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Abstract—One of the most important problems in the evolution
of legacy systems is the lack of knowledge about them. Since
their documentation is usually outdated, the most reliable source
of information for recovering this knowledge is the structure
and behavior of the information system itself. In this work, we
present an approach for extracting structural business rules from
legacy databases. Based on the OMG SBVR standard, we defined
a mapping between database and business rules components,
implemented the mapping in a rule extraction tool and used it in
a financial legacy information system. As a result, we extracted
756 structural business rules. The evaluation of the approach
indicates that the proposed mapping is appropriate in terms of
the number of real extracted business rules, resulting in around
85% of accuracy.

Index Terms—Business Rules Extraction; Legacy Information
Systems; Rule Components; Database Components; SBVR stan-
dard

I. INTRODUCTION

Legacy information systems are systems that have had a
long evolution, i.e., a long life cycle. Often, they are built
with outdated technologies and paradigms [1][2], and have a
big size in terms of information processing capacity, function-
alities provided, program components, and lines of code. Even
though legacy systems are resistant to modifications and inte-
gration with other systems [2], they are essential in business1

[1][4], and have accumulated large amounts of information
related to business processes and quality attributes, such as
performance in algorithms.

These characteristics have some implications on the evo-
lution of legacy systems. First, the development/maintenance
team gradually loses knowledge about the system architecture
and behavior, as a result of its long evolution. Second, these
software systems require little successive modifications that
do not alter their architecture but deteriorate it gradually i.e.,
the architecture follows a new path regarding the original
design. And third, while the system changes over the time, its
documentation is not updated [1], and therefore, the knowledge
about the system remains only in the people have developed
and maintained it, leading to a high probability of loss of
information.

1Business is understood in this work as the “the activity of buying and
selling goods and services, or a particular company that does this, or work
you do to earn money” [3].

Consequently, the most important problem in the evolution
of legacy systems is the lack of knowledge about them.
The most faithful source of information for recovering this
knowledge is the structure and the behavior of the information
system itself; thus, it is relevant to apply knowledge extrac-
tion techniques to its source code. In this sense, Business
Rules Extraction (BRE) is a reverse engineering process for
recovering or extracting Business Rules (BR) from software
information systems. In general, BR are constraints that define
and guide the way a business operates [5][6]. BRE is important
in software knowledge acquisition because:

• It is a means for software re-documentation [7] and
functionality-code tracing [8].

• It builds BR-Code mappings that can support the under-
standing of the system [9].

• It supports the validation process for checking that the
system fulfills its specification [8], i.e., that all the busi-
ness rules are actually implemented [10].

• It is used in software re-engineering and migration [10].
Although BRE is important for software knowledge acquisi-
tion, the research performed in this area has been focused only
on the identification of program elements that could lead to
business rules (e.g., domain variables, program sentences or
program slices) [9][11][12][13][14]. Moreover, the methods or
processes for extracting business rules are not reproducible,
and in some cases, they do not present clearly the extracted
rules regarding the concepts of business rules, their composi-
tion and categorization [11][12][14][15][16]. These drawbacks
lead to incomplete extraction of rules and large amounts of
manual work to achieve a complete extraction and verification
[10].

In this work, we present an approach for extracting struc-
tural BR from legacy databases. The BRE approach is part of
a reverse engineering process applied to SIFI (SIstema Fidu-
ciario Integrado2), an industrial legacy system implemented in
PL/SQL and Oracle Forms technology. In order to define the
BRE approach, we performed a revision of the BR concepts,
its characteristics and categorization, based on the Semantics
of Business Vocabulary and Business Rules (SBVR) standard
[17][18] provided by the Object Management Group (OMG).
Then, we analyzed the structural database (DB) components

2In English, Fiduciary Integrated System.



and the BR concepts to define a mapping among them. For
this, we analyzed a set of database components of a SIFI
module in order to find patterns that could lead to structural
BR, and at the same time, to validate the mappings. Finally,
we defined a BR format, followed the SBVR methodology for
the extraction of rules and performed a qualitative evaluation
of the approach.

The major contributions of this work are:
• A revision of the BR concepts for BRE based on SBVR

standard.
• An approach based on DB-BR component mappings for

extracting structural BR from databases.
• The practical application of the approach in an industrial

legacy information system.

II. BUSINESS RULES CONCEPTS

Business rule is a common term in business and software
design. Intuitively, we consider BR as what the business
and software does or operates. Although this conception is
not wrong, it is quite inaccurate. Actually, BR delimit what
is permitted and what is not in business and, therefore, in
software. In other words, business rules define or constrain
what is allowed in the operation of the business.

A. Definition of Business Rule

A rule is an explicit regulation or principle that governs
the conduct or procedures within a particular area of activity,
defining what is allowed [5]. A business rule is a rule under
business jurisdiction, that is, a rule that is enacted, revised
and discontinued by the business [5][18]. For example, the
“law” of gravity can affect a particular business, but it is not
a business rule because the business cannot govern it; instead,
the business may create rules for adaptation or compliance.

Business rules guide the behavior or action of a particular
business and serve as criterion for making decisions, as they
are used for judging or evaluating a behavior or action.
They shape the business (business structure) and constraint
processes (behavior of the business), to get the best for the
business as a whole [5][19]. This means that business rules
must be defined and managed in an appropriate way to guide
the business to an optimal state.

B. Structure of Business Rules

The SBVR standard [17][18] defines key concepts on BR:
• Business Vocabulary: is the common vocabulary of a

business, built on concepts, terms, and fact types.
• Business Rules: they are statements/sentences based on

fact types that guide the structure or operation of a
business.

• Semantic Formulation: is a way of structuring the mean-
ing of rules through several logical formulations [18],
e.g., logical operators (and, or, if-then, etc.), quantifi-
cation states (each, at least, at most, etc.), and modal
formulations (It is obligatory or It is necessary).

• Notation: is the language used to write and express BR.
SBVR standard uses three reference notations, namely

SBVR Structured English, RuleSpeak and Object-Role
Modeling.

Business rules are composed of a structured business vocabu-
lary [5], which provides them with meaning and consistency.
Structured business vocabulary comprises the following ele-
ments [5][19] (Figure 1):

• Noun concepts: they are represented by terms of the
business. They are elemental, often countable and non-
procedural. For instance, Country, Car Brand, Customer,
Operational Cost.

• Instances: they are “examples” of noun concepts. In-
stances are always in the real world, not in a model. For
example, United States, Volkswagen.

• Fact types: they are connections of concepts made by
verbs or verb phrases. They give structure to the busi-
ness vocabulary, recognize a known fact and organize
knowledge about results of processes. Common shapes
or classes of fact types are categorizations (e.g., Coupe
Automobile is a category of Automobile), properties (e.g.,
Car has Brand), compositions (e.g., Computer is com-
posed of CPU, RAM, and Hard disk) and classifications
(e.g., Volkswagen is classified as Car Brand). Fact types
also can be categorized by arity, which is the number of
noun concepts in the fact type.

Figure 1. Fact Metamodel.

Through semantic formulations, business rules add a sense
of obligation or necessity and remove degrees of freedom to
the structured business vocabulary [5] (Figure 2). For example,
for the fact type Car has Engine, a business rule could be A
Car must have only one Engine. In this case, the business rule
has quantifiers (A, only one) and an operative modal keyword
(must) that restricts the fact type. Another form to express the
same business rule is: It is necessary that a Car has exactly one
Engine. In this case, the rule has the structural prefix modal
keyword it is necessary that and the quantifiers a and exactly
one.



Figure 2. Business rules structure.

Although business rules can be expressed in several forms,
it is required to follow only one specific notation, such
as SBVR Structured English or RuleSpeak. Even so, and
regardless the way business rules are expressed, they must
be declarative and non-procedural, i.e., they must define the
case/state of knowledge without describing when, where, or
how the case/state is achieved [5][19][20].

C. Types of Business Rules

There are two types of business rules [5][17][21][22] (Fig-
ure 3):

• Behavioral or operative rules: they govern the behavior
or business operations in a suitable and optimal fashion
and, therefore, they are important for modeling business
processes. These rules always carry the sense of obliga-
tion or prohibition, can be violated directly, and not all
are automatable. Examples of this kind or rules are the
following [5]:

– Not automatable: “A Nurse must visit a Patient at
least every 1 hour”.

– Automatable: “An Order over $10000 must be ac-
cepted on Credit without a Credit Check”.

• Definitional or structural rules: they structure and or-
ganize basic business knowledge. They carry the sense
of necessity or impossibility and cannot be violated
directly [5]. Unlike behavioral rules, not all definitional
rules are business rules (e.g., law of gravity or rules of
math); however, all of them are automatable [5]. When
evaluating structural rules, usually there are two possibili-
ties: classifications (class membership) and computations
(results). Some examples are:

– Classification: “A Customer is always a Premium
Customer if the Customer has placed Orders of more
than $10000”.

– Computation: “The Total Price of an Order is always
computed as the Sum of Order Item Prices”.

Figure 3. Types of Business Rules.

Figure 4. Element of guidance metamodel [5].

D. What are not Business Rules?

Business rules, business policies, and advices are elements
of guidance (guidelines) (Figure 4). Then, what is the dif-
ference between them? why are all of them not considered
as business rules? First of all, business rules must be prac-
ticable elements of guidance. Although business policies are
guidelines, they are not practicable, so they are not business
rules [5]. For example, the sentence “Compliance to the
Customer is our Priority” is not a BR. Instead, business
policies are reduced to practical guidelines, i.e., to business
rules or advices. Advices and business rules are practicable
guidelines because they are built upon fact types, but advices
do not remove any degree of freedom from fact types [5].
In other words, they do not set any obligation or prohibition
on business conduct, and any necessity or impossibility for
knowledge about business operations [5]. The following is an
example of an advice: “A Customer Claim may be handled by
a Personal Assistant”.

In the same way, the following elements are not business
rules:

• Events: they express actions performed by an actor in a
specific moment in time. A business rule can be analyzed



to find events where it needs to be evaluated.
• CRUD3 operations: they are events that always result on

data rather than a business rule.
Exceptions are not BR per se but violations to rules. However,
they are used to formulate and organize logical and coherent
BR. In a business rules context, there are no exceptions;
instead, there are well stated business rules [5].

E. Relation of Business Rules and Software Information Sys-
tems

What is the role of BR in software information systems?
Business rules capture the decision logic needed for activities
in business processes [5], and produce multiple events in pro-
cesses [5]. Typically, software systems model and implement
business process, so we can say that business logic and rules
are in source code (Figure 5), at least implicitly. For example,
the system messages presented, when an operative exception
has occurred, have implicit BR, if they provide the users with
guiding messages.

Figure 5. Relationship between information systems and business rules.

Business rules are key components within the structure of
business processes and software models [5][21]. They evaluate
facts in a process and can control the basis for changes in
the flows of processes in which decisions appear. At business
level, business rules enable the business to make consistent
operative decisions, to coordinate processes, and to apply
specialized know-how in the context of some product/service
[5]. At software level, business rules guide flows in procedures
and constraints the facts allowed. In any case, if a business
rule changes, the business processes and the software modules
associated to that rule need to be changed [10], in order to
continue the compliance with the business rules [8].

III. EXTRACTION OF STRUCTURAL BUSINESS RULES

Business rules rely on fact types, and fact types on business
vocabulary. For the automatic extraction of structural BR from
database components we followed the same reasoning. First,
we extracted business concepts; then, we created fact types
by relating the concepts through verb phrases and; finally, we
generated sentences and business rules by adding quantifiers,
modal and logical keywords to fact types. In this process, we

3Create, Retrieve, Update and Delete.

tried to map every structural database component, including
tables, columns, constraints and comments, to the business
rules structures, i.e., concepts, verb phrases, fact types and
rules. We proposed basic heuristics for BRE and also a
business rule DB model, which represents the format of the
extracted rules.

We also analyzed the portion of the database that corre-
sponds to a specific module from the studied information
system. This allowed us to refine the heuristics proposed and
evaluate the extraction method. Finally, we developed a tool
prototype that performs the automatic extraction of business
rules.

A. Software Studied

SIFI is a financial information system that manages the
information and the operations related to investments funds,
financial investments, trusts, accounting, budget, treasury, ac-
counts payable, billing and commissions portfolio. The system
is maintained by a Colombian software development com-
pany, called IT Consultores, has a life cycle of more than
fifteen years operating in several trust companies (banking
companies), and currently, is deployed and used in nine large
Colombian trust companies that represent the 60% of this mar-
ket in the country. The system is developed in Oracle Forms
technology, it has 1400 form modules, 3200 database tables,
3500 stored procedures, 700 database views, and around 800
KLOC in the database.

IT Consultores has no documentation of the BR involved
in the SIFI’s business processes. The knowledge about the
system has remained in two groups of people: the technical
group, who knows about SIFI’s architecture, and the business
group, who knows about the business processes supported by
SIFI. The problem is that when people leave the company, a
loss of knowledge about the system and the business occurs.
Therefore, the client support, the maintenance and, in general,
the evolution of the system is negatively affected. To mitigate
this problem the company has started a reverse engineering
process in which the extraction of BR is one of the most
relevant steps.

Because of the large size of the system, we decided to work
only on the Programming and Payment (PP) module, which is
one of the largest modules of the system and is used by almost
all of the other SIFI modules. Likewise, the module handles
common tasks in many processes of a trust company: trust
taxes payments, contracts and invoice payments, investments
discharges and, in general, payments to trust suppliers. We
think the module has a considerable number of BR.

B. DB - BR Mappings

We identified a set of database components that could lead
to BR, and defined a DB-BR components mapping using basic
heuristics. For this, we analyzed the DB core of the PP module,
composed of 25 tables, and tried to consider standard DB
elements, so that the heuristics could work in other systems.



Each of the following structural database components were
considered4:

• Tables: they often represent noun concepts of a domain.
For instance, the table called FD_TMOVI stores the
movements of trusts payments, so the concept that repre-
sents the table is Trust Payment Movement. Nevertheless,
not all tables represent concepts. There are tables that
only relate two or more tables (many-to-many relation-
ships), resulting in those that represent verb phrases. For
example, the table called FD_TMVCR represents the re-
lationship Rejection Cause per Trust Payment Movement.
This table only relates the tables FD_TCSRZ (Movement
Rejection Cause) and FD_TMOVI, thus representing a
relationship instead of a concept. Actually, the table
expresses the verb has and the fact type Trust Payment
Movement has Rejection Cause.

• Table columns: they also represent noun concepts and fact
types. Concepts are extracted from their comments and
fact types from the relationship between their concepts
and the concept of the table they belong to. Initially,
the fact types that can be created with column concepts
are those of class property. For example, the column
MOVI_ESTADO, which belongs to the table FD_TMOVI,
has the concept State, so the property fact type extracted
from the column and the table is Trust Payment Movement
has State.

• Foreign keys/constraints: these constraints represent verbs
between table concepts. In some cases, the fact type class
is different from property, e.g., the table FD_TMOVI has
a foreign key that references the table called FD_TOPER
(which has the concept Trust Movement Operation);
therefore, the fact type that represents the foreign key
is Trust Payment Movement generates Trust Movement
Operation.

• Primary and unique keys/constraints: these constraints are
used only to ensure uniqueness and identification of data.
Therefore they do not map to any concept of BR.

• Table/column comments: comments are descriptions in
natural language about tables and columns in databases.
They can be used to extract noun concepts and fact types
related to tables and columns. In the worst case, such
descriptions are not available in the database, so concepts
and fact types must be manually assigned or extracted
from other sources, such as labels in the presentation
layer of the information system. In the case of SIFI, it
was possible to automatically identify the concepts of
tables and columns from their comments, through a Part-
Of-Speech tagger called TreeTagger5. By analyzing DB
comments of the PP module, we realized that comments
often contain more than one noun or composed nouns;
thus, for columns, we join nouns to create a concept,
while for tables, we look for the table nouns in the column

4All the given examples in this and the next sections are taken from the
PP module.

5TreeTagger can be found at http://www.ims.uni-stuttgart.de/projekte/
corplex/TreeTagger/.

comments for establishing the most important ones. For
example, the identified nouns of the table FD_TMOVI,
which comment is “Are the payments, fundraisings or
causations of money of a trust or an asset in a trust”,
are Payment, Movement, Fundraising, Causation, Money,
Asset and Trust. To find and build the real concept of the
table, an importance weight is assigned to each noun of
the list, by computing their occurrences in the column
comments. In this case, the words Payment, Movement
and Trust are the nouns that appear the most in the
column comments and, thus, the generated table concept
is Trust Payment Movement. On the other hand, for
creating fact types, on each column comment we expect
to find verbs that associate concepts. When comments
only contain nouns, the verb extracted is the one used
for property fact types, i.e., the verb has. In contrast,
when comments contain verbs, they are identified with
the POS tagger and used to create fact types. For example,
for the fact type Trust Payment Movement generates
Trust Movement Operation, the verb generate is extracted
from the comment of the column MOVI_OPER (table
FD_TMOVI).
In addition, the comments also are useful to identify other
common classes different from property fact types, using
check constraints.

• Check constraints: they are conditions that always should
be satisfied when adding and updating data in tables.
This means they cannot be violated and, therefore, they
represent structural BR. We found three types of check
constraints in the PP module: not null constraints, check
list constraints and others.
Not null constraints verify that columns always have not
null values. For example, the table FD_TMOVI has a
constraint that checks that column MOVI_ESTADO has
not null values. Using this constraint, the BR that can be
created is A Trust Payment Movement always has a State,
which relies on the fact type Trust Payment Movement has
State.
Check list constraints verify that column values always
are in a list of values. There are three possibilities
regarding the meaning of values: values meaning classes
of concepts, states of concepts or operative parameters.
Regarding the first type of values, the nouns correspond-
ing to each value are used to create categorization fact
types. For example, the table called GE_TFORMULA
(Formula of Movement Concept) has a column called
FORM_CLASE (Type of Formula), and a check list con-
straint with the code

FORM_CLASE IN ( ’CD’ , ’SD ’ )

The value ’CD’ corresponds to the concept Discount
Formula and the value ’SD’ to the concept Non-discount
Formula. Both concepts are extracted from the nouns
of the comments and represent categories of the table
concept. Then, the created categorization fact types are:
Discount Formula is a category of Formula of Movement

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/


Concept, and Non-discount Formula is a category of
Formula of Movement Concept.
Regarding the values that mean states of concepts, the
words corresponding to each value are verbs in past
participle or, in some cases, adjectives. For instance, the
column MOVI_ESTADO (table FD_TMOVI) is used in
the check constraint’s code

MOVI_ESTADO IN ( ’A’ , ’ I ’ , ’T ’ , ’P ’ , ’X’ )

in which the meaning of the value ’A’ is authorized, ’I’ is
inserted, and ’X’ is canceled, to name just a few values.
For this type of check list constraints, the values are used
to build unary fact types: Trust Payment Movement is
authorized or Trust Payment Movement is canceled.
Regarding values that mean operative parameters, we
found in the PP module that they are used for guiding the
operations and processes in the system. For example, the
column FORM_IMP_MUNIC (table GE_TFORMULA),
with the concept City Tax, is used in the check constraint’s
code

FORM_IMP_MUNIC IN ( ’S ’ , ’N’ )

where there are two values: ’S’ (Yes) and ’N’ (No). The
column comment indicates an operative condition that
means if the formula should or should not consider City
Taxes.
Finally, other constraints are those that involve other
logical conditions that always should be satisfied. For
example, the column called MOVI_VLRMOV (table
FD_TMOVI), which is the Movement Value, is used in
the check constraint’s code

MOVI_VLRMOV >= 0

which means that the value cannot be negative.
The summary of the DB-BR component mappings is shown
in Figure 6.

C. BR Format and Scheme

Based on SBVR Structured English and RuleSpeak, we
defined a BR format, which was implemented in a database
scheme. The scheme represents the basis for the development
of an automated General Rulebook System (GRBS) [5], that
allows to store and track all the knowledge around the BR,
including concepts, fact types, rules and their relationships.
The general goal of a GRBS is to provide a means for a smart
governance and a corporate memory though traceability [5].
The implemented scheme pursues the same goal.

The scheme is composed of eight database tables (Figure 7).
Seven of them model the BR concepts and the other one, the
table bs_t_object_concept, models the links between the DB
components and noun concepts. As a result, the BR scheme not
only models and formats BR but also tracks the relationships
between DB and BR components.

In the scheme, concepts and verbs are terms used to com-
pose fact types (Figure 7). In turn, fact types are complemented

Figure 6. DB - BR component mappings.

with quantifiers and keywords to compose sentences; and
finally, the combination of sentences and keywords, compose
BR. Examples of quantifiers are the following: every, at least,
maximum, exactly, more than one, and between. Keywords
are logical (if, only if, and, or, etc.), operative (must, can) or
structural (always, never).

A sentence is composed of two quantifiers, one per fact
type concept, and a keyword. For instance, the sentence A
Trust Payment Movement always has a State has the quantifier
“a” for both concepts and the structural keyword “always”,
which gives the sense of impossibility to the fact type (Trust
Payment Movement has State). In turn, a BR is a sentence or
a composition of two sentences joined together with another
keyword. For example, a BR composed of two sentences is: A
Trust Payment Movement only is authorized if the Movement
has no Rejection Causes.

There are two important design elements of the scheme: a
fact type can be composed by one or two concepts, having
unary and binary fact types only; and in the same way, a
business rule is exclusively composed of one or two sentences.
These design decisions were based on the BR reduction
principle expressed in [5]. The principle aims at producing
easily-understood and granular rules that can be independently
managed, re-used and modified.

IV. RESULTS AND DISCUSSION

For extracting structural BR, an extraction tool, included in
a Reverse Engineering System for Oracle Forms application,
was developed. The tool is the product where the DB-BR map-
pings, presented in the previous section, were implemented,
and is able to extract:



Figure 7. Implemented BR database model.

• Concepts from tables and columns, using the comments
in the DB.

• Verbs and binary property fact types from the table/-
column comments and concepts, and from the tables
hierarchy (foreign keys).

• Categorization and unary fact types from check list con-
straints.

• Structural BR from the extracted fact types, using the not
null constraints.

The input of the tool is a list of DB tables and the output
is a set of extracted and stored concepts, verbs, fact types,
sentences and business rules. The tool processes the DB
components of the input tables and the tables related to them
through the foreign keys (parent and children tables). Table I
presents some examples of the resulting components. All the
BR and the extracted components can be downloaded from
http://itc.com.co/CLEI12/6.

BR component Examples
Concept Trust Payment Movement, Operation Check

Unary Fact Type Treasury Movement Type is tax-exempt

Binary Fact Type Expenditure per Contribution generates
Treasury Movement

Property Fact Type Credit Note has Specific Voucher Type

Categorization Fact Type Fixed Investment Depreciation is a
category of Investment Depreciation

Structural Business Rule Every Deposit Income always has a
Movement Value

Table I
EXAMPLES OF THE EXTRACTED BR COMPONENTS FROM THE PP

MODULE.

In turn, table II presents some statistics about the automatic
extraction of structural BR, performed in the PP module. The

6The dataset is available only in Spanish.

25 core tables of the module were the input to the tool,
resulting in 155 processed tables and 3142 columns, for a
total of 3297 processed objects. The number of extracted
concepts from tables and columns was 2238, 1893 correspond
to general concepts, i.e., concepts having categories, and 345
correspond to categorical concepts. In addition, the tool was
able to extract 178 verb phrases and a total of 3625 fact types
using the extracted concepts, verbs, and table constraints. 385
unary fact types were extracted, of which 345 correspond to
categorization fact types. The number of binary fact types
was 3240; those extracted from foreign keys having verbs
on column comments were 114, and those with no verbs in
comments were 177. At the end, 756 sentences and structural
BR were generated using not null constraints and the extracted
fact model. 21% of fact types were used to create the structural
BR.

Statistic Value
# of processed objects

(tables/columns)
3297

# of processed tables 155
# of processed columns 3142

# of concepts (tables/columns) 2238
# of general concepts 1893

# of categorical concepts 345
# of verbs 178

# of fact types (FT) 3625
# of unary FT 385
# of binary FT 3240

# of property FT 2895
# of categorization FT 345

# of FT from FK (verbs) 114
# of FT from FK (no verbs) 177

# of sentences 756
# structural BR 756

% of BR from # of FT 21

Table II
STATISTICS OF THE EXTRACTED BR COMPONENTS FROM THE PP

MODULE.

We performed an informal revision of the results by manu-
ally assessing the extracted BR components, with the support
of some technical and business experts that know the PP
module. The conclusions were that the proposed DB-BR
mappings are appropriate and around 85% of the obtained
results correspond to the reality of the business. In other words,
DB-BR mappings allowed us to obtain 640 true structural
business rules. On the other hand, a number of problems
detected led to not obtaining better results, and in around
15% of cases the extracted rules do not correspond to real
rules. In any case, we followed some strategies to mitigate the
problems. We explain them in detail in the next paragraphs.

Preliminary results allowed us to identify BD-BR com-
ponent relationships and some technical patterns in the PP
module that affect the results. In the first place, the tool
was able to store the relationships between BD and BR
components. In this way, it is possible to know the DB objects
that correspond to concepts or BR, and vice versa, the concepts
or rules that correspond to a DB object. For example, the
structural BR Every Deposit Income always has a Movement

http://itc.com.co/CLEI12/


Value is related to the table TE_TCNSG and the columns
CNSG_VALOR, MOVI_VALOR and RLMV_VALOR. Likewise,
the tool allowed us to detect columns that represent operative
conditions and non-structural rules. Three conditions were
necessary to detect and avoid those columns: the presence
of parametric values in check list constraints, the presence
of the words IF or WHEN in the column comments, and the
acceptance of null values in the columns. This allowed us to
filter out BR from 874 to 756, thus representing a reduction
rate of 13%.

Another pattern found in the module was the presence of
the word WHICH in the column comments. We noticed that
columns having this word, represent elements of business
operations. In other words, they must be used to extract
operative BR. The same case happened with columns that had
values that mean states; generally, they represent completed
actions and, therefore, they can be used to create operative BR.
In any case, those concepts and fact types were extracted, and
we expect to use them for proposing a method for extracting
operative rules as future work.

On the other hand, we found some problems that did not
allow us to obtain better results. One problem found was the
precision in the extracted verbs and concept relationships, in
terms of their real meaning. Some columns did not include
verbs in their comments so it was not possible to obtain
accurate fact types. Another issue is that some categories
between concepts, that were detected manually from foreign
keys, could not be extracted automatically. For example, the
table called FD_TFIDE, which represents the concept Trust,
had a foreign key to the table GE_TCIAS, which represents
the concept Company. This foreign key represents a category
of Company, resulting in the categorization fact type Trust is a
category of Company. We did not find an automatic means for
extracting these kind of fact types. Apart from that, we found
other cases in which tables had the unique role of relating
tables (many-to-many relationships), resulting in composition
fact types. We neither extracted those fact types.

Another problem found was the inaccuracy of the extracted
concepts, related to the poor quality of table/column comments
or the inaccuracy of the POS Tagger in the identification
of nouns. For example the extracted concept of the table
CP_TORPV was Payment Order, instead of the real concept
Payment Order Liquidation. In this case, the POS Tagger
omitted the noun Liquidation.
Finally, another fact we noticed was that some nullable
columns in reality may not be nullable. In this case, we
assumed the constraints that check the column values are in
higher layers of the information system, i.e., in presentation
or application logic layers.

In summary, we detected three elements that negatively
affect the accuracy of the BRE approach:

1) Poor quality in some table/column comments for the ex-
traction of verbs, concepts, categorization and unary fact
types. In the case of categorization and unary fact types,
the existence of table/column comments is mandatory. If
comments does not exist in the DB, the mapping of all

BR would be manual or would be extracted from other
sources of information.

2) Incomplete accuracy of the POS tagger, which lead to
missing or wrong detected nouns and verbs in com-
ments. In the same way, this lead to incomplete extrac-
tion of concepts, verbs and fact types.

3) Deteriorated architecture of the PP module as a result
of the long evolution of the system. This is reflected
in the number of nullable columns, and the presence
of parametric and characteristic columns7 in the same
table. In some cases, this lead to the extraction of false
structural BR. However, we try to omit DB components
with these characteristics.

V. RELATED WORK

We divided BRE in three categories: manual, heuristic and
dynamic. The former refers to conduct manual examination of
source code for extracting BR, and the others about performing
automatic extraction of rules. Heuristic techniques have fo-
cused on static processing of source code, while dynamic tech-
niques emphasize the processing of dynamic artifacts such as
execution traces. In general, automatic BRE has only focused
on the examination of source code, and on the identification
of language structures or program sequences that could lead
to business rules. Also, in some cases, the concept of business
rules is not clear, and neither their structure and categorization.

A. Manual BRE

Earls et al. [10] present a method for manual BRE on legacy
code. The authors mention two BRE approaches: program-
centric and data-centric. According to them, the former is
required, but the latter is cheaper. However, they state that the
main problem with data analysis is the presence of historical
data, which contributes to extract outdated or incorrect BR. In
consequence, the method they propose is program-centric and
focuses on locating and classifying error-processing sections
in source code and the conditions that lead to those sections.
The authors propose an error categorization by criticity (fatal,
recoverable and database errors) in order to filter those error-
processing sections that are not related to BR violations.
The conditions related to the error sections are identified and
recorded in a rule extraction proforma and, later, are analyzed
to determine whether they refer to business or technical con-
ditions. Those representing business conditions are translated
in non-technical terms and recorded in a special repository for
BR. At the end, the authors performs a review of the extracted
rules with domain experts, considering the following eval-
uation criteria: reliability, understandability, straightforward
and uncomplicated applicability, re-usability, readability and
commercial viability. The most important conclusion of this
work is that manual BRE requires too much time, especially
in large information systems, but is more accurate compared
with existing and proposed automatic tools and methods.

7Characteristic columns are those representing basic information of the
table’s entity.



We found [10] as the unique and direct work about manual
BRE. However, we found related work presented in [23], in
which the authors present an analysis on the impact of human
factors in the BRE of legacy systems. The authors state that
BRE is “heavily dependent on human interaction and steer-
ing”, and conclude that the following are some consequences
of ignoring human factors in BRE: increased probability of
incorrect extracted business rules, less capacity to deal with
emergent business needs, increased workload, lower produc-
tive output, increased probability of project delays, higher time
and material costs, low quality in the extracted rules, tension
and stress in people who extract rules.

B. Heuristic BRE

Heuristic BRE consists on automatic extraction techniques
that take advantage some common elements of the source code
that could compose BR. Elements considered in heuristic BRE
are, for example, identifier names, exception raising/handling
statements, and control flow structures. One method generally
used in heuristic BRE is program slicing, which basically
consists on extracting some portions of the code that affect
some variables, according to some point of interest in the
program [24].

The work presented in [12] focuses on identifying business/-
domain variables and the application of generalized program
slicing for those variables. The process proposed by the author
is the following:

1) Identification of input and output variables/parameters
of procedures.

2) Slicing criterion identification, based on three heuristics:
input/output statements, dispatcher center statements (IF
and SWITCH control statements), and end points of
procedures.

3) Code extraction using generalized program slicing.
4) Representation of BR, through code fragments, formula

views or input/output dependencies.
Although it is not clear which are the elements that composes
BR and how they are extracted from code, there are some
important facts to consider from this work. First, input and
output variables are important because they belong to data
flow interfaces in programs; second, control statements are
essential for BRE since they guide the programs’ execution
flow; and third, the BR representation defines mostly the BR
components. In addition, the authors present five requirements
that BRE should fulfill: faithful representation of BR, multiple
representations and hierarchical abstractions for BR, domain-
specific business policies, human-assisted automation, and a
maintenance tool. The work presented in [23] also applies
program slicing and domain variables identification.

Shekar et al. [13] focus on enterprise knowledge discovery
from legacy systems. The approach they propose consists of
three steps:

1) The generation of detailed descriptions of entities, rela-
tionships and business rules. An algorithm performs the
extraction of the DB conceptual scheme and the meaning
of the entities, attributes and business rules.

2) The mapping of the legacy source schema and domain
model elements, through mapping rules.

3) The creation of a wrapper that translates queries from the
application domain model to the legacy source schema.

The authors consider more “semantic” source code elements
for performing knowledge discovery but it is not clear enough
how they extract BR from those. Examples of the elements
are: output messages, semantic relationships between variables
and table columns, variable usages, assignment and control
statements, and variables used in database queries.

In [8], the authors suggest to use error messages, program
comments, functions, and control flow structures. The authors
present three steps to extract BR, based on SBVR standard:
extraction of business vocabulary, creation of rules using
vocabulary, and “activity interleaving”.

The authors in [15] perform BRE on COBOL legacy
systems. They focus on simple COBOL statements that carry
business meaning, such as calculations and branching state-
ments. In addition, they use the identifiers and conditions
to extract the meaning and context of BR. The format used
for BR is <conditions> <actions>, in which actions are
completed if conditions are satisfied.

In [9], the following four program elements that compose
business rules are proposed: results, arguments, assignments
and conditions. Using program slicing, the authors track all
the assignments of data results from calculations, and capture
the conditions that trigger the assignments. In this work,
meaningful names of variables is mandatory.

The authors in [14] propose the use of information-flow
relations between input/output variables, statements and ex-
pressions to identify domain variables. The approach they
propose is mostly useful on procedural code.

Finally, a loosely related topic is the summarization of
code. In [25], the authors propose a technique for summa-
rizing java methods. Through a series of heuristics related
to linguistics, syntax standards, and statement categories the
authors generate natural language summaries of java methods.
Some elements considered in the analysis are: names of
methods, variables and classes, data types, return type of
methods, and method parameters. The evaluation criteria for
the technique were the following: summary precision, content
adequacy and conciseness. These attributes were based on the
fact that a summary must be specific enough and should not
omit important information and contain extraneous data and
redundancy.

C. Dynamic BRE

[26] and [16] are examples of this kind of BRE. They
present process mining approaches, which are intended to
recover decision rules and control flow of systems from logs
and execution traces. According to the authors, the main
advantage of analyzing dynamic artifacts is that it is possible to
detect participants, responsibilities, and concurrent activities in
processes [16]. However, logs and other sources of information
should comply with certain characteristics that make possible
to perform process mining.



The research in dynamic BRE has not been as strong as the
research performed in heuristic BRE.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for automatically
extracting structural business rules from legacy databases.
Specifically, we performed a revision of the BR concepts
based on SBVR standard, proposed an approach that considers
DB-BR component mappings to extract structural BR from
databases and, finally, applied the approach in an industrial
legacy information system. We performed a preliminary as-
sessment of the extracted components and rules, which envi-
sion promising results in terms of the number of real extracted
business rules. In the same way, the assessment allowed us
to detect some problems and elements to be considered for
improving the extraction of rules components.

As future work, we plan to implement and refine all the
proposed DB-BR mappings. The refinement will include:

• The analysis of temporary tables and check constraints
with any condition.

• The detection of roles in fact types [5], verb phrases
from tables that only relate other tables (many-to-many
relationship), and concept synonyms.

• The extension of the BR format/scheme, in order to rep-
resent several type of rules in other forms, e.g., decision
tables as a way for representing parallel business rules
[5].

We also plan to perform a formal qualitative/quantitative
evaluation of the approach in terms of precision and recall,
and finally, we will move forward the extraction of operative
business rules.
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