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Abstract—When a bug manifests in a user-facing application, it
is likely to be exposed through the graphical user interface (GUI).
Given the importance of visual information to the process of
identifying and understanding such bugs, users are increasingly
making use of screenshots and screen-recordings as a means
to report issues to developers. However, when such information
is reported en masse, such as during crowd-sourced testing,
managing these artifacts can be a time-consuming process. As
the reporting of screen-recordings in particular becomes more
popular, developers are likely to face challenges related to
manually identifying videos that depict duplicate bugs. Due to
their graphical nature, screen-recordings present challenges for
automated analysis that preclude the use of current duplicate bug
report detection techniques. To overcome these challenges and aid
developers in this task, this paper presents TANGO, a duplicate
detection technique that operates purely on video-based bug
reports by leveraging both visual and textual information. TANGO
combines tailored computer vision techniques, optical character
recognition, and text retrieval. We evaluated multiple configura-
tions of TANGO in a comprehensive empirical evaluation on 4,860
duplicate detection tasks that involved a total of 180 screen-
recordings from six Android apps. Additionally, we conducted
a user study investigating the effort required for developers to
manually detect duplicate video-based bug reports and compared
this to the effort required to use TANGO. The results reveal that
TANGO’s optimal configuration is highly effective at detecting
duplicate video-based bug reports, accurately ranking target
duplicate videos in the top-2 returned results in 83% of the tasks.
Additionally, our user study shows that, on average, TANGO can
reduce developer effort by over 60%, illustrating its practicality.

Index Terms—Bug Reporting, Screen Recordings, Duplicate
Detection

I. INTRODUCTION

Many modern mobile applications (apps) allow users to
report bugs in a graphical form, given the GUI-based nature of
mobile apps. For instance, Android and iOS apps can include
built-in screen-recording capabilities in order to simplify the
reporting of bugs by end-users and crowd-testers [10, 12, 18].
The reporting of visual data is also supported by many
crowd-testing and bug reporting services for mobile apps [8–
13, 15, 17–19], which intend to aid developers in collecting,
processing, and understanding the reported bugs [26, 77].

The proliferation of sharing images to convey additional
context for understanding bugs, e.g., in Stack Overflow Q&As,
has been steadily increasing over the last few years [81]. Given
this and the increased integration of screen capture technology

into mobile apps, developers are likely to face a growing set
of challenges related to processing and managing app screen-
recordings in order to triage and resolve bugs — and hence
maintain the quality of their apps.

One important challenge that developers will likely face
in relation to video-related artifacts is determining whether
two videos depict and report the same bug (i.e., detecting
duplicate video-based bug reports), as it is currently done
for textual bug reports [27, 86, 87]. When video-based bug
reports are collected at scale, either via a crowdsourced testing
service [8–13, 15, 17–19] or by popular apps, the sizable
corpus of collected reports will likely lead to significant
developer effort dedicated to determining if a new bug report
depicts a previously-reported fault, which is necessary to
avoid redundant effort in the bug triaging and resolution
process [26, 27, 73, 77]. In a user study which we detail later
in this paper (Sec. III-E), we investigated the effort required
for experienced programmers to identify duplicate video-based
bug reports and found that participants reported a range of
difficulties for the task (e.g., a single change of one step can
result in two very similar looking videos showing entirely
different bugs), and spent about 20 seconds of comprehension
effort on average per video viewed. If this effort is extrapolated
to the large influx of bug reports that could be collected
on a daily basis [27, 35, 86, 87], it illustrates the potential
for the excessive effort associated with video-based duplicate
bug detection. This is further supported by the plans of a
large company that supports crowd-sourced bug reporting
(name omitted for anonymity), which we contacted as part
of eliciting the design goals for this research, who stated that
they anticipate increasing developer effort in managing video-
based reports and that they are planning to build a feature in
their framework to support this process.

To aid developers in determining whether video-based bug
reports depict the same bug, this paper introduces TANGO,
a novel approach that analyzes both visual and textual in-
formation present in mobile screen-recordings using tailored
computer vision (CV) and text retrieval (TR) techniques, with
the goal of generating a list of candidate videos (from an issue
tracker) similar to a target video-based report. In practice,
TANGO is triggered upon the submission of a new video-based
report to an issue tracker. A developer would then use TANGO
to retrieve the video-based reports that are most similar (e.g.,



top-5) to the incoming report for inspection. If duplicate videos
are found in the ranked results, the new bug report can be
marked as a duplicate in the issue tracker. Otherwise, the
developer can continue to inspect the ranked results until she
has enough confidence that the newly reported bug was not
reported before (i.e., it is not a duplicate).

TANGO operates purely upon the graphical information in
videos in order to offer flexibility and practicality. These
videos may show the unexpected behavior of a mobile app
(i.e., a crash or other misbehavior) and the steps to reproduce
such behavior. Two videos are considered to be duplicates
if they show the same unexpected behavior (aka a bug)
regardless of the steps to reproduce the bug. Given the nature
of screen-recordings, video-based bug reports are likely to
depict unexpected behavior towards the end of the video.
TANGO attempts to account for this by leveraging the temporal
nature of video frames and weighting the importance of frames
towards the end of videos more heavily than other segments.

We conducted two empirical studies to measure: (i) the
effectiveness of different configurations of TANGO by exam-
ining the benefit of combining visual and textual information
from videos, as opposed to using only a single information
source; and (ii) TANGO’s ability to save developer effort in
identifying duplicate video-based bug reports. To carry out
these studies, we collected a set of 180 video-bug reports
from six popular apps used in prior research [25, 34, 78, 79],
and defined 4,860 duplicate detection tasks that resemble those
that developers currently face for textual bug reports – wherein
a corpus of potential duplicates must be ranked according to
their similarity to an incoming bug report.

The results of these studies illustrate that TANGO’s most
effective configuration, which selectively combines visual and
textual information, achieves 79.8% mRR and 73.2% mAP,
an average rank of 1.7, a HIT@1 of 67.7%, and a HIT@2
of 83%. This means that TANGO is able to suggest correct
duplicate reports in the top-2 of the ranked candidates for 83%
of duplicate detection tasks. The results of the user study we
conducted with experienced programmers demonstrate that on
a subset of the tasks, TANGO can reduce the time they spend
in finding duplicate video-based bug reports by ≈ 65%.

In summary, the main contributions of this paper are:

1) TANGO, a duplicate detection approach for video-based
bug reports of mobile apps which is able to accurately
suggest duplicate reports;

2) The results of a comprehensive empirical evaluation that
measures the effectiveness of TANGO in terms of suggest-
ing candidate duplicate reports;

3) The results of a user study with experienced program-
mers that illustrates TANGO’s practical applicability by
measuring its potential for saving developer effort; and

4) A benchmark (included in our online appendix [42])
that enables (i) future research on video-based duplicate
detection, bug replication, and mobile app testing, and
(ii) the replicability of this work. The benchmark con-
tains 180 video-based bug reports with duplicates, source

code, trained models, duplicate detection tasks, TANGO’s
output, and detailed evaluation results.

II. THE TANGO APPROACH

TANGO (DETECTING DUPLICATE SCREEN RECORDINGS
OF SOFTWARE BUGS) is an automated approach based on
CV and TR techniques, which leverages visual and textual
information to detect duplicate video-based bug reports.

A. TANGO Overview

TANGO models duplicate bug report detection as an infor-
mation retrieval problem. Given a new video-based bug report,
TANGO computes a similarity score between the new video
and videos previously submitted by app users in a bug tracking
system. The new video represents the query and the set of
existing videos represent the corpus. TANGO sorts the corpus
of videos in decreasing order by similarity score and returns a
ranked list of candidate videos. In the list, those videos which
are more likely to show the same bug as the new video are
ranked higher than those that show a different bug.

TANGO has two major components, which we refer to as
TANGOvis and TANGOtxt (Fig. 1), that compute video similar-
ity scores independently. TANGOvis computes the visual sim-
ilarity and TANGOtxt computes the textual similarity between
videos. The resulting similarity scores are linearly combined to
obtain a final score that indicates the likelihood of two videos
being duplicates. In designing TANGOvis, we incorporated
support for two methods of computing visual similarity — one
of which is sensitive to the sequential order of visual data, and
the other one that is not — and we evaluate the effectiveness of
these two techniques in experiments described in Sec. III-IV.

The first step in TANGO’s processing pipeline (Fig. 1) is
to decompose the query video, and videos from the existing
corpus, into their constituent frames using a given sampling
rate (i.e., 1 and 5 frames per second - fps). Then, the TANGOvis

and TANGOtxt components of the approach are executed in
parallel. The un-ordered TANGOvis pipeline is shown at the
top of Fig. 1, comprising steps V1 - V3 ; the ordered TANGOvis

pipeline is illustrated in the middle of Fig. 1, comprising
steps V1 , V4 , and V5 ; and finally, the TANGOtxt pipeline is
illustrated at the bottom of Fig. 1 through steps T1 - T3 . Any of
these three pipelines can be used to compute the video ranking
independently or in combination (i.e., combining the two
TANGOvis together, one TANGOvis pipeline with TANGOtxt,
which we call TANGOcomb, or all three – see Sec. III-C). Next,
we discuss these three pipelines in detail.

B. TANGOvis: Measuring Unordered Visual Video Similarity

The unordered version of TANGOvis computes the visual
similarity (Svis) of video-based bug reports by extracting
visual features from video frames and converting these features
into a vector-based representation for a video using a Bag-
of-Visual-Words (BoVW) approach [58, 92]. This process is
depicted in the top of Fig. 1. The visual features are extracted
by the visual feature extractor model ( V1 in Fig. 1). Then,
the visual indexer V2 assigns to each frame feature vector a
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Fig. 1. The TANGO approach for detecting duplicate video-based bug reports.

visual word from a visual codebook and produces a BoVW for
a video. The visual encoder V5 , based on the video BoVW,
encodes the videos using a TF-IDF representation that can be
used for similarity computation.

1) Visual Feature Extraction: The visual feature extrac-
tor V1 can either use the SIFT [75] algorithm to extract
features, or SimCLR [40], a recently proposed Deep Learning
(DL) model capable of learning visual representations in an
unsupervised, contrastive manner. TANGO’s implementation of
SimCLR is adapted to extract visual features from app videos.

The first method by which TANGO can extract visual
features is using the Scale-Invariant Feature Transform
(SIFT) [75] algorithm. SIFT is a state-of-the-art model for
extracting local features from images that are invariant to scale
and orientation. These features can be matched across images
for detecting similar objects. This matching ability makes SIFT
promising for generating features that can help locate duplicate
images (in our case, duplicate video frames) by aggregating
the extracted features. TANGO’s implementation of SIFT does
not resize images and uses the top-10 features that are the
most invariant to changes and are based on the local contrast
of neighboring pixels, with higher contrast usually meaning
more invariant. This is done to reduce the number of SIFT
features, which could reach at least three orders of magnitude
for a single frame, and make the visual indexing V2 (through
k-Means – see Sec. II-B2) computationally feasible.

The other technique that TANGO can use to extract features
is SimCLR. In essence, the goal of this technique is to
generate robust visual features that cluster similar images
together while maximizing the distance between dissimilar
images in an abstract feature space. This is accomplished by
(i) generating sets of image pairs (containing one original
image and one augmented image) and applying a variety
of random augmentations (i.e., image cropping, horizontal
flipping, color jittering, and gray-scaling); (ii) encoding this
set of image pairs using a base encoder, typically a variation
of a convolutional neural network (CNN); and (iii) training a
multi-layer-perceptron (MLP) to produce feature vectors that
increase the cosine similarity between each pair of image
variants and decrease the cosine similarity between negative
examples, where negative examples for a given image pair are

represented as all other images not in that pair, for a given
training batch. TANGO’s implementation of SimCLR employs
the ResNet50 [53] CNN architecture as the base encoder,
where this architecture has been shown to be effective [40].

To ensure that TANGO’s visual feature extractor is tailored
to the domain of mobile app screenshots, we trained this
component on the entire RICO dataset [43], which contains
over 66k Android screenshots from over 9k of the most
popular apps on Google Play. Our implementation of SimCLR
was trained using a batch size of 1, 792 and 100 epochs, the
same hyperparameters (e.g., learning rate, weight decay, etc.)
recommended by Chen et al. [40] in the original SimCLR
paper, and resized images to 224×224 to ensure consistency
with our base ResNet50 architecture. The training process was
carried out on an Ubuntu 20.04 server with three NVIDIA T4
Tesla 16GB GPUs. The output of the feature extractor for
SimCLR is a feature vector (of size 64) for each frame of a
given video.

2) Visual Indexing: While the SimCLR or SIFT feature
vectors generated by TANGO’s visual feature extractor V1

could be used to directly compute the similarity between video
frames, recent work has suggested that a BoVW approach
combined with a TF-IDF similarity measure is more adept
to the task of video retrieval [66]. Therefore, to transform the
SimCLR or SIFT feature vectors into a BoVW representation,
TANGO uses a visual indexing process V2 . This process
produces an artifact known as a Codebook that maps SimCLR
or SIFT feature vectors to “visual words” — which are discrete
representations of a given image, and have been shown to
be suitable for image and video recognition tasks [66]. The
Codebook derives these visual words by clustering feature
vectors and computing the centroids of these clusters, wherein
each centroid corresponds to a different visual word.

The Codebook makes use of the k-Means clustering al-
gorithm, where the k represents the diversity of the visual
words, and thus can affect the representative power of this
indexing process. TANGO’s implementation of this process is
configurable to 1k, 5k, or 10k for the k number of clusters
(i.e., the number of visual words - VW). 1k VW and 10k
VW were selected as recommended by Kordopatis-Zilos et
al. [66] and we included 5k VW as a “middle ground” to



better understand how the number of visual words impacts
TANGO’s performance. A Codebook is generated only once for
a given k, however, it must be trained before it can be applied
to convert an input feature vector to its corresponding visual
word(s). Once trained, a Codebook can then be used to map
visual words from frame feature vectors without any further
modification. Thus, we trained TANGO’s six Codebooks, three
for SIFT and three for SimCLR, using features extracted from
15, 000 randomly selected images from the RICO dataset [43].
We did not use the entire RICO dataset due to computational
constraints of the k-means algorithm.

After the feature vector for a video frame is passed through
the visual indexing process, it is mapped to its BoVW rep-
resentation by a trained Codebook. To do this, the Codebook
selects the closest centroid to each visual feature vector, based
on Euclidean distance. For SIFT, this process may generate
more than one feature vector for a single frame, due to the
presence of multiple SIFT feature descriptors. In this case,
TANGO assigns multiple visual words to each frame. For
SimCLR, TANGO assigns one visual word to each video frame,
as SimCLR generates only one vector per frame.

3) Visual Encoding: After the video is represented as a
BoVW, the visual encoder V3 computes the final vector repre-
sentation of the video through a TF-IDF-based approach [91].
The term frequency (TF) is computed as the number of visual
words occurrences in the BoVW representation of the video,
and the inverse document frequency (IDF) is computed as the
number of occurrences of a given visual word in the BoVW
representations built from the RICO dataset. Since RICO does
not provide videos but individual app screenshots, we consider
each RICO image as one document. We opted to use RICO
to compute our IDF representation for two reasons: (i) to
combat the potentially small number of frames present in a
given video recording, and (ii) to bolster the generalizability
of our similarity measure across a diverse set of apps.

4) Similarity Computation: Given two videos, TANGOvis

encodes them into their BoVW representations, and each video
is represented as one visual TF-IDF vector. These vectors are
compared using cosine similarity, which is taken as the visual
similarity S of the videos (Svis = SBoVW ).

C. TANGOvis: Measuring Ordered Visual Video Similarity

The ordered version of TANGOvis considers the sequence
of video frames when comparing two videos and is capable
of giving more weight to common frames nearer the end of
the videos, as this is likely where buggy behavior manifests.
To accomplish this, the feature vector extractor V1 is used
to derive descriptive vectors from each video frame using
either SimCLR or SIFT. TANGO determines how much the
two videos overlap using an adapted longest common substring
(LCS) algorithm V4 . Finally, during the sequential comparison
process V5 , TANGO calculates the similarity score by normal-
izing the computed LCS score.

1) Video Overlap Identification: In order to account for the
sequential ordering of videos, TANGO employs two different
versions of the longest common substring (LCS) algorithm.

The first version, which we call fuzzy-LCS (f-LCS), modifies
the comparison operator of the LCS algorithm to perform
fuzzy matching instead of exact matching between frames
in two videos. This fuzzy matching is done differently for
SimCLR and SIFT-derived features. For SimCLR, given that
each frame is associated with only a single visual word, the
standard BoVW vector would be too sparse for a meaningful
comparison. Therefore, we compare the feature vectors that
SimCLR extracts from the two frames directly using cosine
similarity. For SIFT, we utilize the BoVW vectors derived by
the visual encoder V3 , but at a per-frame level.

The second LCS version, which we call weighted-LCS (w-
LCS), uses the same fuzzy matching that f-LCS performs.
However, the similarity produced in this matching is then
weighted depending on where the two frames from each
video appeared. Frames that appear later in the video are
weighted more heavily, since that is where the buggy behavior
is typically occurring in a video-based bug report, and thus
should be given more weight for duplicate detection. The exact
weighting scheme used is i

m ×
j
m , where i is the ith frame of

video A, m is the # of frames in video A, j is the jth frame
of video B, and n is the # of frames in video B.

2) Sequential Comparison: In order to incorporate the LCS
overlap measurements into TANGO’s overall video similarity
calculation, the overlap scores must be normalized between
zero and one ([0, 1]). To accomplish this, we consider the case
where two videos overlap perfectly to be the upper bound of
the possible LCS score between two videos, and use this to
perform the normalization. For f-LCS, this is done by simply
dividing by the # of frames in the smaller video since the max
possible overlap that could occur is when the smaller video is
a subsection in the bigger video, calculated as overlap/min
where overlap denotes the amount the two videos share in
terms of their frames and min denotes the # of frames in
the smaller of the two videos. For w-LCS, if the videos are
different lengths, we align the end of the shorter video to the
end of the longer video and consider this the upper bound on
the LCS score, which is normalized as follows:

Sw−LCS =
overlap∑1

i=min
i

min ×
max−i
max

(1)

where Sw−LCS is the normalized similarity value produced by
w-LCS, overlap and min are similar to the f-LCS calculation
and max denotes the # of frames in the longer of the two
videos. The denominator in Eq. 1 calculates the maximum pos-
sible overlap that can occur if the videos were exact matches,
summing across the similarity score of each frame pair. Our
online appendix contains the detailed f/w-LCS algorithms with
examples [42].

3) Similarity Computation: f-LCS and w-LCS output the
visual similarity S score Sf−LCS and Sw−LCS , respectively.
This can be combined with SBoVW to obtain an aggregate
visual similarity score: Svis = (SBoVW + Sf−LCS)/2 or
Svis = (SBoVW + Sw−LCS)/2. We denote these TANGOvis

variations as B+f-LCS and B+w-LCS, respectively.



D. Determining the Textual Similarity between Videos

In order to determine the textual similarity between video-
based bug reports, TANGO leverages the textual information
from labels, titles, messages, etc. found in the app GUI
components and screens depicted in the videos.

TANGOtxt adopts a standard text retrieval approach based on
Lucene [51] and Optical Character Recognition (OCR) [1, 16]
to compute the textual similarity (Stxt) between video-based
bug reports. First, a textual document is built from each video
in the issue tracker ( T1 in Fig. 1) using OCR to extract
text from the video frames. The textual documents are pre-
processed using standard techniques to improve similarity
computation, namely tokenization, lemmatization, and removal
of punctuation, numbers, special characters, and one- and two-
character words. The pre-processed documents are indexed
for fast similarity computation T2 . Each document is then
represented as a vector using TF-IDF and the index [91] T3 .

In order to build the textual documents from the videos,
TANGOtxt applies OCR on the video frames through the
Tesseract engine [1, 16] in the textual extractor T1 . We exper-
iment with three strategies to compose the textual documents
using the extracted frame text. The first strategy (all-text)
concatenates all the text extracted from the frames. The second
strategy (unique-frames) concatenates all the text extracted
from unique video frames, determined by applying exact
text matching (before text pre-processing). The third strategy
(unique-words) concatenates the unique words in the frames
(after pre-processing).

1) Similarity Computation: TANGO computes the textual
similarity (Stxt) in S using Lucene’s scoring function [14]
based on cosine similarity and document length normalization.

E. Combining Visual and Textual Similarities

TANGO combines both the visual (Svis) and textual (Stxt)
similarity scores produced by TANGOvis and TANGOtxt, re-
spectively ( S in Fig. 1). TANGO uses a linear combination
approach to produce an aggregate similarity value:

Scomb = (1− w)× Svis + w × Stxt (2)

where w is a weight for Svis and Stxt, and takes a value
between zero (0) and one (1). Smaller w values weight Svis

more heavily, and larger values weight Stxt more heavily. We
denote this approach as TANGOcomb.

Based on the combined similarity, TANGO generates a
ranked list of the video-based bug reports found in the is-
sue tracker. This list is then inspected by the developer to
determine if a new video reports a previously reported bug.

III. TANGO’S EMPIRICAL EVALUATION DESIGN

We empirically evaluated TANGO with two goals in mind:
(i) determining how effective TANGO is at detecting duplicate
video-based bug reports, when considering different configu-
rations of components and parameters, and (ii) estimating the
effort that TANGO can save developers during duplicate video
bug detection. Based on these goals, we defined the following
research questions (RQs):

RQ1: How effective is TANGO when using either visual or
textual information alone to retrieve duplicate videos?
RQ2: What is the impact of combining frame sequence and

visual information on TANGO’s detection performance?
RQ3: How effective is TANGO when combining both visual

and textual information for detecting duplicate videos?
RQ4: How much effort can TANGO save developers in

finding duplicate video-based bug reports?
To answer our RQs, we first collected video-based bug

reports for six Android apps (Sec. III-A), and based on them,
defined a set of duplicate detection tasks (Sec. III-B). We
instantiated different configurations of TANGO by combining
its components and parameters (Sec. III-C), and executed these
configurations on the defined tasks (Sec. III-D). Based on
standard metrics, applied on the video rankings that TANGO
produces, we measured TANGO’s effectiveness (Sec. III-D).
We answer RQ1, RQ2, and RQ3 based on the collected
measurements. To answer RQ4 (Sec. III-E), we conducted a
user study where we measured the time humans take to find
duplicates for a subset of the defined tasks, and estimated the
time TANGO can save for developers. We present and discuss
the evaluation results in Sec. IV.

A. Data Collection

We collected video-based bug reports for six open-source
Android apps, namely AntennaPod (APOD) [2], Time Tracker
(TIME) [6], Token (TOK) [7], GNUCash (GNU) [4], Grow-
Tracker (GROW) [5], and Droid Weight (DROID) [3]. We
selected these apps because they have been used in previ-
ous studies [25, 34, 78, 79], support different app categories
(finance, productivity, etc.), and provide features that involve
a variety of GUI interactions (taps, long taps, swipes, etc.).
Additionally, none of these apps are included as part of the
RICO dataset used to train TANGO’s SimCLR model and
Codebooks, preventing the possibility of data snooping. Since
video-based bug reports are not readily available in these
apps’ issue trackers, we designed and carried out a systematic
procedure for collecting them.

In total, we collected 180 videos that display 60 distinct
bugs – 10 bugs for each app and three videos per bug (i.e.,
three duplicate videos per bug). From the 60 bugs, five bugs
(one bug per app except for DROID) are reported in the apps’
issue trackers. These five bugs were selected because they
were the only ones in the issue trackers that we were able
to reproduce based on the provided bug descriptions. During
the reproduction process, we discovered five additional new
bugs in the apps not reported in the issue trackers (one bug
each for APOD, GNU, and TOK, and two bugs for TIME) for
a total of 10 confirmed real bugs.

The remaining 50 bugs were introduced in the apps through
mutation by executing MutAPK [46], a mutation testing tool
that injects bugs (i.e., mutants) into Android APK binaries via
a set of 35 mutation operators that were derived from a large-
scale empirical study on real Android application faults. Given
the empirically-derived nature of these operators, they were



shown to accurately simulate real-world Android faults [46].
We applied MutAPK to the APKs of all six apps. Then, from
the mutant list produced by the tool, we randomly selected
7 to 10 bugs for each app, and ensured that they could be
reproduced and manifested in the GUI. To diversify the bug
pool, we selected the bugs from multiple mutant operators and
ensured that they affected multiple app features/screens.

When selecting the 60 bugs, we ensured they manifest
graphically and were reproducible by manually replicating
them on a specific Android emulator configuration (virtual
Nexus 5X with Android 7.0 configured via Android Studio).
For all the bugs, we screen-recorded the bug and the re-
production scenario. We also generated a textual bug report
(for bugs that did not have one) containing the description of
the unexpected and expected app behavior and the steps to
reproduce the bug.

To generate the remaining 120 video-based bug reports, we
asked two professional software engineers and eight computer
science (CS) Ph.D. students to replicate and record the bugs
(using the same Android emulator), based only on the textual
description of the unexpected and expected app behavior. The
participants have between 2 and 10 years of programming
experience (median of 6 years).

All the textual bug reports given to the study participants
contained only a brief description of the observed and expected
app behavior, with no specific reproduction steps. We opted to
perform the collection in this manner to ensure the robustness
of our evaluation dataset by maximizing the diversity of
video-based reproduction steps, and simulating a real-world
scenario where users are aware of the observed (incorrect)
and expected app behavior, and must produce the reproduction
steps themselves.

We randomly assigned the bugs to the participants in
such a way that each bug was reproduced and recorded by
two participants, and no participant recorded the same bug
twice. Before reproducing the bugs, the participants spent
five minutes exploring the apps to become familiar with
their functionality. Since some of the participants could not
reproduce the bugs after multiple attempts (mainly due to bug
misunderstandings) and some of the videos were incorrectly
recorded (due to mistakes), we reassigned these bugs among
the other participants, who were able to reproduce and record
them successfully.

Our bug dataset consists of 35 crashes and 25 non-crashes,
and include a total of 470 steps (397 taps, 12 long taps, 14
swipes, among other types), with an average of 7.8 steps per
video. The average video length is ≈ 28 seconds.

B. Duplicate Detection Tasks

For each app, we defined a set of tasks that mimic a realistic
scenario for duplicate detection. Each duplicate detection task
is composed of a new video (i.e., the new bug report, aka the
query) and a set of existing videos (i.e., existing bug reports
in the issue tracker, aka the corpus). In practice, a developer
would determine if the new video is a duplicate by inspecting
the corpus of videos in the order given by TANGO (or any

other approach). For our task setup, the corpus contains both
duplicate and non-duplicate videos. There are two different
types of duplicate videos that exist in the corpus: (i) those
videos that are a duplicate of the query (the Same Bug group),
and (ii) those videos which are duplicates of each other, but
are not a duplicate of the query (the Different Bug group).
This second type of duplicate video is represented by bug
reports marked as duplicates in the issue tracker and their
corresponding master reports [35, 86, 93]. Each non-duplicate
video reports a distinct bug.

We constructed the duplicate detection tasks on a per app
basis, using the 30 video reports collected for each app (i.e.,
three video reports for each of the 10 bugs, for a total of 30
video reports per app). We first divided all the 30 videos for an
app into three groups, each group containing 10 videos (one
for each bug) created by one or more participants. Then, we
randomly selected a video from one bug as the query and took
the other two videos that reproduce the same bug as the Same
Bug duplicate group (i.e., the ground truth). Then, we selected
one of the remaining nine bugs and added its three videos to
the Different Bug duplicate group. Finally, we selected one
video from the remaining eight bugs, and used these as the
corpus’ Non-Duplicate group. This resulted in a total of 14
distinct bug reports per task (two in the Same Bug group,
three in the Different Bug group, eight in the Non-Duplicate
group, and the query video). After creating tasks based on all
the combinations of query and corpus, we generated a total
of 810 duplicate detection tasks per app or 4, 860 aggregating
across all apps.

We designed the duplicate detection setting described above
to mimic a scenario likely to be encountered in crowd-sourced
app testing, where duplicates of the query, other duplicates not
associated with the query, and other videos reporting unique
bugs, exist in a shared corpus for a given app. While there
are different potential task settings, we opted not to vary this
experimental variable in order to make for a feasible analysis
that allowed us to explore more thoroughly the different
TANGO configurations.

C. TANGO Configurations

We designed TANGOvis and TANGOtxt to have different
configurations. TANGOvis’s configurations are based on dif-
ferent visual feature extractors (SIFT or SimCLR), video
sampling rates (1 and 5 fps), # of visual words (1k, 5k, and
10k VW), and approaches to compute video similarity (BoVW,
f-LCS, w-LCS, B+f-LCS, and B+w-LCS). TANGOtxt’s con-
figurations are based on the same sampling rates (1 and 5
fps) and the approaches to extract the text from the videos
(all-text, unique-frames, and unique-words). TANGOcomb com-
bines TANGOvis and TANGOtxt as described in Sec. II-E.

D. TANGO’s Execution and Effectiveness Measurement

We executed each TANGO configuration on the 4, 860
duplicate detection tasks and measured its effectiveness us-
ing standard metrics used in prior text-based duplicate bug
detection research [35, 86, 93]. For each task, we compare the



ranked list of videos produced by TANGO and the expected
duplicate videos from the ground truth.

We measured the rank of the first duplicate video found in
the ranked list, which serves as a proxy for how many videos
the developer has to watch in order to find a duplicate video.
A smaller rank means higher duplicate detection effectiveness.
Based on the rank, we computed the reciprocal rank metric:
1/rank. We also computed the average precision of TANGO,
which is the average of the precision values achieved at all
the cutting points k of the ranked list (i.e., precision@k).
Precision@k is the proportion of the top-k returned videos
that are duplicates according to the ground truth. We also
computed HIT@k (aka Recall Rate@k [35, 86, 93]), which is
the proportion of tasks that are successful for the cut point k
of the ranked list. A task is successful if at least one duplicate
video is found in the top-k results returned by TANGO. We
report HIT@k for cut points k = 1-2 in this paper, and 1-10
in our online appendix [42].

Additionally, we computed the average of these metrics
over sets of duplicate detection tasks: mean reciprocal rank
(mRR), mean average precision (mAP), and mean rank (µ
rank or µRk) per app and across all apps. Higher mRR,
mAP, and HIT@k values indicate higher duplicate detection
effectiveness. These metrics measure the overall performance
of a duplicate detector.

We focused on comparing mRR values to decide if one
TANGO configuration is more effective than another, as we
consider that it better reflects the usage scenario of TANGO.
In practice, the developer would likely stop inspecting the
suggested duplicates (given by TANGO) when she finds the
first correct duplicate. This scenario is captured by mRR,
through the rank metric, which considers only the first correct
duplicate video as opposed to the entire set of duplicate videos
to the query (as mAP does).

E. Investigating TANGO’s Effort Saving Capabilities

We conducted a user study in order to estimate the effort that
developers would spend while manually finding video-based
duplicates. This effort is then compared to the effort measure-
ments of the best TANGO configuration, based on µ rank and
HIT@k. This study and the data collection procedure were
conducted remotely due to COVID-19 constraints.

1) Participants and Tasks: One professional software en-
gineer and four CS Ph.D. students from the data collection
procedure described in Sec. III-A participated in this study.
The study focused on APOD, the app that all the participants
had in common from the data collection. We randomly selected
20 duplicate detection tasks, covering all 10 APOD bugs.

2) Methodology: Each of the 20 tasks was completed by
two participants. Each participant completed four tasks, each
task’s query video reporting a unique bug. The assignment of
the tasks to the participants was done randomly. For each task,
the participants had to watch the new video (the query) and
then find the videos in the corpus that showed the same bug of
the new video (i.e., find the duplicate videos). All the videos
were anonymized so that the duplicate videos were unknown

to the participants. To do this, we named each video with a
number that represents the video order and the suffix “vid”
(e.g., “2 vid.mp4”).

The corpus videos were given in random order and the
participants could watch them in any order. To make the
bug of the new video clearer to the participants, we provided
them with the description of the unexpected and expected app
behavior, taken from the textual bug reports that we generated
for the bugs. We consider the randomization of the videos as
a reasonable baseline given that other baselines (e.g., video-
based duplicate detectors) do not currently exist and the video-
based bug reports in our dataset do not have timestamps (which
can be used to give a different order to the videos). This is a
threat to validity that we discuss in Sec. V.

3) Collected Measurements: Through a survey, we asked
each participant to provide the following information for each
task: (i) the name of the first video they deemed a duplicate
of the query, (ii) the time they spent to find this video, (iii)
the number of videos they had to watch until finding the first
duplicate (including the duplicate), (iv) the names of other
videos they deemed duplicates, and (v) the time they spent to
find these additional duplicates. We instructed the participants
to perform the tasks without any interruptions in order to
minimize inaccuracies in the time measurements.

4) Comparing TANGO and Manual Duplicate Detection:
The collected measurements from the participants were com-
pared against the effectiveness obtained by executing the best
TANGO configuration on the 20 tasks, in terms of µ rank and
HIT@k. We compared the avg. number of videos the partici-
pants watched to find one duplicate against the avg. number
of videos they would have watched had they used TANGO.

IV. TANGO’S EVALUATION RESULTS

A. RQ1: Using Only Visual or Textual Information

We analyzed the performance of TANGO when using only
visual or textual information exclusively. In this section, we
present the results for TANGO’s best performing configura-
tions. However, complete results can be found in our online
appendix [42]. Table I shows the results for TANGOvis and
TANGOtxt when using SimCLR, SIFT, as the visual feature
extractor, and OCR as the textual extractor. For simplicity,
we use SimCLR, SIFT, and OCR&IR to refer to SimCLR-
based TANGOvis, SIFT-based TANGOvis, and TANGOtxt, re-
spectively. The best results for each metric are illustrated in
bold on a per app basis. The results provided in Table I
are those for the best parameters of the SimCLR, SIFT, and
OCR&IR feature extractors, which are (BoVW, 5 fps, 1k VW),
(w-LCS, 1 fps, 10k VW), and (all-text, 5 fps), respectively.

Table I shows that TANGOvis is more effective when using
SimCLR rather than SIFT across all the apps, achieving
an overall mRR, mAP, avg. rank, HIT@1, and HIT@2 of
75.3%, 67.8%, 1.9, 61.6%, and 78%, respectively. SimCLR
is also superior to OCR&IR overall, whereas SIFT performs
least effectively of the three approaches. When analyzing the
results per app, we observe that SimCLR is outperformed
by OCR&IR (by 0.7% - 4% difference in mRR) for APOD,



TABLE I
EFFECTIVENESS FOR THE BEST TANGO CONFIGURATIONS THAT USE

EITHER VISUAL (SIMCLR/SIFT) OR TEXTUAL (OCR&IR) INFORMATION.

App Config. mRR mAP µRk HIT@1 HIT@2

APOD
SIFT 64.6% 51.1% 3.0 47.7% 71.7%

SimCLR 80.0% 66.8% 1.7 68.1% 82.6%
OCR&IR 80.8% 75.3% 1.5 65.7% 88.6%

DROID
SIFT 66.3% 55.0% 2.5 49.1% 69.5%

SimCLR 64.6% 59.2% 2.6 49.5% 61.7%
OCR&IR 67.9% 64.7% 2.3 52.0% 69.8%

GNU
SIFT 66.1% 57.2% 2.2 47.4% 68.4%

SimCLR 81.8% 75.1% 1.6 70.1% 85.3%
OCR&IR 84.5% 82.3% 1.4 72.2% 92.0%

GROW
SIFT 56.0% 49.9% 3.0 36.5% 54.3%

SimCLR 72.7% 68.8% 2.0 57.4% 75.6%
OCR&IR 76.8% 69.0% 1.9 63.6% 80.1%

TIME
SIFT 49.2% 40.7% 3.3 26.7% 46.4%

SimCLR 74.8% 67.6% 2.3 63.7% 75.9%
OCR&IR 47.4% 37.7% 4.0 28.3% 44.4%

TOK
SIFT 39.0% 32.1% 4.4 17.0% 33.7%

SimCLR 77.7% 69.3% 1.6 60.6% 86.7%
OCR&IR 61.3% 53.3% 2.6 42.6% 60.7%

Overall
SIFT 56.9% 47.7% 3.1 37.4% 57.3%

SimCLR 75.3% 67.8% 1.9 61.6% 78.0%
OCR&IR 69.8% 63.7% 2.3 54.1% 72.6%

DROID, GNU and GROW; with OCR&IR being the most
effective for these apps. SimCLR outperforms the other two
approaches for TIME and TOK by more than 16% difference
in mRR. The differences explain the overall performance of
SimCLR and OCR&IR. SimCLR is more consistent in its
performance compared to OCR&IR and SIFT. Across apps,
the mRR standard deviation of SimCLR is 6.2%, which is
lower than that for SIFT and OCR&IR: 11.1% and 13.9%,
respectively. The trend is similar for mAP and avg. rank.

Since the least consistent approach across apps is TANGOtxt

in terms of effectiveness, we investigated the root causes for
its lower performance on TIME and TOK. After manually
watching a subset of the videos for these apps, we found that
their textual content was quite similar across bugs. Based on
this, we hypothesized that the amount of vocabulary shared
between duplicate videos (from the same bugs) and non-
duplicate videos (across different bugs) affected the discrimi-
natory power of Lucene-based TANGOtxt (see Sec. II-D).

To verify this hypothesis, we measured the shared vocabu-
lary of duplicate and non-duplicate video pairs, similarly to
Chaparro et al.’s analysis of textual bug reports [35]. We
formed unique pairs of duplicate and non-duplicate videos
from all the videos collected for all six apps. For each app,
we formed 30 duplicate and 405 non-duplicate pairs, and we
measured the avg. amount of shared vocabulary of all pairs,
using the vocabulary agreement metric used by Chaparro et
al. [35]. Table II shows the vocabulary agreement of duplicate
(Vd) and non-duplicate pairs (Vnd) as well as the mRR and
mAP values of TANGOtxt for each app. The table reveals that
the vocabulary agreement of duplicates and non-duplicates is
very similar for TIME and TOK, and dissimilar for the other
apps. The absolute difference between these measurements

TABLE II
VOCABULARY AGREEMENT & EFFECTIVENESS FOR THE BEST TANGOtxt .

App Vocabulary agreement mRR mAP
Vd Vnd |Vd − Vnd|

APOD 70.8% 37.9% 32.9% 80.8% 75.3%
DROID 73.9% 57.0% 16.9% 67.9% 64.7%
GNU 82.2% 58.6% 23.6% 84.5% 82.3%

GROW 67.0% 41.7% 25.4% 76.8% 69.0%
TIME 86.0% 86.3% 0.3% 47.4% 37.7%
TOK 69.6% 61.0% 8.6% 61.3% 53.3%

Overall 74.2% 56.7% 17.5% 69.8% 63.7%

(i.e., |Vd − Vnd|) for TIME and TOK is 0.3% and 8.6%,
while for the other apps it is above 16%. We found 0.94 /
0.91 Pearson correlation [47] between these differences and
the mRR/mAP values.

The results indicate that, for TIME and TOK, the similar
vocabulary between duplicate and non-duplicate videos neg-
atively affects the discriminatory power of TANGOtxt, which
suggests that for some apps, using only textual information
may be sub-optimal for duplicate detection.

Answer for RQ1: SimCLR performs the best overall
with an mRR and HIT@1 of 75.3% and 61.6%, respec-
tively. For 4 of 6 apps, OCR&IR outperforms SimCLR
by a significant margin. However, due to issues with
vocabulary overlap, it performs worse overall. SIFT is
the worst-performing technique across all the apps.

B. RQ2: Combining Visual and Frame Sequence Information

To answer RQ2, we compared the effectiveness of the best
configuration of TANGO when using visual information alone
(SimCLR, BoVW, 5fps, 1k VW) and when combining visual
& frame sequence information (i.e., B+f-LCS and B+w-LCS).

The results are shown in Table III. Overall, using TANGO
with BoVW alone is more effective than combining the
approaches; TANGO based on BoVW achieves 75.3%, 67.8%,
1.9, 61.6%, and 78% mRR, mAP, avg. rank, HIT@1, and
HIT@2, respectively. Using BoVW and w-LCS combined
is the least effective approach. BoVW alone and B+f-LCS
are comparable in performance. However, BoVW is more
consistent in its performance across apps: 6.2% mRR std.
deviation vs. 6.6% and 9.2% for B+f-LCS and B+w-LCS.

The per-app results reveal that B+w-LCS consistently is the
least effective approach for all apps except for GROW, for
which B+w-LCS performs best. After watching the videos for
GROW, we found unnecessary steps in the beginning/middle
of the duplicate videos, which led to their endings being
weighted more heavily by w-LCS, where steps were similar.
In contrast, BoVW and B+f-LCS give a lower weight to these
cases thus reducing the overall video similarity.

The lower performance of B+f-LCS and B+w-LCS, com-
pared to BoVW, is partially explained by the fact that f-LCS
and w-LCS are more restrictive by definition. Since they find
the longest common sub-strings of frames between videos,



TABLE III
EFFECTIVENESS FOR THE BEST TANGOvis CONFIGURATION USING EITHER

VISUAL INFORMATION (BOVW) OR A COMBINATION OF VISUAL AND
FRAME SEQUENCE INFORMATION (B+F-LCS AND B+W-LCS).

App Config. mRR mAP µRk HIT@1 HIT@2

APOD
B+f-LCS 79.3% 67.8% 1.7 66.2% 82.3%
B+w-LCS 77.2% 65.5% 1.9 64.2% 80.1%

BoVW 80.0% 66.8% 1.7 68.1% 82.6%

DROID
B+f-LCS 64.8% 60.7% 2.6 50.2% 61.6%
B+w-LCS 63.7% 54.8% 2.7 48.9% 62.3%

BoVW 64.6% 59.2% 2.6 49.5% 61.7%

GNU
B+f-LCS 83.3% 75.6% 1.6 73.2% 85.6%
B+w-LCS 77.3% 65.7% 1.8 62.3% 83.6%

BoVW 81.8% 75.1% 1.6 70.1% 85.3%

GROW
B+f-LCS 76.0% 70.2% 2.0 64.2% 75.2%
B+w-LCS 81.3% 75.0% 1.7 70.9% 82.8%

BoVW 72.7% 68.8% 2.0 57.4% 75.6%

TIME
B+f-LCS 70.4% 63.4% 2.3 54.4% 74.3%
B+w-LCS 63.8% 58.5% 2.8 48.0% 64.9%

BoVW 74.8% 67.6% 2.3 63.7% 75.9%

TOK
B+f-LCS 73.4% 65.6% 1.7 54.0% 82.5%
B+w-LCS 59.2% 53.7% 2.6 37.9% 60.0%

BoVW 77.7% 69.3% 1.6 60.6% 86.7%

Overall
B+f-LCS 74.5% 67.2% 2.0 60.4% 76.9%
B+w-LCS 70.4% 62.2% 2.2 55.4% 72.3%

BoVW 75.3% 67.8% 1.9 61.6% 78.0%

small variations (e.g., extra steps) in the reproduction steps of
the bugs may lead to drastic changes in similarity measurement
for these approaches. Also, these approaches only find one
common substring (i.e., the longest one), which may not be
highly discriminative for duplicate detection. In the future, we
plan to explore additional approaches for aligning the frames,
for example, by using an approach based on longest common
sub-sequence algorithms [49] that can help align multiple
portions between videos. Another potential reason for these
results may lie in the manner that TANGO combines visual and
sequential similarity scores – weighting both equally. In future
work, we plan to explore additional combination techniques.

Answer for RQ2: Combining ordered visual informa-
tion (via f-LCS and w-LCS) with the orderless BoVW
improves the results for four of the six apps. However,
across all apps, BoVW performs more consistently.

C. RQ3: Combining Visual and Textual Information

We investigated TANGO’s effectiveness when combining
visual and textual information. We selected the best config-
urations of TANGOvis (SimCLR, BoVW, 5 fps, 1k VW) and
TANGOtxt (all-text, 5 fps) from RQ1 based on their mRR score
and measured its performance overall and per app. We provide
the results for the best weight we obtained for TANGO’s
similarity computation and ranking which was w = 0.2,
i.e., a weight of 0.8 and 0.2 on TANGOvis and TANGOtxt,
respectively. These weights were found by evaluating different
w values from zero (0) to one (1) in increments of 0.1 and
selecting the one leading to the highest overall mRR score.
Complete results can be found in our online appendix [42].

TABLE IV
EFFECTIVENESS OF THE BEST TANGOcomb , TANGOvis , AND TANGOtxt .

App Config. mRR mAP µRk HIT@1 HIT@2

APOD
TANGOcomb 84.4% 75.8% 1.4 73.1% 87.9%
TANGOvis 80.0% 66.8% 1.7 68.1% 82.6%
TANGOtxt 80.8% 75.3% 1.5 65.7% 88.6%

DROID
TANGOcomb 70.6% 66.7% 2.2 55.9% 71.0%
TANGOvis 64.6% 59.2% 2.6 49.5% 61.7%
TANGOtxt 67.9% 64.7% 2.3 52.0% 69.8%

GNU
TANGOcomb 89.5% 84.7% 1.3 81.6% 94.2%
TANGOvis 81.8% 75.1% 1.6 70.1% 85.3%
TANGOtxt 84.5% 82.3% 1.4 72.2% 92.0%

GROW
TANGOcomb 81.7% 75.4% 1.7 71.4% 82.5%
TANGOvis 72.7% 68.8% 2.0 57.4% 75.6%
TANGOtxt 76.8% 69.0% 1.9 63.6% 80.1%

TIME
TANGOcomb 59.6% 51.7% 2.8 40.2% 58.8%
TANGOvis 74.8% 67.6% 2.3 63.7% 75.9%
TANGOtxt 47.4% 37.7% 4.0 28.3% 44.4%

TOK
TANGOcomb 69.8% 60.8% 2.0 50.9% 76.9%
TANGOvis 77.7% 69.3% 1.6 60.6% 86.7%
TANGOtxt 61.3% 53.3% 2.6 42.6% 60.7%

Overall
TANGOcomb 75.9% 69.2% 1.9 62.2% 78.5%
TANGOvis 75.3% 67.8% 1.9 61.6% 78.0%
TANGOtxt 69.8% 63.7% 2.3 54.1% 72.6%

Table IV shows that the overall effectiveness achieved by
TANGOcomb is higher than that achieved by TANGOtxt and
TANGOvis. TANGOcomb achieves 75.9%, 69.2%, 1.9, 62.2%,
and 78.5% mRR, mAP, avg. rank, HIT@1, and HIT@2, on
average. The avg. improvement margin of TANGOcomb is
substantially higher for TANGOtxt (6.2%/5.5% mRR/mAP)
than for TANGOvis (0.7%/1.4% mRR/mAP).

Our analysis of the per-app results explains these differ-
ences. Table IV reveals that combining visual and textual
information substantially increases the performance over just
using one of the information types alone, except for the TIME
and TOK apps. This is because TANGOtxt’s effectiveness is
substantially lower for these apps, compared to the visual
version (see Table I), due to the aforementioned vocabulary
agreement. Thus, incorporating the textual information signif-
icantly harms the performance of TANGOcomb.

1) A Better Combination of Visual and Textual Information:
The results indicate that combining visual and textual informa-
tion is beneficial for most of our studied apps but harmful for a
subset (TIME and TOK). This is because the textual informa-
tion used alone, for TIME and TOK, leads to low performance.
The analysis we made for TANGOtxt in RQ1, revealed that
the reason for the low performance of TANGOtxt lies in the
similar amount of vocabulary overlap between duplicate and
non-duplicate videos. Fortunately, based on this amount of
vocabulary, we can predict the performance of TANGOtxt for
new video-based bug reports as follows [35]. In practice,
the issue tracker will contain reports marked as duplicates
(reporting the same bugs) from previous submissions of bug
reports as well as non-duplicates (reporting unique bugs). This
information can be used to compute the vocabulary agreement
between duplicates and non-duplicates, which can be used to
predict how well TANGOtxt would perform for new reports.



Based on this, we defined a new approach for TANGO,
which is based on the vocabulary agreement metric from [35]
applied on existing duplicate and non-duplicate reports. This
approach dictates that if the difference of vocabulary agree-
ment between existing duplicates and non-duplicates is greater
than a certain threshold, then TANGO should combine visual
and textual information. Otherwise, TANGO should only use
the visual information because it is likely that the combination
would not be better than using the visual information alone.

From the vocabulary agreement measurements shown in
Table II, we infer a proper threshold from the new TANGO
approach. This threshold may be taken as one value from the
interval 8.6% - 16.9% (exclusive) because those are the limits
that separate the apps for which TANGOtxt obtains low (TIME
and TOK) and high performance (APOD, DROID, GNU, and
GROW). For practical reasons, we select the threshold to be
the middle value: 8.6 + (16.9 − 8.6)/2 = 12.8%. In future
work, we plan to further evaluate this threshold on other apps.

We implemented this approach for TANGO, using 0.2 as
weight, and measured its effectiveness. This approach resulted
in a mRR, mAP, avg. rank, HIT@1 and HIT@2 of 79.8%,
73.2%, 1.7, 67.7%, and 83%, respectively. The approach leads
to a substantial improvement (i.e., 3.9% / 4.1% higher mRR /
mAP) over TANGOcomb shown in Table IV.

The results mean that the best version of TANGO is able to
suggest correct duplicate video-based bug reports in the first
or second position of the returned candidate list for 83% of
the duplicate detection tasks.

Answer for RQ3: Combining visual and textual in-
formation significantly improves results for 4 of 6
apps. However, due to the vocabulary agreement issue,
across all apps, this approach is similar in effective-
ness to using visual information alone. Accounting
for this vocabulary overlap issue through a selective
combination of visual and textual information via a
threshold, TANGO achieves the highest effectiveness:
an mRR, mAP, avg. rank, HIT@1, and HIT@2 of
79.8%, 73.2%, 1.7, 67.7%, and 83%, respectively.

D. RQ4: Time Saved Discovering Duplicates

As expected, the participants were successful in finding
the duplicate videos for all 20 tasks. In only one task, one
participant incorrectly flagged a video as duplicate because it
was highly similar to the query. Participants found the first
duplicate video in 96.4 seconds and watched 4.3 videos on
avg. across all tasks to find it. Participants also found all the
duplicates in 263.8 seconds on avg. by watching the entire
corpus of videos. This means they spent 20.3 seconds in
watching one video on average.

We compared these results with the measurements taken
from TANGO’s best version (i.e., selective TANGO) on the tasks
the participants completed. TANGO achieved a 1.5 avg. rank,
which means that, by using TANGO, they would only have to
watch one or two videos on avg. to find the first duplicate. This

would have resulted in (4.3 − 1.5)/4.3 = 65.1% of the time
saved. In other words, instead of spending 20.3 × 4 = 81.2
seconds (on avg.) finding a duplicate for a given task, the
participants could have spent 20.3×1.5 = 30.5 seconds. These
results indicate the potential of TANGO to help developers save
time when finding duplicates.

Answer for RQ4: On average, TANGO’s best-
performing configuration can save 65.1% of the time
participants spend finding duplicate videos.

V. TANGO LIMITATIONS & THREATS TO VALIDITY

Limitations. TANGO has three main limitations that moti-
vate future work.

The first one stems from the finding that textual information
may not be beneficial for some apps. The best TANGO version
implements an approach for detecting this situation, based on
a threshold for the difference in vocabulary overlap between
duplicate and non-duplicate videos, which is used for selec-
tively combining visual or textual information. This threshold
is based on the collected data and may not generalize to other
apps. Second, the visual TF-IDF representation for the videos
is based on the mobile app images from the RICO dataset,
rather than on the videos found in the tasks’ corpus, as it is
typically done in text retrieval. Additionally, we considered
single images as documents rather than groups of frames that
make up a video. These decisions were made to improve
the generalization of TANGO’s visual features and to support
projects that have limited training data. Third, differences
in themes and languages across video-based bug reports for
an application could have an impact in the performance
of TANGO. We believe that different themes (i.e., dark vs.
light modes) will not significantly impact TANGO since the
SimCLR model is trained to account for such color differences
by performing color jittering and gray-scaling augmentations.
However, additional experiments are needed to validate this
conjecture. For different languages, TANGO currently assumes
the text in an application to be English when performing OCR
and textual similarity. Therefore, its detection effectiveness
where the bug reports display different languages (e.g., English
vs. French) could be negatively impacted. We will investigate
this aspect in our future work.

Internal & Construct Validity. Most of the mobile app
bugs in our dataset were introduced by MutAPK [46], and
hence potentially may not resemble real bugs. However, Mu-
tAPK’s mutation operators were empirically derived from a
large-scale study of real Android faults, and prior research
lends credence of the ability of mutants to resemble real
faults [21]. We intentionally selected generated mutants from
a range of operators to increase the diversity of our set of
bugs and mitigate potential biases. Another potential threat is
related to using real bugs from issue trackers that cannot be
reproduced or that do not manifest graphically. We mitigated
this threat by using a small, carefully vetted subset of real bugs
that were analyzed by multiple authors before being used in



our dataset. We did not observe major differences in the results
between mutants and real bugs.

Another threat to validity is that our approach to construct
the duplicate detection tasks does not take into account bug
report timestamps, which would be typical in a realistic
scenario [86], and timestamps could be used as a baseline
ordering of videos for comparing against the ranking given
by TANGO. The lack of timestamps stems from the fact that
we were not able to collect the video-based bug reports from
existing mobile projects. We mitigated this threat in our user
study by randomizing the ordering of the corpus videos given
to the participants. We consider this as a reasonable baseline
for evaluating our approach considering that, to the best of
our knowledge, (1) no existing datasets, with timestamps, are
available for conducting research on video-based duplicate
detection, and (2) no existing duplicate detectors work ex-
clusively on video-based bug reports, as TANGO does.

External Validity. We selected a diverse set of apps that
have different functionality, screens, and visual designs, in an
attempt to mitigate threats to external validity. Additionally,
our selection of bugs also attempted to select diverse bug
types (crashes and non-crashes), and the duplicate videos were
recorded by different participants. As previously discussed,
there is the potential that TANGO’s different parameters &
thresholds may not generalize to video data from other apps.

VI. RELATED WORK

Our research is related to work in near duplicate video
retrieval, analysis of graphical software artifacts, and duplicate
detection of textual bug reports.

Near Duplicate Video Retrieval. Extensive research has
been done outside SE in near-duplicate video retrieval, which
is the identification of similar videos to a query video (e.g.,
exact copies [45, 50, 57, 68] or similar events [41, 58, 66, 88]).

The closest work to ours is by Kordopatis-Zilos et al. [66],
who addressed the problem of retrieving videos of inci-
dents (e.g., accidents). In their work, they explored using
handcrafted-based [23, 59, 60, 75, 102, 106] (e.g., SURF or
HSV histograms) and DL-based [32, 37, 65, 67, 71, 98] (e.g.,
CNNs) visual feature extraction techniques and ways of
combining the extracted visual features [31, 58, 62, 65, 88, 92]
(e.g., VLAD). While we do make use of the best performing
model (CNN+BoVW) from this work [66], we did not use
the proposed handcrafted approaches, as these were designed
for scenes about real-world incidents, rather than for mobile
bug reporting. We also further modified and extended this
approach given our different domain, through the combination
of visual and textual information modalities, and adjustments
to the CCN+BoVW model, including the layer configuration
and training objective.

Analysis of Graphical Software Artifacts. The analysis
of graphical software artifacts to support software engineering
tasks has been common in recent years. Such tasks include
mobile app testing [25, 56, 61, 79], developer/user behavior
modelling [22, 30, 48], GUI reverse engineering and code
generation [24, 38, 39, 44, 80, 83], analysis of programming

videos [20, 69, 76, 85, 103, 104], and GUI understanding and
verification [33, 105]. None of these works deal with finding
duplicate video-based bug reports, which is our focus.

Detection of Duplicate Textual Bug Reports. Many re-
search projects have focused on detecting duplicate textual
bug reports [28, 29, 35, 36, 52, 54, 55, 64, 70, 72, 74, 82, 84, 86,
87, 89, 90, 93–97, 99–101, 107]. Similar to TANGO, most of the
proposed techniques return a ranked list of duplicate candi-
dates [35, 63]. The work most closely related to TANGO is by
Wang et al. [99], who leveraged attached mobile app images
to better detect duplicate textual reports. Visual features are
extracted from the images (e.g., representative colors), using
computer vision, which are combined with textual features
extracted from the text to obtain an aggregate similarity score.
While this is similar to our work, TANGO is intended to be
applied to videos rather than single images and focuses on
video-based bug reports alone, without any extra information
such as bug descriptions.

VII. CONCLUSION AND FUTURE WORK

This paper presented TANGO, an approach that combines
visual and textual information to help developers find duplicate
video-based bug reports. Our empirical evaluation, conducted
on 4, 680 duplicate detection tasks created from 180 video-
based bug reports from six mobile apps, illustrates that TANGO
is able to effectively identify duplicate reports and save devel-
oper effort. Specifically, TANGO correctly suggests duplicate
video-based bug reports within the top-2 candidate videos for
83% of the tasks, and saves 65.1% of the time that humans
spend finding duplicate videos.

Our future work will focus on addressing TANGO’s lim-
itations and extending TANGO’s evaluation. Specifically, we
plan to (1) explore additional ways to address the vocabulary
overlap problem, (2) investigate the resilience of TANGO
to different app characteristics such as the use of different
themes, languages, and screen sizes, (3) extend TANGO for
detecting duplicate bug reports that contain multimedia infor-
mation (text, images, and videos), (4) evaluate TANGO using
data from additional apps, and (5) assess the usefulness of
TANGO in industrial settings.

VIII. DATA AVAILABILITY

Our online appendix [42] includes the collected video-
based bug reports with duplicates, TANGO’s source code,
trained models, evaluation infrastructure, TANGO’s output, and
detailed evaluation results.
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