 16 360 270
File 11 99 832 158

Method 13 88 213 789
Total 30 198 1,405 1,217

* Total distinct items a low-quality

buggy code artifacts in the top-5 candidates returned by any
of the five TRBL approaches.

The dataset includes: (1) the corresponding fixed (a.k.a.,
buggy or relevant) code artifacts for each query, which rep-
resent the ground truth; (2) the source code corpora (prepro-
cessed and otherwise) for each project version, which represent
the document search space for TRBL; and (3) the original
bug reports used to generate the low-quality queries, which
have their sentences labeled as corresponding to the TITLE,
OB, EB, S2R, or CODE. From the labeled sentences we infer
which sentences correspond to OTHER information.

We used TaskNav [10] to automatically extract the task
phrases from the different parts of the bug reports. TaskNav
extracts tasks corresponding to the definition of task phrases
presented in Section II-B. Based on initial experimentation,
we found that configuring TaskNav with the following options
achieves a result closest to our tasks definition: (1) remove
TaskNav’s pre-defined list of programming verbs, which was
created for software documentation; and (2) extract only task
phrases starting with a direct object relationship.

Of the 1,217 bug reports, all have a TITLE and 67% include
tasks in TITLE; 38% of the reports contain CODE snippets,
97% have OB, 23% have EB, 51% have S2R, and 82% include
OTHER; 87% of the bug reports include tasks in OB, 18% in
EB, 43% in S2R, and 64% include tasks in OTHER.

We used the implementation of BLIZZARD provided in the
replication package of its publication [6]. We replicated BLIZ-
ZARD’s evaluation results, which can be found in our online
appendix [23]. BLIZZARD is applied on the reduced queries
when a reformulation strategy indicates so. BLIZZARD’s input
is the reduced query, the bug report, and the (indexed) code
corpus of the system. The output is a reformulated query
having a subset of the terms from the reduced query (term
selection) as well as extra terms (query expansion).

C. Query Execution and Measures

The empirical evaluation mimics the usage scenario de-
scribed in Section II-A, which is based on four steps. In step
one, the developer issues the initial query using the entire bug
report, which is used for retrieval. In step two, she inspects
the top-N results returned by a TRBL technique. If she does
not find any buggy code artifact, then, in step three, she
makes the choice of either reformulating the initial query by
using a reformulation strategy or using the same initial query
to retrieve N additional candidates (i.e., no reformulation).
Finally, in step four, she inspects the new N results looking
for the buggy artifacts.

Note that, in practice, query reformulation can be done in
an iterative fashion. We decided to control our experimental

setting to these four steps, which involve one query reformu-
lation step only (i.e., step three). This allowed us to closely
analyze the effects of the reformulations for TRBL.

The reformulated queries and the initial queries are executed
using the five TRBL engines. However, not all techniques
are designed to run on all code granularities, so we only
execute them where applicable. This leads to 7 combina-
tions of granularity and technique: Lucene-File, Lucene-Class,
Lucene-Method, BugLocator-File, BRTracer-File, Locus-File,
and Lobster-Class. Since the choice of N is important, we use
six thresholds for the evaluation: N ∈ {5, 10, 15, 20, 25, 30}.
We perform an evaluation of each reformulation for the low-
quality queries at each N for each combination of granularity
and technique. This means that the set of low-quality queries
change for each N , since they are those initial queries that fail
to retrieve the buggy artifacts in the top-N results (using any
of the five TRBL engines). In the end, we have 42 (7×6)
groups of retrieval results for each reformulation: one for
each combination of granularity and technique (7), and each
threshold N (6).

The retrieval effectiveness of both the initial queries (i.e.,
the no-reformulation baseline) and the reformulated ones is
compared using the metrics described below. When measuring
the effectiveness, we only consider the N results retrieved in
step three, which do not include the N results returned by
the initial query in step two. In other words, we measure the
ability of the reformulated queries in retrieving the buggy code
artifacts in the next N results.

This experimental setting is similar to that used by Chaparro
et al. [7]. However, there is one important difference in our
evaluation. Different reformulations can be applied to different
subsets of the queries. In consequence, in that work, the
effectiveness between two reformulations was not directly
compared. Instead, each reformulation was compared against
the no-reformulation baseline. In contrast, in order to allow the
direct comparison of reformulations, we change the evaluation
as follows. When a reformulation r (S,B) cannot be applied
to B (i.e., when r (S,B) = ∅), we use the next N results of
the initial query as the results of applying the strategy on that
bug. We do this for all reformulations: the new combinatorial
ones (which we propose) and the conjunctive ones (defined
by prior work). In this way, every strategy is applied to all
low-quality queries and they can be compared directly. This
decision approximates the reformulation usage scenario better,
considering that when a reformulation is not applicable, the
user would simply not reformulate and just look at N more
code artifacts retrieved by the initial query. Consequently, the
applicability of the reformulations is directly measured by the
retrieval effectiveness, as it is computed over the same set of
queries, rather than by a separate applicability measurement
as used by prior work [7].

We use well-known and widely used metrics to assess
the performance of the strategies [6, 7]. %HITS@N (a.k.a.
%H@N) is the percentage of queries for which at least one
relevant code document is retrieved in the top-N candidates (in
step three). %H@N values closer to one (1) indicate higher

TRBL performance. Mean reciprocal rank (MRR) averages
1/rq across all queries, where rq is the rank of the first
relevant document retrieved by query q. As rq gets smaller
(the document ranks near the top of the result list), 1/rq and
MRR get closer to one (1). Mean average precision (MAP)
aggregates the average precision pq for each query q: avg(pq),
where pq is the average of the proportion of relevant code
documents for q found in the top-k results whenever a relevant
document is ranked in position k. As with MRR, a MAP value
closer to one (1) indicates higher TRBL performance.

We focus the evaluation on %H@N, as we consider that it
better reflects the reformulation usage scenario, given that it
considers only the top-N retrieved candidates (as the end-user
would do), as opposed to the entire list (as MRR and MAP
do). An improvement in MRR and MAP can be significant,
however, it is only relevant in this application if the improve-
ment is the consequence of better rankings in top-N rather
than outside the top-N candidates. Studying the variation of
%H@N is also easy to interpret: it indicates how many queries
are transformed from low-quality into high-quality or remain
high-quality through the reformulations. We present the results
of MRR and MAP, also, for the sake of completeness.

If the %H@N for the reformulated queries is higher than
the one for the initial queries, we can conclude that the refor-
mulation is more effective for retrieval than no reformulation.
If the measures are the other way around, we can conclude
that reformulation does not provide any benefit, as there is no
gain over investigating N more results returned by the initial
query. We apply the same reasoning when directly comparing
two reformulations against each other.

IV. EVALUATION RESULTS AND DISCUSSION

We analyze the results of the empirical evaluation and
answer the research questions. The complete results, statistical
tests, and used data are available in our online appendix [23].

We summarize the results achieved by the no-reformulation
baseline, averaging across thresholds, granularities, and TRBL
techniques. The baseline achieves 0.23 %H@N, 0.06 MRR,
and 0.07 MAP for ≈297 queries, on average. The performance
is low because the queries are low-quality, so they represent
the most challenging cases for automated TRBL.

A. RQ1: Combinatorial vs. Conjunctive Strategies

To answer RQ1, we need to establish in which cases a
combinatorial reformulation rcomb(S,B) performs better on
average than its conjunctive counterpart rconj(S,B). For this,
we focus on all reduction strategies except the strategies that
include a single component only (e.g., O), as for such strategies
the combinatorial and conjunctive reformulations are the same.
Since both types of reformulations target the query reduction
strategies, we do not consider the ones that use BLIZZARD.

In the end, we compared 474 pairs of strategies. Each strat-
egy in the pairs is used on all the queries, whose TRBL results
are grouped and averaged over 42 subsets, corresponding to
the combinations of threshold N , code granularity, and TRBL
technique. We average the metrics to obtain an overall TRBL

Fig. 2: Avg. %H@N for rconj(S,B) vs. rcomb(S,B). X-axis:
strategies, ordered by the combinatorial Avg. %H@N.

performance measurement. The Mann-Whitney test [24] was
used to compare the 42 values for each pair of strategies. We
consider the difference statistically significant if p-value<0.05.

Fig. 2 shows the comparison of avg. %HITS@N for the
combinatorial vs. conjunctive approaches, with the pairs of
reformulations organized from left to right in order of ascend-
ing combinatorial avg. %H@N. The detailed results of the
474 comparisons can be found in our online appendix [23].

Overall, we found that 178 (38%) combinatorial strategies
achieve higher avg. %H@N than their conjunctive counter-
parts. Out of these, 144 strategies (81% of 178) achieve
statistically significant improvement. The overall avg. %H@N
improvement of the combinatorial approach is 14.3%. The re-
maining 296 (62%) combinatorial strategies perform worse in
terms of %H@N than their conjunctive counterparts. However,
while most combinatorial reformulations do not improve over
their conjunctive counterparts, we observed a clear trend. All
178 combinatorial reformulations with improvement over the
conjunctive versions also achieve higher avg. %H@N than
the baseline. Conversely, from the remaining 296 strategies
where the combinatorial approach is not better, 218 (74%)
of the conjunctive strategies do not achieve a higher avg.
%H@N than the baseline. Furthermore, from the 237 (50% of
474) conjunctive strategies that improve over the baseline, 159
(67% of 237 or 89% of 178) of the combinatorial counterparts
achieve higher avg. %H@N. This means that combinatorial
reformulations significantly improve upon the best conjunctive
reformulations, while being ineffective in cases where the
conjunctive approach performs lower than the baseline.

In most cases, the combinatorial reformulations achieve
improvement in terms of MRR and MAP (303 and 301
out of 474 strategies for MRR and for MAP, respectively).
This improvement is statistically significant for 177 strategies
for both MRR and MAP. The average improvement across
strategies is 30% and 31% for MRR and MAP, respectively.
The relative improvement in terms of MRR and MAP is higher
than that in terms of avg. %H@N. However, we argue that
this improvement does not imply that the strategy is more
effective from the point of view of the developer, since most
of it happens outside of the top-N results. This is exactly

Fig. 3: Avg. %H@N for r (S,B) vs. r (SRt,B). X-axis: strate-
gies, ordered by the Avg. %H@N with tasks from OTHER.

the kind of intuition captured by the %H@N metric, which
considers the top-N results only, hence our focus on it.

RQ1 answer: Combinatorial reformulations improve TRBL
performance in 178 of 474 (38%) cases by 14.3% avg.
HITS@N, compared to the conjunctive counterparts. These
reformulations achieve higher effectiveness than the base-
line. In 144 (81%) of the cases, the improvement is statis-
tically significant. From the remaining cases, 218 (74%) of
the conjunctive reformulations are ineffective to begin with
compared to the baseline, and so are the combinatorial ones.

Based on these results, we use only combinatorial reformu-
lations in evaluating the strategies from this point forward.

B. RQ2: Using Tasks from OTHER

As mentioned before, prior work [7] suggests that OTHER
parts of the bug report contain noisy terms, and excluding
them from the query improves TRBL. However, we argue that
OTHER still contains relevant information for TRBL, which
is present in task phrases. To answer RQ2, we examine the
effect of including tasks from OTHER as part of a strategy.

In this analysis, we compare strategy pairs (S,SRt) where
S is any combination of TITLE, OB, EB, S2R, the tasks from
these sources, and CODE; and SRt is the same strategy with
the addition of OTHERt. We do not consider strategies that
use BLIZZARD because we want to measure the effect of
OTHERt during query reduction, hence we compare 161 pairs
of strategies. The complete results can be found in our online
appendix [23], including the results for MRR and MAP.

As seen in Fig. 3, 132 of the 161 (82%) strategies result
in avg. %H@N improvement when tasks from OTHER (i.e.,
OTHERt) are used compared to when they are not. The
improvement for these reformulations is 2.6% avg. H@N,
which is statistically significant in 51 cases (39% of 132). Of
the 132 strategies, 86 (65%) improve over the no-reformulation
baseline. Of the 29 strategies that do not improve when
adding OTHERt, only 4 (14%) achieve improvement over the
baseline. This means that most of the strategies that do not
improve with OTHERt were ineffective to begin with.

Fig. 4: Avg. %H@N for r (YX,B) vs. r (YXt,B). X-axis:
strategies, ordered by the Avg. %H@N with tasks.

RQ2 answer: Adding tasks from OTHER to any strategy
improves the TRBL performance in 132 of 161 cases (82%)
with an average improvement of 2.6% HITS@N.

We briefly discuss a couple of cases in which adding tasks
from OTHER had the largest positive effect on performance.
In bug report #6009 from Derby [25], the focus on task phrases
effectively filtered out examples that were detrimental to the
retrieval. In bug report #1613 from OpenJPA [26], the majority
of the extracted task phrases stem from a sentence explaining
the underlying cause of the bug (“All persistent classes in an
inheritance hierarchy must use a single implicit field...”) rather
than its symptom (“MetaDataException...”), thus improving
the TRBL performance.

On the other hand, a case where task phrases had a negative
result is bug report #5424 from Derby [27]. In this report, task
phrases were only extracted from speculation around what was
likely not the cause of the bug (‘‘The test is newly converted
with DERBY-5084 so not likely a regression...”) instead of the
actual issue. In this case, the vocabulary of the tasks did not
match well the lexicon of the expected buggy code artifact.

C. RQ3: Using Tasks from non-OTHER Parts

To answer RQ3, we measure the effect of using tasks from
bug report parts different from OTHER. We compare pairs of
strategies (YX,YXt) where X is one of TITLE, OB, EB, or
S2R; and Y is a combination of components not containing
X (using tasks or full content). As before, we do not consider
the strategies that use BLIZZARD since we focus on query
reduction. The pairs of this kind amount to 648 pairs total.

Fig. 4 shows the results. Only 8 out of 648 (1.2%) YXt

strategies achieve higher avg. %H@N than the YX strategies
and none of them achieve higher avg. %H@N with statistical
significance. 640 of 648 (98.8%) YXt strategies achieve lower
avg. %H@N than the YX strategies, with 9.5% avg. %H@N
deterioration across strategies. 30 and 5 strategies achieve
(0.6% & 0.4%) improvement for MRR and MAP, respectively.

RQ3 answer: Using tasks from TITLE, OB, EB, or S2R
instead of the full component reduces TRBL performance
by 9.5% avg. HITS@N in 640 out of 648 cases (98.8%).

Fig. 5: Avg. %H@N for r(S,B) vs. r(Sb,B). X-axis: strate-
gies, ordered by the Avg. %H@N with BLIZZARD.

The interpretation of this result is that parts of the bug report
that are not OTHER are dense in terms that are relevant to
TRBL. Removing terms from these parts of the bug report is
more likely than not to result in TRBL deterioration.

D. RQ4: Assessing Query Expansion/Term Selection

We answer RQ4 by comparing the TRBL performance of
using and not using query expansion/term selection through
BLIZZARD. We compare the strategy pairs (S, Sb), where S
is any of 485 reduction strategies and Sb is the application
of BLIZZARD on the reduced query generated by S. We have
in total 485 pairs and we present the results for avg. %H@N
improvement in Fig. 5. Once again, the complete results can
be found in the online appendix [23].

From the 485 strategies, 391 (80%) obtain higher TRBL per-
formance when BLIZZARD is used, in terms of avg. %H@N.
The improvement is 11% avg. H@N. In 295 cases (75% of
391), the %H@N improvement is statistically significant. The
average improvement, in terms of MRR and MAP, is 22.8%
and 21.2%, respectively. If BLIZZARD is used, 245 (62%
of 391) strategies achieve higher avg. %H@N than the no-
reformulation baseline, while when BLIZZARD is not used,
only 154 (39% of 391) improve over the baseline. From the
remaining 94 strategies with no improvement, 63 strategies
(67%) are not better than the baseline independently of the
application of BLIZZARD. For these cases, query reduction is
not better than the baseline and applying query expansion/term
selection on the reduced queries is not better either.

RQ4 answer: Applying query expansion/term selection
through BLIZZARD on the reduced queries improves the
TRBL performance in 391 of 485 cases (80%) with an
improvement of 11% (avg. %HITS@N). In 295 of these
cases (75%), the improvement is statistically significant.

E. RQ5: Best Reformulation Strategies

We analyze the combinatorial reformulations, based on all
the 970 reformulation strategies described in Section II-E. That
is, we consider strategies with and without tasks and with

TABLE II: Strategies with the highest avg. %H@N
Strategy Avg. Avg. improv. vs baseline

%H@N %H@N MRR MAP
TOERtb 0.30 32.09% 75.74% 75.10%
TORtb 0.30 31.70% 68.01% 69.24%
TOEStRtb 0.30 31.25% 76.08% 74.56%
TOEtRtb 0.30 31.20% 69.57% 70.90%
TOStRtb 0.30 30.76% 69.45% 69.64%

TABLE III: Strategies that achieve avg. %H@N improvement
for all techniques and all granularities.

Rank Strategy Avg. Avg. improv. vs baseline
%H@N %H@N MRR MAP

1 TOERtb 0.30 32.09% 75.74% 75.10%
4 TOEtRtb 0.30 31.20% 69.57% 70.90%
18 TOERt 0.29 27.61% 64.20% 62.48%
21 TOESRt 0.29 27.23% 66.24% 66.31%
29 TOEStRt 0.29 26.73% 65.38% 63.94%

and without BLIZZARD. We compare the strategies with state-
of-the-art reformulation techniques, namely BLIZZARD [6],
which is applied on the full bug report; and the best refor-
mulation identified by Chaparro et al. [7] (TOE) using the
combinatorial approach (as opposed to the conjunctive one
from [7], to enable direct performance comparison). We also
compare each strategy with the no-reformulation baseline. We
compute the avg. %H@N for each strategy, using the same
six N thresholds as before, across TRBL techniques and
granularities and we analyze the overall results as well as the
results for each TRBL technique and granularity, separately.
Table II shows the top-5 strategies that achieve the highest
avg. %H@N. The detailed results for all the other strategies
are available in the online appendix [23].

The top-17 best strategies use BLIZZARD, including the
ones shown in Table II, and achieve avg. %H@N between 29%
and 30%. From these, 12 strategies include tasks from OTHER
(Rt). The strategy that achieves the highest improvement (by
32.09% avg. HITS@N) over the no-reformulation baseline is
TOERtb, which achieves 30% avg. HITS@N (vs 22.8% of
the baseline – see Table V). The best non-BLIZZARD strategy
that does not use tasks (TOE) is ranked 24th with 28.9%
avg. HITS@N (27% improvement). This is the best strategy
proposed by Chaparro et al., which is more effective than
BLIZZARD alone, which achieves 26.7% avg. HITS@N and
is ranked 259th. The results show the advantage of combining
tasks from OTHER and BLIZZARD over the state of the art.

1) Detailed analysis: We analyze the results in more detail,
by identifying the strategies that achieve improvements for
all granularities and all techniques. Table III shows the top-5
of such strategies and their improvements. All five strategies
include tasks from OTHER (i.e., Rt) and the first two strategies

TABLE IV: Best strategies for each granularity-technique
GTa Strategy Avg. Avg. improv. vs baseline

%H@N %H@N MRR MAP
BRT-F TOEStRtb 0.24 4.73% 19.74% 21.61%
BL-F TOESRt 0.17 2.36% 2.25% 8.40%
LB-C TSCRt 0.38 107.36% 241.91% 241.37%
LC-F TOERt 0.39 26.25% 46.11% 48.41%
LU-C TOtESRtb 0.46 46.89% 116.03% 120.24%
LU-F TOEtRtb 0.30 40.88% 83.91% 81.28%
LU-M TOtSCRb 0.25 35.03% 59.05% 51.08%

aGranularity-Technique: F=File, C=Class, M=Method, LU=Lucene, LC=Locus,
BL=BugLocator, BRT=BRTracer, LB=Lobster

TABLE V: Results for the best strategies (with Rt or b), the best strategies from prior work, and the no-reformulation baseline.
Strategy Avg. H@N Avg. % of queries Avg. % of baseline vs reformulated queries

% Improv. Deter. Equal L → H H → L H → H L → L L+2N → H H → L2N

TOERtb 77.0 0.30 58.5% 38.3% 3.2% 14.0% 6.7% 16.1% 63.2% 8.7% 2.8%
TOEb 73.8 0.30 54.1% 42.4% 3.4% 14.2% 7.5% 15.3% 63.0% 9.2% 2.7%
TOERt 74.5 0.29 53.0% 31.7% 15.3% 11.5% 5.2% 17.6% 65.7% 6.9% 1.8%
TOE [7] 73.1 0.29 50.7% 35.6% 13.7% 12.2% 6.1% 16.7% 65.0% 7.7% 2.0%
BLIZZARD [6] 70.1 0.27 52.4% 43.6% 4.0% 10.6% 6.7% 16.1% 66.6% 6.1% 3.3%
Baseline 63.2 0.23 − − − − − − − − −

also include BLIZZARD, which are the 1st and 4th with the
highest overall TRBL performance. We observe that all these
strategies share the TITLE, the OB, the EB (in a few cases,
tasks from EB), and tasks from OTHER.

We also investigate the best strategy for each pair of tech-
nique and granularity independently and show the results in
Table IV. For six of seven technique-granularity combinations,
the best strategy includes tasks from OTHER (i.e., Rt). Four of
the seven strategies use BLIZZARD. The avg. %H@N achieved
by the best strategies across technique-granularity combina-
tions ranges from 17.5% to 45.8% (compared to the 17.1% -
31.6% avg. H@N of the baseline). TOERtb ranks between
position 2 and 12 for all technique-granularity combinations
except LB-C and LC-M, for which it ranks in positions 176
and 163, respectively. The TRBL performance achieved by
TOERtb ranges from 17.3% to 45.6% avg. HITS@N.

Table V compares the best reformulation strategies that use
tasks and/or BLIZZARD with the best approaches from prior
work. The results are sorted by avg. %H@N and show that our
proposed strategies are more effective. The table also provides
detailed results of the queries. It shows the proportion of
queries that the strategies improve (column #4), deteriorate
(column #5), and achieve equal avg. %H@N (column #6) with
respect to the no-reformulation baseline. The table reveals that
the best strategy (TOERtb) improves more queries (58.5%)
than the other strategies while deteriorating 38% of them.
Applying BLIZZARD has an effect on the queries that achieve
equal performance to the baseline, as the query proportion
goes down from ≈13%/15% to ≈3%. In fact, BLIZZARD alone
makes 4% of the queries to achieve the same performance
as the baseline. However, compared to the other strategies,
BLIZZARD’s deterioration rate is the highest (43.6%).

We also analyze the (avg.) proportion of queries that are
low-quality and become high-quality when they are refor-
mulated (column #7 from Table V: L → H). Unlike low-
quality queries, high-quality queries retrieve at least one buggy
code artifact within the top-N results (in the 3rd step of the
reformulation usage scenario described in Section II-A). We
analyze all possible transitions between low- and high-quality
queries (columns #7-10 from Table V). The results show that
TOERtb and TOEb achieve the highest L→ H rate (14%+)
while achieving an acceptable H → H query proportion
(≈15%-16%), compared to the other strategies. H → H
queries are those high-quality that remain high-quality after
reformulation. Table V reveals that these two strategies are
able to turn the low-quality queries that retrieve the buggy code
artifacts below the top-2N results into high-quality queries
(L+2N → H) in more cases than for the other strategies.

This is the best-case scenario of query improvement. Likewise,
these two strategies turn high-quality queries into L2N queries
(H → L2N) in more cases than the other strategies. This is
the least-harmful scenario of deterioration, where high-quality
queries are deteriorated into low-quality ones that retrieve the
buggy code artifacts between positions N and 2N of the result
list. These results mean that these two strategies behave better
in the best-case scenarios of improvement and deterioration.
In other words, other strategies improve queries to a lesser
extent and deteriorate queries to a greater extent than TOERtb
and TOEb do. The results explain the overall avg. %H@N
performance achieved by these strategies, and the combination
of L→ H and H → H cases make TOERtb stand out over
TOEb as the best strategy overall.

RQ5 answer: TOERtb is the strategy with the highest
TRBL performance across all TRBL techniques and code
granularities (30.1% avg. HITS@N). This strategy outper-
forms state-of-the-art approaches by 4% (TOE [7]) and
12.6% (BLIZZARD [6]), and the no-reformulation baseline
by 32.1% avg. HITS@N. However, there are slightly bet-
ter strategies for some technique-granularity combinations.
Each combination has a different best strategy.

F. Definition of QREX

We construct QREX using the TOERtb strategy, which
employs the combinatorial reformulation approach. As shown
by the evaluation, QREX improves over the state of the art (on
average) and is robust over the selection of thresholds N , the
TRBL engine applied, and code granularity.

The user scenario for QREX corresponds to the 4-step
process detailed in Section II-A. Namely, the developer first
runs the TRBL engine of her choice with the full text of the
bug report. If she is unsuccessful in locating the buggy code
after examining the top-N results, she would select as many
of the following components as are available in the bug report:
the TITLE, OB, EB, and task phrases from OTHER. Finally,
the selected text will be input to BLIZZARD, and the resulting
reformulated query will be run again with the same TRBL
engine. We anticipate that selecting these components would
take developers only slightly longer than it would take them
to read the full report.

Our online appendix [23] reports the detailed TRBL perfor-
mance achieved by QREX for each N , engine, and granularity.

V. THREATS TO VALIDITY

Threats to internal validity stem from the data and TRBL
techniques used in our study. To mitigate these threats, we used

datasets and TRBL tools used in existing research [7, 16, 28].
The datasets were carefully curated by their authors to remove
spurious issues and buggy code artifacts. The identification of
bug report parts is another threat. We used the labeled data
provided by Chaparro et al. [7], who used a rigorous coding
process and reported a high inter-coder agreement. Another
threat is the use of TaskNav [10] for extracting tasks from
the bug reports. While TaskNav’s evaluations [10] reported
high detection precision, some extracted tasks may be false
positives and some others may have been missed by the tool.

Construct validity is affected by the metrics we chose to
compare reformulations. We use the rank of the 1st relevant
document as a proxy for the user finding a buggy code artifact
within the top-N results. This experimental setup is standard
in TRBL and query reformulation research [6, 7, 16, 29]. We
consider that the %H@N metric is straightforward to interpret
and it matches a realistic TRBL scenario better than MRR and
MAP do. Nonetheless, we report the MRR and MAP results.

To increase the external validity, we used TRBL data
consisting of 198 versions of 30 open-source software sys-
tems, from multiple domains and types (e.g., libraries, web
applications, etc.). These data were manually curated and used
in previous research. We used five different TRBL approaches,
which retrieve code at multiple granularity levels.

VI. RELATED WORK

Our research is motivated by the work of Chaparro et
al. [7, 28, 30], who showed that removing irrelevant query
terms can lead to substantial TRBL improvement. Mills et
al. [1] confirmed this finding and found that bug report
vocabulary is all that is required to formulate effective queries.
Chaparro et al. [7] found that selecting the title, the observed
behavior (OB), and the expected behavior (EB) from the bug
report is the strategy that performs best, yet its applicability
is affected by the absence of the EB in many bug reports.
Our work introduces a new way to identify relevant terms for
query reduction, based on task phrases from OTHER parts
of the report. Compared to Chaparro et al.’s approach, our
combinatorial strategies are more effective and, by definition,
more applicable because they depend less on uncommon
elements in bug reports (e.g., EB).

The work by Rahman et al. [6] is leveraged in our research.
We combine our reduction strategies with BLIZZARD, and we
empirically show that the combination leads to higher TRBL
performance than BLIZZARD alone. Related to this work, Rah-
man and colleagues developed approaches that identify search
terms based on (1) structured source code entities and their co-
occurrences [31, 32]; (2) TextRank and POSRank [33]; and (3)
mining and using Stack Overflow data for translating a query
into a list of API classes [34–36].

Lemos et al. [37] apply automatic query expansion using
WordNet and a thesaurus containing software-related word
relations. In follow-up work, Lemos et al. [38] found that in
some situations it is best to use keywords only, when these
are sufficient to semantically define the desired function.

Hill et al. [39] compared two approaches for incorporating
word proximity and order in retrieval: one based on ad-hoc
considerations and another based on Markov Random Field
(MRF) modeling. Sisman et al. [40] later confirmed that a
Markov-model-based approach can outperform bag of words.
In an earlier approach, Sisman and Kak [41] achieved signif-
icant improvements using a reformulation approach based on
pseudo-relevance feedback.

Gay et al. [29] used relevance feedback in TR-based concept
location in which developers judge search results and the
TR system uses this information to perform a new search.
Lu et al. [42] presented a similar approach to interactively
reformulate a query based on the relations between words in
source code.

Haiduc and colleagues [8, 9, 21] showed that different re-
formulation approaches are needed depending on the quality
of the queries, and some queries benefit from reduction while
others benefit from expansion. Mills et al. [5] showed that no
single bug report component (EB, OB, etc.) can be assumed
to contain optimal terms for TRBL. We support this finding
and show that a combinatorial selection of certain components
can lead to TRBL performance improvement on average.

VII. CONCLUSIONS AND FUTURE WORK

An empirical study of 970 query reformulation strategies on
1,217 bug reports from multiple software systems led to the
conclusion that the TITLE, OB, and EB are dense in relevant
terms for TRBL. More importantly, our results suggest that the
OTHER parts of a bug report also contain relevant information
for retrieving buggy code artifacts. We found that (part of) such
information is encoded in task phrases.

The evaluation of the 970 reformulation strategies allowed
us to define a new query reformulation approach for TRBL
applications (QREX), which uses query reduction on entire
bug reports used as initial queries, and then, it applies query
expansion/term selection on the reduced queries. Query re-
duction is done using a novel combinatorial selection of bug
report components and task phrases. QREX is more effective
and applicable than existing reformulation approaches.

In practice, QREX is meant to be used as a recommender
system that assists the developers during bug localization
when they use TRBL engines. When the developer wants to
reformulate the query (i.e., after inspecting N results), QREX
recommends the developer to select the TITLE, OB, EB, and
the tasks from OTHER parts of the bug report (if available)
and then apply BLIZZARD to expand the reduced query.

Our future work will focus on automating the reformulations
produced by QREX, as currently, developers need to use sev-
eral unconnected tools or manual reformulations. In addition,
we will evaluate the reformulation strategies using additional
query expansion approaches.

ACKNOWLEDGMENTS

This research was supported in part by grants from the
National Science Foundation: CCF-1848608, CCF-1910976,
CCF-1955837, and CCF-1955853.

REFERENCES

[1] C. Mills, J. Pantiuchina, E. Parra, G. Bavota, and S. Haiduc, “Are bug
reports enough for text retrieval-based bug localization?” in Proceedings
of the 34th IEEE International Conference on Software Maintenance and
Evolution (ICSME’18), 2018, pp. 410–421.

[2] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: A taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2012.

[3] A. Marcus and S. Haiduc, “Text retrieval approaches for concept
location in source code,” in Software Engineering: International Summer
Schools, ISSSE 2009-2011, Salerno, Italy. Revised Tutorial Lectures, ser.
Lecture Notes in Computer Science. Springer, 2013, vol. 7171, pp.
126–158.

[4] X. A. Lu and R. B. Keefer, “Query expansion/reduction and its impact
on retrieval effectiveness,” NIST Special Publication, pp. 231–231, 1995.

[5] C. Mills, E. Parra, J. Pantiuchina, G. Bavota, and S. Haiduc, “On the
relationship between bug reports and queries for text retrieval-based bug
localization,” Empirical Software Engineering, vol. 25, no. 5, pp. 3086–
3127, Sep. 2020.

[6] M. M. Rahman and C. K. Roy, “Improving ir-based bug localization
with context-aware query reformulation,” in Proceedings of the 26th
ACM Joint Meeting on the Foundations of Software Engineering (ES-
EC/FSE’18). ACM, 2018, pp. 621–632.

[7] O. Chaparro, J. M. Florez, and A. Marcus, “Using bug descriptions
to reformulate queries during text-retrieval-based bug localization,”
Empirical Software Engineering, vol. 24, no. 5, pp. 2947–3007, 2019.

[8] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval in soft-
ware engineering,” in Proceedings of the International Conference on
Software Engineering (ICSE’13), 2013, pp. 842–851.

[9] S. Haiduc, G. De Rosa, G. Bavota, A. Marcus, R. Oliveto, and A. De Lu-
cia, “Query quality prediction and reformulation for source code search:
the refoqus tool,” in Proceedings of the International Conference on
Software Engineering (ICSE’13), 2013, pp. 1307–1310.

[10] C. Treude, M. Sicard, M. Klocke, and M. Robillard, “Tasknav: Task-
based navigation of software documentation,” in Proceedings of the 37th
IEEE International Conference on Software Engineering (ICSE’15),
2015, pp. 649–652.

[11] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis,” in Proceedings of the Conference on Software
Maintenance and Evolution (ICSME’14), 2014, pp. 181–190.

[12] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus,
G. Bavota, and V. Ng, “Detecting missing information in bug descrip-
tions,” in Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE’17), 2017, 396-407.

[13] Y. Song and O. Chaparro, “Bee: a tool for structuring and analyzing
bug reports,” in Proceedings of the 28th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE’20), 2020, pp. 1551–1555.

[14] C. Treude, M. P. Robillard, and B. Dagenais, “Extracting development
tasks to navigate software documentation,” IEEE Transactions on Soft-
ware Engineering, vol. 41, no. 6, pp. 565–581, 2015.

[15] E. issue tracker, “Swt bug report #81264,” 2020. [Online]. Available:
https://bugs.eclipse.org/bugs/show bug.cgi?id=81264

[16] J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon, “Bench4bl:
Reproducibility study on the performance of ir-based bug localization,”
in Proceedings of the 27th International Symposium on Software Testing
and Analysis (ISSTA’18), ser. ISSTA 2018, 2018, pp. 61–72.

[17] E. Hatcher and O. Gospodnetic, Lucene in Action. Manning Publica-
tions, 2004.

[18] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen, “On the use of stack
traces to improve text retrieval-based bug localization,” in Proceedings
of the Conference on Software Maintenance and Evolution (ICSME’14),
2014, pp. 151–160.

[19] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in Proceedings of the International Conference on Software
Engineering (ICSE’12), 2012, pp. 14–24.

[20] M. Wen, R. Wu, and S. Cheung, “Locus: Locating bugs from software
changes,” in Proceedings of the 31st International Conference on
Automated Software Engineering (ASE’16), 2016, pp. 262–273.

[21] C. Mills, G. Bavota, S. Haiduc, R. Oliveto, A. Marcus, and A. De Lucia,
“Predicting query quality for applications of text retrieval to software

engineering tasks,” Transactions on Software Engineering and Method-
ology, vol. 26, no. 1, pp. 3:1–3:45, 2017.

[22] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Proceed-
ings of the International Symposium on Software Testing and Analysis
(ISSTA’14). ACM, 2014, pp. 437–440.

[23] J. M. Florez, O. Chaparro, C. Treude, and A. Marcus, “Combining
query reduction and expansion for text-retrieval-based bug localization
– online appendix,” 2021. [Online]. Available: https://doi.org/10.5281/
zenodo.4431018

[24] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013, vol. 751.

[25] A. issue tracker, “Derby bug report #6009,” 2020. [Online]. Available:
https://issues.apache.org/jira/browse/DERBY-6009

[26] ——, “Openjpa bug report #1613,” 2020. [Online]. Available:
https://issues.apache.org/jira/browse/OPENJPA-1613

[27] ——, “Derby bug report #5424,” 2020. [Online]. Available: https:
//issues.apache.org/jira/browse/DERBY-5424

[28] O. Chaparro, J. M. Florez, and A. Marcus, “Using observed behavior to
reformulate queries during text retrieval-based bug localization,” in Pro-
ceedings of the 33rd International Conference on Software Maintenance
and Evolution (ICSME’17), 2017, pp. 376–387.

[29] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of
relevance feedback in ir-based concept location,” in Proceedings of the
International Conference on Software Maintenance (ICSM’09), 2009,
pp. 351–360.

[30] O. Chaparro and A. Marcus, “On the Reduction of Verbose Queries
in Text Retrieval Based Software Maintenance,” in Proceedings of the
International Conference on Software Engineering (ICSE’16), 2016, pp.
716–718.

[31] M. M. Rahman and C. K. Roy, “Improved query reformulation for con-
cept location using coderank and document structures,” in Proceedings
of the International Conference on Automated Software Engineering
(ASE’17). IEEE Press, 2017, pp. 428–439.

[32] M. M. Rahman and C. Roy, “Poster: Improving bug localization with
report quality dynamics and query reformulation,” in Proceedings of the
International Conference on Software Engineering (ICSE’18), 2018, pp.
348–349.

[33] M. M. Rahman and C. K. Roy, “Strict: Information retrieval based search
term identification for concept location,” in Proceeding of the Confer-
ence on Software Analysis, Evolution, and Reengineering (SANER’17),
2017, pp. 79–90.

[34] M. M. Rahman and C. Roy, “Effective reformulation of query for code
search using crowdsourced knowledge and extra-large data analytics,” in
Proceedings of the International Conference on Software Maintenance
and Evolution, 2018, pp. 473–484.

[35] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Code search in the ide
using crowdsourced knowledge,” in Proceedings of the International
Conference on Software Engineering (ICSE’17), 2017, pp. 51–54.

[36] M. M. Rahman, C. K. Roy, and D. Lo, “Automatic query reformulation
for code search using crowdsourced knowledge,” Empirical Software
Engineering, vol. 24, no. 4, pp. 1869–1924, 2019.

[37] O. A. L. Lemos, A. C. de Paula, F. C. Zanichelli, and C. V. Lopes,
Thesaurus-based Automatic Query Expansion for Interface-driven Code
Search, 2014, pp. 212–221.

[38] O. A. L. Lemos, A. C. de Paula, H. Sajnani, and C. V. Lopes, “Can the
use of types and query expansion help improve large-scale code search?”
in Proceedings of the International Working Conference on Source Code
Analysis and Manipulation (SCAM’15), 2015, pp. 41–50.

[39] E. Hill, B. Sisman, and A. Kak, “On the use of positional proximity
in ir-based feature location,” in Proceedings of the IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE’14), 2014, pp. 318–322.

[40] B. Sisman, S. A. Akbar, and A. C. Kak, “Exploiting spatial code prox-
imity and order for improved source code retrieval for bug localization,”
Journal of Software: Evolution and Process, vol. 29, no. 1, p. e1805,
2017.

[41] B. Sisman and A. C. Kak, “Assisting code search with automatic
query reformulation for bug localization,” in Proceedings of the Working
Conference on Mining Software Repositories (MSR’13), 2013, pp. 309–
318.

[42] J. Lu, Y. Wei, X. Sun, B. Li, W. Wen, and C. Zhou, “Interactive query
reformulation for source-code search with word relations,” IEEE Access,
vol. 6, pp. 75 660–75 668, 2018.

