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ABSTRACT

Many software bugs are reported manually, particularly bugs that

manifest themselves visually in the user interface. End-users typi-

cally report these bugs via app reviewing websites, issue trackers,

or in-app built-in bug reporting tools, if available. While these sys-

tems have various features that facilitate bug reporting (e.g., textual

templates or forms), they often provide limited guidance, concrete

feedback, or quality verification to end-users, who are often inexpe-

rienced at reporting bugs and submit low-quality bug reports that

lead to excessive developer effort in bug report management tasks.

We propose an interactive bug reporting system for end-users

(Burt), implemented as a task-oriented chatbot. Unlike existing bug

reporting systems, Burt provides guided reporting of essential bug

report elements (i.e., the observed behavior, expected behavior, and

steps to reproduce the bug), instant quality verification, and graph-

ical suggestions for these elements. We implemented a version of

Burt for Android and conducted an empirical evaluation study

with end-users, who reported 12 bugs from six Android apps stud-

ied in prior work. The reporters found that Burt’s guidance and

automated suggestions/clarifications are useful and Burt is easy to

use.We found that Burt reports contain higher-quality information

than reports collected via a template-based bug reporting system.

Improvements to Burt, informed by the reporters, include support

for various wordings to describe bug report elements and improved

quality verification. Our work marks an important paradigm shift

from static to interactive bug reporting for end-users.
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1 INTRODUCTION

Bug report management is an important and costly software en-

gineering activity. While certain types of bugs can be reported

automatically via a known oracle (e.g., crashes), recent studies

have illustrated that more than half of the bugs reported in open

source software relate to functional problems with no automati-

cally identifiable oracle [59] and, hence, must be reported manually.

High-quality bug reports are essential for bug triage and resolution

and they are expected to describe at minimum the observed (incor-

rect) behavior (OB), the steps to reproduce the bug (S2Rs), and the

expected (correct) software behavior (EB) [25, 48, 65].

One of the main difficulties that contributes to quality issues in

end-user bug reporting is the knowledge gap between end-users

and developers [44, 53]. That is, there is often a gap between what

end-users know and what developers need [65], generally due to the

fact that users are both unfamiliar with the internals of the software

and with the explicit types of information that are important for

developers (e.g., the OB, EB, and S2Rs).

Most current reporting systems are not designed to address the

above-mentioned knowledge gap between end-users and develop-

ers. In particular, current systems are typically lacking along two

important dimensions: (1) they offer limited guidance related to

what needs to be reported and how it needs to be reported; and (2)

no feedback is offered to reporters on whether the information they

provided is correct or complete. In consequence, given the static

nature of these bug reporting interfaces, the burden of providing

high-quality information rests on the reporters.

We posit that an interactive reporting solution can help to bridge

the developerśend-user knowledge gap. Inspired by prior work on

question/answering systems for debugging [47], we argue that a

conversational agent (i.e., a chatbot) can successfully guide end-

users through the reporting process, while offering interactive sug-

gestions and instant quality verification.
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In this paper, we introduce and evaluate a task-oriented dialogue

system for BUg RepoRTing (or Burt) that is capable of providing

instant feedback for each element of a bug description (i.e., OB, EB,

and S2Rs), while actively guiding corrections, where needed. Burt

combines novel and state-of-the-art techniques for dynamic soft-

ware analysis, natural language processing, and automated report

quality assessment. We designed and developed the current version

of Burt to work for Android apps, but its architecture is platform-

agnostic and it can be instantiated, with some engineering effort, for

other types of GUI-based applications (e.g., web-based, desktop, or

iOS-based). In particular, Burt constructs a graph of program states

using both crowdsourced app usage data and automated GUI-based

exploration techniques. The chatbot then parses and interprets

end-user descriptions of various bug report elements by matching

them to states and transitions in the constructed graph, and pro-

duces graphical suggestions regarding information that is likely

to be reported (e.g., the next S2Rs). Additionally, Burt recognizes

when end-users provide incomplete or ambiguous information and

suggests improvements or clarifications to the users. Traditional

task-oriented chatbots typically have direct access to a structured

and easily parseable knowledge-base [11]. In contrast, Burt is more

complex, as it reconciles high-level descriptions provided by end

users and matches these to technical program information, bridging

the end-user to developer knowledge gap.

We evaluated Burt empirically, asking 18 end-users, with vari-

ous levels of prior bug reporting experience, to report 12 bugs from

six Android apps using a prototype implementation of Burt. We

found that the guidance and automated suggestions/clarifications

made by the chatbot were accurate, useful, and easy to use, and

the collected bug reports are high-quality. We asked 18 additional

end-users to report the same bugs with a template-based bug re-

porting system (Itrac) and compared the quality of these reports to

those reported with Burt. Burt reports have fewer incorrect and

missing S2Rs than the Itrac reports. We also found that Burt helps

novice bug reporters provide more correct steps, and experienced

reporters avoid missing steps.

In summary, the contributions of this paper are as follows:

• Burt, the first task-oriented, conversational agent that supports

end-users in reporting bugs (currently for Android apps), with

features such as automated suggestions, real-time feedback,

prompts for information clarification, and graphical cues.

• The results of an empirical evaluation involving 36 end-users

that investigates user experiences, preferences, and attributes

of interactive bug reporting with Burt, as well as the quality

of the resulting bug reports.

Our work opens the door to a new way of thinking about end-

user bug reporting, using conversational agents, shifting the state

of the art from static to interactive bug reporting. While Burt is a

prototype, we expect that it will serve as the foundation for a new

class of interactive bug reporting systems, combining elements of

existing static systems with features of conversational agents [36].

2 BURT: A CHATBOT FOR BUG REPORTING

We propose a task-oriented chatbot for BUg RepoRTing (Burt).

Burt offers a variety of features for interactive bug reporting such

as the ability to (i) guide the user in reporting essential bug report

1   - The Chat Box2   - Reported Steps Panel
4   - Quick Action 

Panel

3   - Screen Capture Panel

5   - Tips Panel

Figure 1: BURT’s graphical user interface

elements, (ii) check the quality of these elements, (iii) offer instant

feedback about issues, and (iv) provide graphical suggestions.

Burt is designed to collect three key elements for developers

during bug triage and resolution [48, 57, 65]: the observed behavior

(OB), the expected behavior (EB), and the steps to reproduce the bug

(S2Rs). Burt collects these from the user through a dialogue and

generates a web-based bug report containing textual descriptions

for these elements with attached screen captures of the system.

Burt’s design consists of threemain components, inspired by the

typical architecture of task-oriented dialogue systems [36], which

adapt techniques from automated program analysis and natural lan-

guage processing to facilitate bug reporting. Burt’s Natural Lan-

guage Parser (NL) parses the relevant information from end-user

responses to the chatbot. The Dialogue Manager (DM) dictates

the structured conversation flow for Burt’s reporting process and

handles the presentation of multi-modal (e.g., screenshots and text)

information to the user. Finally, the Report Processing Engine

(RP)maps information parsed from user responses to various states

in a program execution model for a given app in order to assess

bug element quality. The current version of Burt is designed for

Android apps and builds its execution model using a combination

of automated app exploration and crowdsourced user traces. In this

section, we present Burt’s components in detail.

2.1 Graphical User Interface (GUI)

We designed Burt as a web-based application that includes both a

standard chatbot interface along with additional visual components

as illustrated in Fig. 1. The Chat Box allows the end-user to

provide textual descriptions of the OB, EB, and S2Rs as well as

interact with the graphical information that Burt displays (e.g.,

recommendations of the next S2Rs via screenshots). The Reported

Steps Panel enumerates and displays the S2Rs that the user has

reported. The textual description of the reported steps can be edited

and the last reported step can be deleted, if the user makes a mistake

andwishes to correct it. The Screen Capture Panel displays screen

captures of the last three S2Rs. The Quick Action Panel provides

buttons to finish reporting the bug, restart the bug reporting session,

and (pre)view the bug report being created ś these can be activated
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anytime. The Tips Panel displays recommendations to end-users

on how to use Burt and how to better express the OB, EB, and S2Rs.

The tips change depending on the current stage of the conversation.

2.2 Natural Language Parser (NL)

Burt parses the OB, EB, and S2R descriptions provided by end-users

using dependency parsing via the Stanford CoreNLP toolkit [50].

This process obtains the tree of grammatical dependencies [17]

between words in a sentence and extracts the relevant words from

the tree. This parsing technique is needed by the Report Processing

Engine to assess the quality of parsed bug report elements and to

help direct the flow of conversation (see Sec. 2.4.2).

Burt first utilizes the heuristic-based approach introduced by

Chaparro et al. [29] to identify the type of a sentence (e.g., con-

ditional, imperative, or passive voice) for each message received

from the user. This approach implements heuristics (based on de-

pendency parsing and part-of-speech tagging [50]) to identify dis-

course patterns in OB, EB, and S2R descriptions [29]. Once the

sentence type is identified, Burt executes a series of algorithms to

extract the relevant words from the sentence, based on prior work

on quality assessment of S2Rs [28]. In essence, we implemented

16 parsing algorithms that traverse the grammatical trees [17] of

end-user sentences which have a different structure depending on

the sentence type (e.g., conditional or imperative). Each algorithm

parses sentences of one type. All the 16 algorithms implemented

for the different types of OB/EB/S2R sentences can be found in our

online replication package [21].

Burt parses a single sentence using the following format:

[subject] [action] [object] [preposition] [object2]

where the subject is the actor (e.g., the user or an app component)

performing the action, which is an operation or task (e.g., tap, create,

crash); the object is an łentityž directly affected by the action, and

object2 is another łentityž related to the object by the preposition.

An łentityž is a noun phrase that may represent numeric/textual

app input, domain concepts, GUI components, etc. Depending on

the sentence, its type, and whether it describes an OB, EB, or S2R,

the words (e.g., the subject, preposition or object2) extracted from

the entity are required or optional.

For example, for the Mileage Android app [12], the OB sentence

łThe average fuel economy shows a NaN valuež, written in present

tense, is parsed as [average fuel economy] [shows] [NaN value].

The EB sentence łfuel economy statistics should be calculated cor-

rectlyž, which uses the modal łshouldž, is parsed as [average fuel

economy] [is] [calculated]. The S2R sentence łSave the car fillupž,

written imperatively, is parsed as [user] [saves] [car fillup].

Some sentences describe a combination of OB, EB and S2Rs in

a single phrase. For example, the sentence łThe app stopped when

I added a new time rangež describes both an OB and a S2R. This

sentence is parsed by Burt as [app] [stopped] as the OB, and [add]

[new time range] as the S2R. In this example, Burt extracts the

S2R from the sentence as follows. First, it locates the adverb łwhenž

in the parsed grammatical tree, then it follows the relationship

that leads to the verb ładdž for which łwhenž is the adverbial

modifier. Next, Burt locates the verb’s nominal subject łIž and its

direct object łtime rangež. If these relationships do not exist in the

tree, the sentence is not conditional, as expected. Otherwise, Burt

Prompt User 
for OB/EB/S2R 

Descrip6on

User Writes 
OB/EB/S2R

Screen 
Match?

Check OB/EB/S2R
Quality

Show
Screens to User

Select One
Screen

Ask for Next Bug 
Report Element

Ask User to 
Rephrase

User 
Re-phrases 
OB/EB/S2R

Figure 2: Burt’s dialogue flow for quality checking

extracts the verb ładdž as the action and the noun phrase łtime

rangež as the object. In the end, this sentence is parsed as the S2R:

[add] [new time range].

When multiple sentences compose a single user message, Burt

only parses the initial sentence. When Burt is unable to parse a

user message (e.g., because it cannot identify the subject), it asks

the user to rephrase the sentence. Burt’s Tips Panel and user

guide suggests patterns to the user to phrase the OB, EB, and S2Rs.

2.3 Dialogue Manager (DM)

Burt’s dialogue flow consists of three main phases: OB, EB, and

S2R collection. Burt’s dialogue is multi-modal in nature, and is

capable of suggesting both natural language and graphical elements,

such as screenshots, to help guide the user through the reporting

process. The DM relies upon the RP engine to assess the quality of

bug elements reported by end users (see Sec. 2.4.2). While Burt’s

dialogue flow proceeds linearly to capture each bug element (the

OB, EB, and S2Rs, in that order), the dialogue flow is similar for all

elements. There are twomain dialogue flows that Burt navigates: (i)

performing quality checks on written bug report elements (applies

to all bug elements), and (ii) automated suggestion of S2Rs (for S2Rs

only). Next we describe these two main dialogue flows.

2.3.1 Dialogue Flow for Bug Element Quality Checks (OB/EB/S2R).

Before the dialogue begins, a user must select the target app by

clicking on its icon. Then, Burt’s dialogue flow for quality checking,

illustrated in a modified swimlane diagram in Figure 2, is initiated,

starting with the OB. To begin the quality checking process, Burt

prompts the user to provide the bug element (OB/EB/S2R). Burt

automatically parses the description of the element and the RP

engine verifies its quality (see Sec. 2.4.2).

If the OB/EB/S2R is matched to an app screen from Burt’s exe-

cution model (see Sec. 2.4.1), Burt asks the user for confirmation

of the matched screen. If the user confirms, Burt proceeds to the

next phase of the conversation (e.g., asking for the EB or next S2Rs),

otherwise, Burt asks the user to rephrase the bug element.

If there are no app screen matches, Burt informs the user about

the issue and asks her to rephrase the OB/EB/S2R. Once the user

provides a new description, the quality verification procedure is

re-executed. If there aremultiplematches, Burt provides a list of up

to five app screenshots (derived from the app execution model) that

match the description. The user can then inspect the app screens
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User Writes 
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Figure 3: Dialogue Flow for S2R Predictions

and select the one that she believes best matches her description

of the bug element. If none are selected, Burt suggests additional

app screens if any. If the user selects one app screen, Burt saves

the bug element description and screen, and proceeds to collecting

the next bug element. After three unsuccessful attempts to provide

a high quality OB description, Burt records the (last) provided OB

description for bug report generation. This process proceeds for

each bug element starting with the OB. S2Rs are treated slightly

differently since Burt can also predict S2Rs as we describe next.

2.3.2 Dialogue Flow for Suggesting S2Rs. BURT suggests potential

next S2Rs that the usermay have performed during actual app usage,

depending on the last reported step and the user-selected screen

that is having the problem, i.e., the OB screen. Figure 3 illustrates

this process. This dialogue flow uses a predictive algorithm that

uses Burt’s execution model (see Sec. 2.4.3). The suggestions are

displayed as a list of app screens, each screen representing a S2R.

Each S2R in the list displays the screen capture with a textual

description placed below the image. The screen capture is visually

annotated with a yellow oval highlighting the GUI component

(e.g., a button) executed by the step. The user can select none, one,

or multiple of the suggested S2Rs. When a S2R is selected, Burt

suggests additional S2Rs if any. When none are selected and Burt

has more suggestions, Burt asks the user if she wants to get more

suggestions. If so, Burt displays them. Otherwise, Burt prompts

the user to describe the next S2R.

2.3.3 Collecting Input Values. User input from type-like steps (e.g.,

łI entered 5 gallonsž) are extracted by Burt from the object or

object2 of the parsed S2Rs, by identifying literal values or quoted

text. If the input value is missing or generic (i.e., not a literal or

łtextž), Burt prompts the user to provide the input. This is only ac-

tivated if the matched S2R is confirmed by the user as a correct S2R.

2.4 Report Processing Engine (RP)

Burt’s RP Engine is composed of three sub-components: (i) the

App Execution Model, (ii) the Dialogue Quality Processor which maps

parsed bug report elements to app states from the model, and (iii)

the S2R Response Predictor which infers likely next S2Rs, given an

existing set of S2Rs already mapped to the execution model.

2.4.1 App Execution Model. The app execution model is a graph

that stores sequential GUI-level app interactions (e.g., taps, types, or

swipes performed on screen GUI components) and the app response

to those interactions (i.e., app screens). These interactions and app

responses are produced using two strategies: (1) by executing an

automated systematic app exploration adapted from CrashScope’s

GUI-ripping Engine [52, 54], and (2) by recording (crowdsourced)

app usage information from app end-users or developers. Both the

systematic app exploration and app usage data are collected before

Burt is deployed for use.

App Execution Model Data Collection. This is Burt’s plat-

form-specific part and would be constructed differently for non-

Android applications. Burt uses a version of CrashScope’s GUI-

ripping engine [52, 54] to generate app execution data in the form

of sequential interactions. CrashScope enables dynamic analy-

sis of Android apps that utilizes a set of systematic exploration

strategies (e.g., top-down and bottom-up) and has been shown

to exhibit comparable coverage to other automated mobile test-

ing techniques [52]. For a detailed description of the engine, we

refer the readers to Moran et al.’s previous work [52, 54]. As in

prior work [23, 24, 31, 37, 40], we instantiate data collection by

recording low-level app event traces using the getevent, sendevent,

uiautomator utilities included in the Android OS and SDK.

Collecting crowdsourced user app usage data serves two main

purposes: (1) increase the coverage of app states and screens in

Burt’s execution model; and (2) augment the model with scenarios

that are common during normal app usage. Section 2.5 describes

the procedure that we implemented to collect the crowdsourced

data. Crowdsourced data collection leads to the same types of app

events as the automatic app exploration does.

App Execution Model Structure. The execution model is a

directed weighted graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of unique

app screens with complete GUI hierarchies [2], and 𝐸 is a set of

app interactions performed on the screens’ GUI components. In

this model, two screens with the same number, type, size, and

hierarchical structure of GUI components are considered a single

vertex. 𝐸 is a set of unique tuples of the form (𝑣𝑥 , 𝑣𝑦, 𝑒, 𝑐), where

𝑒 is an application event (tap, type, swipe, etc.) performed on a

GUI component 𝑐 from screen 𝑣𝑥 , and 𝑣𝑦 is the resulting screen

right after the interaction execution. Each edge stores additional

information about the interaction, such as the textual data input

(only for type events) and the interaction execution order dictated by

the app usage (manual or automatic). The graph’s starting node has

only one outgoing interaction, which corresponds to the application

launch. A GUI component is uniquely represented by a type (e.g.,

a button or a text field), an identifier, a label (‘OK’ or ‘Cancel’),

and its size/position in the screen. Additional information about

a component is stored in the graph, for example, the component

description given by the developer, the parent/children components,

and an annotated screen capture of the app highlighting the GUI

component being interacted with. The screen captures are used in

the screen suggestions made by Burt (see Sec. 2.4.3).

The graph edges have a weight which indicates the likelihood

of a given app interaction represented as a state transition. The

weights are utilized by the S2R Response Predictor (see Sec. 2.4.3),

which aims to suggest S2Rs that end-users would perform when

normally using given app features. To enable accurate predictions,
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Burt assigns higher weights to interactions executed by humans

than those executed automatically by CrashScope. To accomplish

this, Burt sets the weight of an edge to the number of times it was

executed in the collected usage data. If an edge is not executed by a

human, but was executed by CrashScope’s systematic exploration,

then edge weight is set to one, even if CrashScope executes the

same interaction multiple times. While this weight assignment

scheme is straightforward, it proved to be effective (see Sec. 4).

2.4.2 DialogueQuality Processor. Based on prior work [28], Burt’s

quality definition is based on the ability to match a textual bug de-

scription (OB, EB, or S2R) to the screens (states) and interactions

(edges) of the execution model. A textual description is consid-

ered to be high-quality if it can be precisely matched to the exe-

cution model, otherwise it is deemed low-quality. This definition

and Burt’s dialogue features that prompt users to improve low-

quality descriptions aim to reduce the knowledge gap between the

reporters, who are unfamiliar with app internals and may not know

how to express a bug, and developers, who define and implement

the vocabulary captured in Burt’s execution model.

Assessing OB Quality. Burt first builds a query to the app ex-

ecution model by concatenating the non-empty elements from the

parsed description, namely the subject, action, object, and object2.

Then, it preprocesses the query using lemmatization [50] and at-

tempts to retrieve all matching GUI components via an adapted

version of the matching procedure proposed by prior work [28].

This procedure computes the similarity score between the query

and the elements from a GUI component, namely the component

label, the description, and the ID specified by the original developer.

The similarity is computed based on a normalized length of the

longest common substring between query and the component ele-

ments. If such similarity is greater than or equal to 0.5, then there

is a match, otherwise there is a mismatch. If the initial query does

not match an app screen, Burt runs a different query by using only

the subject, since, based on our experience, it may indicate a key

GUI component that is directly related with a bug.

Burt keeps a list of the app screens with at least one matching

GUI component. Such a list is sorted in increasing order by the

distance between the starting state in the execution model and the

matched state. If this list is empty, it means the OB description does

not use vocabulary from the app screens and needs to be rephrased.

If this list contains only one element, it is used to show the user the

potential buggy app screen, which the user has to confirm as correct

or incorrect. Otherwise, if the list contains multiple elements, it

is used to display the possible buggy app screens so that the user

decides the appropriate screen. The selected OB screen by the user

is tracked in the execution model and is used for (1) EB description

matching, (2) the prediction of the next S2Rs, and (3) asking the

user if the last provided S2R is the last step to replicate the bug.

Assessing EB Quality. Burt performs the matching approach

described above using the parsed EB description against the OB

screen confirmed by the user. Burt assumes the OB screen is the

one that should work correctly, therefore, it attempts to match the

EB description to it. If the user did not select an OB screen, the EB

matching is bypassed and the EB description is saved for generating

the bug report. If the EB description does not match the OB screen,

it means the vocabulary used in the EB description is different

from the OB screen, and the EB description should be rephrased.

However, rather than prompting the user to rephrase it, Burt asks

the user if the OB screen is the one that should work correctly.

Assessing S2R Quality. Burt adapts the step resolution/match-

ing algorithm proposed by Chaparro et al. [28] and performs ex-

ploration of the execution model driven by the matching of the

reported S2Rs. By default, Burt assumes the first S2R performed

by a user is launching the app and the current graph state is set to

be the first app screen that results from this operation.

For a provided S2R description, starting from the current state,

Burt traverses the graph in a depth-first manner and performs

step resolution on each state. Step resolution is the process of de-

termining the most likely app interactions that the S2R refers to

in a particular state (i.e., app screen). The result is a set of resolved

interactions for the S2R on the selected states. If the S2R resolution

fails for these states (either with a mismatch or a multiple-match

result), then it means that either: (1) there are app states not present

in the execution model, or (2) the S2R description is of low-quality.

The resolved interactions are matched against the interactions

(i.e., the edges) from the graph, by matching their source state 𝑣𝑥 ,

the event 𝑒 , and the component 𝑐 . If a pair of interactions match,

then they are considered to be the same interaction. The matching

returns a set of interactions from the graph that match the resolved

ones. If this set is empty, it means that the resolved interactions

were not covered by the app exploration and the quality assessment

returns a low-quality result with a mismatch. If the reason for the

mismatch is because of multiple-component or -event match (i.e.,

the S2R description matches multiple GUI components or map to

multiple events), Burt considers the S2R as ambiguous, and Burt

indicates that the S2R’s action corresponds to multiple events, or

the object or object2 match multiple GUI components. If there is a

no-match, Burt specifies the problematic vocabulary from the S2R

elements: action, object, object2, or any combination of these.

Otherwise, if the set of resolved interactions is not empty, Burt

proceeds with selecting the most relevant interaction that corre-

sponds to the S2R description, by selecting the one whose source

state is the nearest to the current execution state in the graph.

2.4.3 S2R Response Predictor. BURT predicts the next S2Rs that a

user may have performed in practice. The prediction is executed

during the following dialogue scenarios (see Fig. 3): (1) when an OB

screen from the execution model has been selected/confirmed by

the user, (2) when the S2R collection phase starts, (3) right after the

user confirms a matched S2R for her S2R description, or (4) when

the user has already selected one or more S2Rs suggestions.

Burt implements a shortest-path approach to predict the next

S2Rs. First, Burt determines the paths between the current graph

state and the corresponding OB state. Then, Burt computes the

likelihood score based on the execution model edge weights.

Burt uses the equation below to compute the score 𝑆𝑝 of an

𝑛-edge path 𝑝 = {𝑤1,𝑤2, ...,𝑤𝑛}, with𝑤𝑘 being edge 𝑘’s weight:

𝑆𝑝 =
1

𝑛

∑
𝑘𝑤𝑘 + 1

𝑛
The first term in the sum is the average weight among all path

edges and the second term is a factor that favors shorter paths.

Once the paths are ranked by their scores (in descending order),

these are modified to include loops, i.e., steps that lead to the same

app screen (e.g., types for providing input values). Then, only the
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first five steps for each path are selected. With only the first five

steps, all unique paths are kept and only the top-2 paths are saved

for being presented to the user. The first one is always presented

and if the user does not select any of the steps as being the next S2Rs

and wants more suggestions, the second path is presented next.

Every time the user selects a suggested step as being the next step,

the prediction/suggestion process restarts with new predictions.

2.5 BURT Implementation

Burt is currently implemented as a web application with two ma-

jor components: the front-end, developed with the React Chatbot

Kit [14], and the back-end, developed with Spring Boot [16]. Burt’s

implementation is tailored for Android applications, however, its

underlying techniques are generic enough to be easily implemented

for other types of software Ð the App Execution Model Data Col-

lection is the only platform-specific part.

To collect the crowdsourced app usage traces for Burt, two com-

puter science students, who did not have knowledge of our studied

bugs, were instructed to use the apps’ features as they typically

would do, and recorded traces that exercise key app features. Addi-

tionally, two of the paper authors recorded sequences simulating

app developers who test the apps. These traces were converted and

merged into app execution models for each of the studied apps as

described in Sec. 2.4.1. In practice, developers can utilize recorded

tests, crowdsourced data, or automated app exploration techniques

with a łone-timež cost for building the app execution model.

3 EMPIRICAL EVALUATION DESIGN

We conducted two user studies to evaluate: (1) Burt’s perceived

usefulness and usability; (2) Burt’s intrinsic accuracy in performing

bug report element quality verification and prediction; and (3) the

quality of the bug reports collected with Burt, compared with

reports collected by a template-based bug reporting system. We

aim to answer the following research questions (RQs):

RQ1: What Burt features do reporters perceive as (not) useful?

RQ2: What Burt features do reporters perceive as (not) easy to use?

RQ3: What is the accuracy of Burt in performing bug element

quality verification and prediction during the bug reporting process?

RQ4: What is the quality of the bug reports collected by Burt com-

pared to reports collected by a template-based bug reporting system?

To answer the RQs, we selected a set of Android app bugs used

in prior research (Sec. 3.1), and asked bug reporters to report these

bugs using Burt and to evaluate their experience (Sec. 3.2). We ana-

lyzed the conversations the reporters had with Burt and measured

how accurate Burt was during the reporting process (Sec. 3.3).

Then, we asked additional participants to report the same bugs

with a template-based bug reporting system (Secs. 3.4.1 and 3.4.2),

and analyzed the collected bug reports to measure their quality

based on bug element correctness (Sec. 3.4.3). We present and dis-

cuss the results in Sec. 4. Our user studies were approved by an

Institutional Review Board (IRB) and conducted remotely due to

restrictions related to COVID-19.

3.1 Apps and Bug Dataset

We selected 12 Android app bugs from the bug dataset provided

by Cooper et al. [31]. The apps in the dataset support different app

Table 1: Apps and bug dataset

App Bug ID # of S2Rs Bug type

APOD
CC3 11 Incorrect color in GUI component

RB 5 Error message on screen

DROID
CC5 7 Crash

CC6 12 Crash

GNU
CC9 13 Duplicated GUI component

RC 5 Crash

GROW
CC5 10 Crash

RC 8 Crash

TIME
CC1 16 GUI component disappears

CC4 9 Crash

TOK
CC2 10 Crash

CC7 6 GUI component does not appear

domains and have been studied in prior research [24, 28, 52, 53].

The apps are: AntennaPod (APOD) [3] ś a podcast manager, Time

Tracker (TIME) [18] ś a time-tracking app, Android Token (TOK) [1]

ś a one-time-password generation app, GnuCash (GNU) [8] ś a

personal finances manager, GrowTracker (GROW) [9] ś a plant

monitoring app, and Droid Weight (DROID) [6] ś a personal weight

tracking app. This dataset provides, for each bug, the APK installer

that contains the bug, the description of the incorrect (observed) app

behavior (OB), the expected app behavior (EB), and the (minimal)

list of the steps to reproduce the bug (S2Rs).

From the 60 bugs (35 crashes and 25 non-crashes) in Cooper et

al.’s dataset [31], we selected 12 bugs (7 crashes, 1 handled error,

and 4 non-crashes) using a stratified random approach (see Table 1).

We randomly selected two bugs for each of the six apps, ensuring

that the bugs represent a variety of bug types that manifest visually

on the device (crashes, GUI issues, functional bugs, etc.) and have

a diverse number and type of S2Rs (taps, types, swipes, etc.). Six

bugs contain 5 − 9 (minimal) S2Rs, and six bugs contain 10 − 16

(minimal) S2Rs (see Table 1). The 12 bugs are reproducible on a

specific web-based Android emulator configuration (virtual Nexus

5X with Android 7.0 configured via the Appetize.io [5] service).

3.2 RQ1 & RQ2: BURT’s User Experience

We asked participants to report a selected subset of bugs using

Burt, and evaluate their experience via an online questionnaire.

3.2.1 BURT Bug Reporter Recruitment. We reached out to 36 po-

tential participants with mixed experience in bug reporting from

our personal network, who were not involved in or aware of the

purpose of this work. They were offered a $15 USD gift card for

participation. From these, 24 users completed the study and data

from six participants was discarded due to low-effort answers, thus

resulting in valid responses from 18 participants. Four of the six

participants did not treat the study seriously, that is, they submitted

incomplete reports (e.g., only the OB was reported) and answered

all survey questions with the same response. The remaining two

participants reported completely different bugs to the ones assigned.

Five participants had not reported a software bug before, nine had

reported five or fewer bugs, and the remaining four had reported

more than five bugs. The participants were unfamiliar with Burt

and the selected apps/bugs.
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Table 2: Questionnaire for evaluating BURT’s user experience

ID Question

Q1 How often were Burt’s screen suggestions useful?

Q2 How often was Burt able to understand your OB/EB/S2Rs?

Q3 How often were you able to understand Burt’s messages/questions?

Q4 Was Burt’s panel of reported steps useful?

Q5 How easy to use was Burt overall?

Q6 Which of Burt’s features did you find easy/difficult to use?

Q7 What additional functionality (if any) would you like to see in Burt?

3.2.2 Bug Assignment and Reporting. Each of the 18 participants

was randomly assigned to report three bugs (from the 12 selected)

with Burt, each bug corresponding to a distinct app. The reporters

were instructed to report the bugs in a given (random) order to

account for potential learning biases. The bug reporting procedure

consisted of five tasks which included the users: (i) watching a

short instructional video that explained how to use Burt via an

example; (ii) familiarizing themselves with the apps on the web-

based emulator; (iii) watching a video demonstrating the observed

and expected behavior for each assigned bug (with annotations

to ensure proper understanding); (iv) reproducing the bugs on the

web-based emulator; and (v) reporting each bug with Burt. We

aimed to control for participant understanding of the bugs so that

the effect of potential misunderstandings was minimized.

3.2.3 BURT’s User Experience Assessment. After the participants

reported the three assigned bugs, they answered an online ques-

tionnaire that was meant to assess Burt’s usefulness and ease of

use and to obtain feedback for potential improvements to Burt.

Table 2 shows the questions asked to the participants, which are

inspired by the PARADISE [39] evaluation framework.

To address RQ1, we focused on evaluating Burt’s four main

features: (1) Burt’s app screen suggestions for the OB, EB, and

S2Rs; (2) Burt’s ability to parse and match the OB, EB, and S2R de-

scriptions provided by the user; (3) Burt’s messages and questions

given to the user; and (4) Burt’s panel of reported S2Rs, which

allows the user to visualize and edit the reported S2Rs. Questions

Q1-Q5 in Table 2 aim to address RQ1 and used a 5-level Likert

scale [55]. We asked the participants to (optionally) provide a jus-

tification/rationale for their answers. Each bug involved multiple

screen suggestions, OB/EB/S2R user descriptions, and Burt mes-

sages/questions. Questions Q1-Q3 refer to the frequency of these

user interactions with Burt.

To address RQ2, the reporters assessed Burt’s overall ease of

use (Q5) and indicated Burt’s specific features that were easy or

difficult to use for them (Q6). Q5 used a used a 5-level Likert scale

and Q6 requested an open-ended response. The reporters were

also asked to indicate additional features they would like to see

in Burt (Q7). Additional open-ended questions were asked (not

shown in Table 2) to obtain feedback on how to improve Burt.

3.3 RQ3: BURT’s Intrinsic Accuracy

To answer RQ3, we analyzed the conversations that the reporters

had with Burt to determine: (1) how often Burt was able to cor-

rectly match OB/EB/S2R descriptions to the app execution model

as confirmed by the reporters; and (2) how often the user selected

one or more of the suggested app screens as being correct (i.e., they

match the reporters’ OB/EB/S2R descriptions). We computed statis-

tics on the (meta)data that Burt collected from the conversations,

such as, the type of messages that Burt asked and the type of user

responses (as defined by Burt’s Dialogue Manager ś see Sec. 2.3).

3.4 RQ4: BURT’s Bug Report Quality

We describe the methodology to answer RQ4 in this section.

3.4.1 Itrac: A Web Form for Bug Reporting. We implemented a

web/template-based bug reporting interface, called Itrac, using

Qualtrics [22]. Itrac offers the same features of professional issue

trackers (e.g., GitHub Issues [7] or JIRA [10]), for reporting the OB,

EB, and S2Rs. Specfically, Itrac provides text boxes with explicit

prompts that ask for the bug summary/title and the OB, EB, and

S2Rs. In addition, Itrac prompts the reporter to provide the S2Rs

using a numbered list (via a given template). The reporters can write

freely their own bug descriptions in the text boxes and also attach

images/files. We use Itrac rather than an existing professional

issue tracker to simplify the reporting process for the reporters

because they can use Itrac without having to log into a service.

3.4.2 Bug Reporting with Itrac. Following the methodology de-

scribed in Sect. 3.2.1, we recruited 18 more end-users, who did not

participate in the Burt study, and asked them to report a subset

of bugs using Itrac. These reporters did not know about Burt,

Itrac, and the selected apps/bugs, and had a similar bug reporting

experience to that of the group who reported the bugs with Burt.

Five of the new reporters had not previously reported a software

bug, eight had reported one to five bugs, and the remaining five

had reported more than five bugs.

We assigned the same sets of three bugs used in the Burt study

to the new users (trying to match the bug reporting experience)

and instructed them to report the bugs using Itrac in the same

order from before. Prior to reporting the bugs, the participants were

instructed to: (i) familiarize themselves with the apps by using them

on the web-based emulator; (ii) watch a video demonstrating the

bugs (with annotations to ensure proper understanding); and (iii)

reproducing the bugs on the web-based emulator.

3.4.3 Measuring Bug Report Quality. We estimate the quality of

the collected bug reports (via Burt and Itrac) by assessing the

correctness of the OB, EB, and S2Rs described in the reports, based

on the qualitymodel proposed by Chaparro et al. [28]. Three authors

manually compared each collected report with the ground truth

scenarios from Cooper et al.’s dataset [31], which included correct

descriptions of the OB and EB and a minimum viable set of S2Rs.

Using this methodology, we computed the following: (i) the number

of incorrect OB/EB/S2R descriptions; and (ii) the number of missing

S2Rs. To limit the effect of subjective assessments, two authors

performed the bug report analysis independently and a third author

reviewed the results, reaching consensus among all three in case of

discrepancies. In order to determine how helpful Burt and Itrac

are for novices or more experienced reporters, we analyzed bug

report quality across different levels of bug reporting experience.

4 RESULTS AND ANALYSIS

We present and discuss the results of our evaluation for each RQ.
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Figure 4: User experience results for BURT (Q1-Q5)

4.1 RQ1: BURT’s Perceived Usefulness

Fig. 4 summarizes the users’ answers on: (i) their perceived useful-

ness of Burt’s screen suggestions (row labeled Screens); (ii) Burt’s

ability to understand the user’s OB, EB, and S2R descriptions (rows

OB, EB, and S2Rs); (iii) how often they were able to understand

Burt’s messages and questions (row Messages); (iv) their perceived

usefulness of Burt’s panel of reported S2Rs (row Panel); and (v)

Burt’s overall ease of use (row Ease of Use).

App Screen Suggestions. Half of the 18 participants (9) agreed

that Burt’s app screen suggestions were often useful, and the other

half (9) agreed they were sometimes useful. As for their rationales,

one participant mentioned that the next S2R screen suggestions

"were useful because they shortened the time it took me to explain

how to reproduce the bug". Other participants highlighted that the

suggestions "were helpful in making sure I was providing the exact

steps I wanted to describe", or that Burt łgave very good suggestions

when it could figure out which screen had the bug based on the initial

reportž. Some of the participants even hoped that Burt can provide

suggestions more frequently. These results illustrate the usefulness

of Burt’s app screen suggestions.

Some participants noted, though, that łthe suggestions were a

little inaccuratež. We found that the inaccuracies stemmed from

Burt not being able to recognize/match the user’s OB description

because of generic wording, without details (e.g., łthe app crashedž ).

Note that the Burt’s S2R suggestions are not activated if the OB

description is not matched to an app screen, which affected the

reporters experience. Also, the participants recommended that it

would be useful to have suggestions of łbug triggering screenshotsž,

as currently, Burt’s screen captures may not show the bug that

the user wants to report. The participants also found some sugges-

tions confusing because the screen captures for the S2Rs highlight

łnon-existent buttonsž. This stems from Burt’s systematic GUI ex-

ploration technique, which can execute events on GUI components

such as, layouts or views, which are often not visible to the user.

OB, EB, and S2R Understanding. The reporters have a posi-

tive overall impression on how often Burt understood their OB,

EB, and S2R descriptions. Specifically, Burt was able to often or al-

ways (sometimes) understand the OB/EB/S2R descriptions of 9/10/11

(9/6/6) participants (out of 18). Only two/one participant(s) felt that

Burt rarely recognized their EB/S2Rs.

Our analysis of the open-ended answers also reveals that some

participants were generally satisfied with Burt in terms of bug

description understanding. This can be seen in comments such as

łI’m quite satisfied with the recognition rate [for the S2Rs], even better

than talking to a real agentž, łIt always understands my description of

the OB/EBwhen I tried to use keywords from appsž, łit was kind of easy

for burt to understand my (EB) descriptionž, and łIt can understand

me to describe the error behaviorž. However, several participants had

a less positive perception of Burt’s bug description understanding

stating that it is "difficult to match Burt’s language", they "need to

follow specific pattern" so that Burt is able to understand, and they

łusually had to paraphrasež their descriptions. These comments

stem from our design decision to limit the language that users

could use to describe the OB, EB, and S2Rs, and inaccuracies in

bug description matching. However, we observed, based on the

reporters’ comments and their conversations with Burt, that the

participants learned how to describe the OB/EB/S2Rs using Burt’s

preferred formats after reporting the first bug. Still, the reporters’

main recommendation was to improve Burt’s ability to recognize

additional vocabulary and ways of phrasing the OB/EB/S2Rs.

BURT’s Messages and Questions. Eleven (of 18) participants

often understood Burt’s messages and questions, while six partici-

pants understood them sometimes. Only in one case, the reporter

rarely understood the messages/questions.

The analysis of their rationales reveals that generally Burt’s

messages/questions were łvery easy to understandž. One participant

wrote that Burt’s łwording was always clear and I could always tell

what Burt was asking forž, also echoed by multiple participants.

Some participants recommended to improve the messages and ques-

tions, as sometimes they were unclear and too similar to each other.

For example, for Burt’s question łWas this the last S2R that you

performed?ž, the participants suggested to clarify which last S2R

Burt was referring to.

The Panel of Reported S2Rs. Burt’s panel of reported S2Rs

was deemed to be useful (somewhat useful) by 9 (6) participants.

Only one participant found that the panel was somewhat useless.

The participants commented that the panel was łVery useful for

visualizing a bug reportž, that łIt was good to see what was getting

loggedž, and that it was useful łas a way for me to review that the

reproduction steps I entered are completeł.

Summary of findings forRQ1:Overall, reporters foundBurt’s

screen suggestions and S2R panel useful. They also had a positive

impression of Burt’s OB/EB/S2Rs understanding and messages.

Improvements are required for Burt to support additional wording

of bug report elements and more accurate suggestions.

4.2 RQ2: BURT’s Perceived Ease of Use

Twelve reporters indicated Burt was either easy or somewhat easy

to use. Four reporters were neutral, while two reporters expressed

it was somewhat difficult to use (see Ease of use in Fig. 4).

We analyzed the reporter responses regarding which of Burt’s

features they found easy/difficult to use. In general, the participants

expressed that Burt’s GUI łis really helpfulž, łconcisež, and łeasy

to use and understandž. Multiple reporters indicated that selecting

Burt’s app screen suggestions was easy to use and some of them

were very enthusiastic about them. One reporter mentioned that "I

liked the screenshots a lot, very easy to report the process to reproduce

a bug". Other reporters expressed that "The suggestions & confirma-

tions were very easy to use. When it had the right idea, confirming

it was just a matter of clicking a button", and that Burt łguides the
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Table 3: Quality assessment results for bug reports (BRs) collected by Burt and Itrac

App-Bug ID
# of BRs Avg. # of S2Rs

Avg. # (%) of Avg. # (%) of # of BRs with # of BRs with

incorrect S2Rs missing S2Rs incorrect OB incorrect EB

Itrac Burt Itrac Burt Itrac Burt Itrac Burt Itrac Burt Itrac Burt

APOD-CC3 5 5 4.6 7.4 0.6 (16.7%) 0.6 (9.7%) 6.4 (58.2%) 3.4 (30.9%) 0 1 0 3

APOD-RB 4 4 3.3 4.8 0.0 (0.0%) 1.8 (30.6%) 1.0 (20.0%) 1.0 (20.0%) 1 1 1 0

DROID-CC5 6 6 4 4.3 0.3 (11.1%) 0.5 (10.0%) 1.3 (19.0%) 0.7 (9.5%) 1 2 1 1

DROID-CC6 6 6 4.5 8.5 1.3 (44.4%) 1.2 (13.7%) 5.0 (41.7%) 2.0 (16.7%) 0 3 1 1

GNU-CC9 5 5 6.4 10.2 0.8 (26.7%) 0.2 (2.5%) 4.8 (36.9%) 3.2 (24.6%) 1 0 1 0

GNU-RC 3 3 4.7 4.3 0.0 (0.0%) 0.3 (6.7%) 0.0 (0.0%) 0.0 (0.0%) 0 1 0 0

GROW-CC5 4 4 4.8 7.5 1.3 (28.1%) 0.0 (0.0%) 4.5 (45.0%) 3.5 (35.0%) 0 0 0 0

GROW-RC 4 4 5.8 7.5 1.0 (30.0%) 0.5 (7.1%) 1.8 (21.9%) 1.5 (18.8%) 1 3 1 0

TIME-CC1 5 5 7.8 10.4 1.0 (24.0%) 0.2 (2.9%) 6.6 (41.3%) 6.2 (38.8%) 0 1 0 0

TIME-CC4 4 4 4.3 8 1.0 (24.4%) 0.3 (5.0%) 3.0 (33.3%) 1.3 (13.9%) 1 2 2 1

TOK-CC2 4 4 4.8 10.3 0.3 (8.3%) 0.8 (6.8%) 2.5 (25.0%) 0.5 (5.0%) 2 2 0 0

TOK-CC7 4 4 5 5.8 0.5 (16.7%) 0.3 (3.6%) 1.5 (25.0%) 0.8 (12.5%) 1 0 1 0

Overall 54 54 5 7.5 0.7 (20.4%) 0.6 (8.3%) 3.4 (32.0%) 2.1 (19.4%) 8 16 8 6

user to provide a "step-by-step" viewž. The panel of reported steps

was easy łto explorež and it was easy to łremove eventsž from it.

The main reason behind usage difficulties was the limited vocab-

ulary that Burt understands, also observed before for RQ1. The

reporters recommended to let the users upload their own screen

captures when Burt is unable to attach screens to the user’s bug

descriptions, and the ability to delete/modify any step.

Finally, for both RQ1 & RQ2, we found no notable differences

in Burt’s perceived usefulness and ease of use between different

levels of user’s bug reporting experience.

4.3 RQ3: BURT’s Intrinsic Accuracy

We analyzed the 54 conversations that reporters had with Burt to

determine how often Burt was able to correctly (1) match OB/E-

B/S2R descriptions to the execution model, and (2) suggest relevant

OB/S2R app screens to the reporters.

OB Reporting.We found that in 3 of 54 conversations (5.5%),

Burt was able to match the reporter’s OB description to the cor-

rect screen that showed or triggered the bug, as confirmed by the

reporter during the conversation. In 35 of 54 conversations (64.8%),

Burt matched the OB description to multiple app screens. In those

cases, Burt suggested the top-5 matched screens so that the re-

porter selected the one s/he was referring to. In 29 of these 35

reports (80%), the reporter selected one of the suggested screens,

while in the remaining 6, the suggested screens were irrelevant.

For the remaining 16 of the 54 conversations (29.6%), Burt was

not able to match the OB description with any app screen because

of incorrect OB wording from the user and inaccuracies in Burt’s

message parser and processing. Overall, Burt was able to correctly

match their OB descriptions in 32 of 54 of the conversations (59.3%).

EB Reporting. As described in Sect. 2.4.2, Burt can only match

the reporter’s EB description when there is a matched/selected

OB screen. Otherwise, Burt collects the EB description from the

user as is. In the 32 cases when Burt can verify EB quality, Burt

was able to match the EB against the OB screen in 17 cases (53.1%)

without having to ask the reporter for confirmation. In 6 of the 32

cases (18.8%), the users confirmed the matched OB screen when

Burt asked them about that. In the remaining 9 cases (28.1%), Burt

was not able to parse the provided EB description.

S2R Reporting. Burt matched a written S2R with a step from

the execution model 205 times in total across the 54 conversations

(3.8 times per conversation on avg.). In 157 of these cases (76.6%),

Burt was able to match S2Rs correctly. Burt predicted and sug-

gested the next S2Rs in 146 cases (4.6 times per conversation on avg.)

for the 32 conversations where there was a matched/selected OB

screen. We found that the reporters selected 1.6 of the 3.9 suggested

S2Rs (on avg.) in 91 cases (62.3%). In 13 of the 32 conversations,

the reporter always selected S2Rs from the suggested list, meaning

at least one suggestion was correct. In all the 54 conversations,

Burt asked the user to rephrase their S2Rs 176 times (3.9 times per

conversation on avg.). We found that in at least 59 of these cases

(33.5%), the user made a mistake or described the step incorrectly

(e.g., łincorrect resultž or łno more stepsž ).

Summary of findings for RQ3: The results support the users’

ratings (RQ1) on how often Burt’s OB/S2R screen suggestion were

useful and how often Burt was able to understand the user’s OB/E-

B/S2R descriptions. The accuracy assessment revealed cases where

Burt’s struggles to parse and match the users’ descriptions, how-

ever, Burt is able to continue with rephrasing prompts. The overall

accuracy indicates that the techniques we used in building Burt’s

components are adequate. Improvements are planned for future

work to improve Burt’s accuracy.

4.4 RQ4: Bug Report Quality

Table 3 summarizes the quality measures of the 54 × 2 = 108 bug

reports, collected with Itrac and Burt, for the 12 bugs in our

dataset (each bug is reported in 3 to 6 reports).

S2R Quality. Overall, as shown in Table 3, Burt reports contain

fewer incorrect S2Rs than Itrac reports on avg. (8.3% vs. 20.4%)

and fewer missing S2Rs (19.4% vs. 32%), compared to the ground-

truth scenarios of the 12 bugs. We performed an analysis to verify

whether there there statistically significant differences between

Burt and Itrac on the percentage of incorrect and missing S2Rs.

We applied the Wilcoxon signed-rank test [41] and Cliff’s delta

(CD) [30] on the results, across the 12 bugs (at 95% confidence

level), since we have paired ordinal measurements (for each bug)

that do not necessarily follow normal distributions. We found that

Burt’s bug reports have fewer incorrect (𝑝 = 0.0261) and fewer
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Table 4: S2R quality by bug reporting experience

Reporting # of BRs
Avg. # of Avg. % of Avg. % of

S2Rs incorrect S2Rs missing S2Rs

experience Itrac Burt Itrac Burt Itrac Burt Itrac Burt

Novice 15 15 3.5 6.7 33.6% 6.7% 45.6% 31.3%

Intermediate 24 27 5.2 7.5 20.1% 11.5% 35.5% 20.0%

Experienced 15 12 6.1 8.6 7.6% 3.2% 12.8% 3.2%

Overall 54 54 5 7.5 20.4% 8.3% 32.0% 19.4%

missing steps (𝑝 = 0.0025) than Itrac’s reports, with a large effect

size (CD = 0.5 and 0.527, respectively).

The main reasons for incorrect S2Rs are generic/unclear step

wording (4 inBurt and 36 Itrac reports), duplicate S2Rs (13 inBurt

reports, zero in Itrac reports), and extra S2Rs (10 in Burt and one

in Itrac reports). Examples of steps with unclear/generic wording

include łAdd commentł or łI searched for techł, where the user

either refers to high-level app features, which map to multiple steps

that are not explicit, or does not specify which GUI components

should be used and/or which action should be applied on them.

Extra S2Rs are irrelevant reported steps (e.g., łI did nothing elseł).

We identified twomain reasons for duplicate S2Rs: (1) user mistakes;

and (2) duplicate app screens suggested by Burt and selected by

the users. The latter stems from the design of Burt’s execution

model that considers structural variations of the same screen as

different screens (see Sec. 2.4.1). An example is when the users

employ different keyboard layouts (e.g., numeric vs. alphanumeric)

to enter input values on the same screen.

OB/EB Quality. More Burt reports have an incorrect OB de-

scription compared to Itrac reports (16 vs. 8 out of 54 reports),

while a comparable number of Burt and Itrac reports have an

incorrect EB description (8 vs. 6). We found that there is no sta-

tistically significant difference between the number of Burt and

Itrac bug reports with incorrect expected behavior (𝑝 = 0.1586),

with a small effect size (CD = 0.222) in favor of Burt. Fewer Itrac

reports than Burt reports have an incorrect observed behavior

(𝑝 = 0.0352), with a medium effect size (CD = 0.361).

The incorrect OB/EB descriptions (in 18 Burt reports and 10

Itrac reports total) occurred either because the participants did

not provide enough details about the bug (e.g., łthe app crashedž )

or they described their inability to perform an action rather than

describing the bug itself (e.g., łI can’t add/delete a commentž vs.

łCrash when trying to add/delete a commentž ).

For the 18 Burt reports, we found that, in 14 cases the users

described the OB/EB incorrectly to begin with and Burt correctly

prompted them to rephrase them. Nonetheless, they still reported

an incorrect OB/EB. In four cases, Burt accepted the incorrect

OB/EB, and in only three of the cases, Burt prompted incorrect

OB/EB reporting after the user correctly described them. This is

mainly due to Burt’s current limitation on the OB/EB wording.

Summary of findings for RQ4: Overall, Burt bug reports

contain higher-quality S2Rs than Itrac bug reports, and comparable

EB descriptions. The results indicate that improvements to Burt

are needed to better collect OB descriptions from the reporters.

Novice vs. Experienced Bug Reporters. Our original expecta-

tion was that Burt would help novice reporters more than Itrac,

as the experienced reporters likely used template-based reporting

systems before.

We compared the quality of the bug reports across different lev-

els of user’s bug reporting experience. While we did not observe

notable differences in terms of OB/EB quality, we found differences

in S2R quality, which we discuss. Table 4 shows the S2R quality

results for three groups: novice bug reporters (with no prior re-

porting), intermediate reporters (who had reported 1-5 bugs), and

experienced reporters (who had reported 6+ bugs).

Regarding incorrect S2Rs, experienced and intermediate reporters

produced about twice as many incorrect S2Rs with Itrac, compared

to Burt (33.6% vs. 6.7%, and 20.1% vs. 11.5% on avg., respectively).

At the same time, novices produced about five times more incor-

rect steps with Itrac than with Burt (7.6% vs. 3.2% on avg.). This

indicates that Burt helps novices most to avoid incorrect S2Rs.

Table 4 tells a different story for missing S2Rs. Novices and

intermediate reporters missed ≈1.5 times fewer S2Rs with Burt,

compared to Itrac, while experienced reporters missed four times

fewer S2Rs with Burt. Surprisingly, this indicates that Burt helps

experienced reporters most to avoid missing steps.

We do not speculate on the reasons behind these observations,

as more in-depth studies are needed for proper explanations.

5 LIMITATIONS AND THREATS TO VALIDITY

Before Burt is deployed for use, either systematic app exploration

data or crowdsourced app usage data needs to be collected to con-

struct the app execution model. The evaluation results indicate that

Burt performs reasonably well with the data collected by Crash-

Scope and only four people. However, we expect that additional

data (more covered states and scenarios) would improve Burt’s

quality verification of reported elements and screen/step sugges-

tions, enabling the reporting of different bug types, under a variety

of reproduction scenarios. To confirm our expectations, additional

studies are needed for future work.

Burt is evaluated in a lab setting where reporters were exposed

to the bugs through videos, rather than letting them find the bugs

while using the apps, as users would do in real life. As in prior

studies [28, 53], we adopted this settingmainly to reduce participant

effort and fatigue. To address the lack of knowledge about the

apps/bugs, we instructed the users to get familiar with the apps

by using them and with the bugs by reproducing them on the

emulator before they reported the bugs. We addressed potential bug

misunderstandings via 2/3-word annotations added to the videos.

A diverse group of reporters participated in the studies, who

have different levels of bug reporting experience. Since we offered

the reporters a monetary incentive for their participation and some

of them are students from our institution(s), they may have been

motivated to diligently provide high-quality bug reports, which

may not necessarily be the case in a real-life scenario. However, we

expect this factor to have a minimal impact on the results since (1)

we used the same procedure to recruit both Burt and Itrac users,

and (2) the bug reporting experience in both reporter groups are

almost the same (only two Itrac users have a different experience).

Our evaluation did not consider how easy or difficult it is (for

developers) to understand and reproduce the Itrac and Burt bug

reports. Instead, we focused on assessing bug report quality, as

done by prior work [28]. Assessing bug report understanding and

reproduction is in our plans for future work. Additionally, we did
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not account for the complexity of the bugs in our dataset. However,

we selected bugs of diverse types and distributions of the S2Rs. Our

future work will investigate how bug complexity affects Burt.

Finally, given the relatively expensive nature of our evaluation,

we limited it to 12 bugs from six apps, reported by 36 participants,

which affects the external validity of our conclusions. A larger

evaluation, possibly performed on a larger sample of apps, bugs,

and participants is in our plans for future work.

6 RELATED WORK

We discuss Burt’s advancements in relation to prior work.

Issue/Bug Reporting Systems. A variety of systems currently

enable end-users and developers to manually report software bugs,

namely, issue/bug trackers (e.g., GitHub Issues [7] or JIRA [10]),

built-in bug reporting interfaces in desktop and web apps (e.g.,

Google Chrome [15]), in-app bug reporting frameworks (e.g., BugSee

[19]), app stores [4, 20], and Q&A platforms [26]. These systems

typically consist of web/GUI forms (with text-based templates) that

allow reporters to provide bug descriptions, indicate bug/system

metadata, and attach relevant files. Some of these systems collect

technical information (e.g., configuration parameters) and offer

screen recording that enable graphical bug reporting.

While existing systems provide features that facilitate bug re-

porting, they offer limited guidance to bug reporters, lack quality

verification of bug report information, and do not provide con-

crete feedback on whether this information is correct and complete.

These are some of the main reasons for having low-quality bug

reports, which have important repercussions for developers [65, 66].

Researchers have explored improving bug reporting interfaces,

as we do in this work. Moran et al. [53] proposed Fusion, a web-

based system that allows the user to report the S2Rs graphically

by selecting (via dropdown lists) images of the GUI components

and actions (taps, swipes, etc.) that can be applied on them. More

recently, Fazzini et al. proposed EBug [34], a mobile app bug report-

ing system similar to Fusion that suggests potential future S2Rs

to the reporter while they are writing them. Record-and-replay

tools [37, 43, 51, 56] offer the ability to record user actions during

app usage (e.g., when a bug is found) and replay them later.

Burt offers two main advancements over prior techniques like

Fusion. First, Burtwas designed to support end-users with little or

no bug reporting experience. For example, Fusion was not created

to specifically cater to end-users, as inexperienced users found

it more difficult to use as compared to alternatives [53]. Second,

whereas past systems helped to provide structured mechanisms to

facilitate the reporting process (e.g., through drop-down selectors)

they do not offer interactive assistance when reporting a bug. Burt

offers such interactivity through its automated suggestions, real-

time quality assessment, and prompts for information clarification.

Bug Report Quality Analysis. Surveys and interviews with

developers and end-users [48, 57, 65] have identified the observed

software behavior (OB), the expected behavior (EB), and the steps

to reproduce (S2Rs) the bugs as essential bug report elements for

developers during bug triage and resolution. Unfortunately, such

elements are often missing, unclear, or ambiguous, as indicated

by numerous studies and developers [13, 27, 33, 35, 38, 46, 64, 65],

which have a negative impact on bug report management tasks.

In consequence, researchers have proposed techniques to better

capture and manage high-quality information in bug reports. Prior

work [25, 29, 32, 58, 62, 63, 65] proposed ways to automatically iden-

tify different essential elements in bug reports (e.g., S2Rs [49, 61]),

analyze their quality, and give feedback to reporters about potential

issues in them. In particular, Zimmermann et al. [65] proposed an

approach to predict the quality level of a bug report based on factors

such as readability or presence of keywords. Hooimeijer et al. [42]

measured quality properties of bug reports (e.g., readability) to pre-

dict when a report would be triaged. Zanetti et al. [60] proposed

an approach based on collaborative information to identify invalid,

duplicate, or incomplete bug reports. Imran et al. [45] proposed an

approach to suggest follow-up questions for incomplete reports.

Song et al. [29, 58] proposed a technique to detect when the OB, EB,

and S2Rs are absent in submitted bug reports. Chaparro et al. [28]

evaluated the quality of the S2Rs in bug reports through the Eu-

ler tool, which integrates dynamic app analysis, natural language

processing, and graph-based approaches.

Our work builds upon prior research for the automated quality

verification of bug descriptions by developing quality checks for

new types of bug elements (i.e., OB/EB) and by designing dialogue

flows capable of guiding the user during the bug reporting process.

7 CONCLUSIONS

Burt is a task-oriented chatbot for interactive Android app bug

reporting. Unlike existing bug reporting systems, Burt can guide

end-users in reporting essential bug report elements (i.e., OB, EB,

and S2Rs), provide instant feedback about problems with this infor-

mation, and produce graphical suggestions of the elements that are

likely to be reported.

Eighteen end-users reported 12 bugs from six Android apps

and reported that, overall, Burt’s guidance and automated sug-

gestions/clarifications are accurate, useful, and easy to use. The

resulting bug reports are higher-quality than reports created via

Itrac, a template-based bug reporting system, by other 18 reporters.

Specifically, Burt reports contain fewer incorrect and missing re-

production steps compared to Itrac reports. We observed that

Burt is most helpful to novice reporters for avoiding incorrect

S2Rs. Surprisingly, Burt seems to be most useful to experienced

reporters for avoiding missing reproduction steps.

The reporters provided feedback for refining the supported dia-

log, by including support additional wordings to describe the OB,

EB, and S2Rs. The studies also revealed areas of improvement for

Burt with respect to the verification of the reported elements.

8 DATA-AVAILABILITY STATEMENT

We provide an online replication package [21] that contains a com-

plete implementation of Burt, Burt’s app execution data, code

and data about Burt’s evaluation, and documentation that enables

the verification and validation of our work and future research on

bug reporting systems.
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