
The NLBSE’23 Tool Competition
Rafael Kallis

Rafael Kallis Consulting
Zurich, Switzerland
rk@rafaelkallis.com

Maliheh Izadi
Delft University of Technology

Delft, The Netherlands
m.izadi@tudelft.nl

Luca Pascarella
ETH Zurich

Zurich, Switzerland
lpascarella@ethz.ch

Oscar Chaparro
College of William & Mary

Williamsburg, USA
oscarch@wm.edu

Pooja Rani
University of Zurich
Zurich, Switzerland

rani@ifi.uzh.ch

Abstract—We report on the organization and results of the

second edition of the tool competition from the International

Workshop on Natural Language-based Software Engineering

(NLBSE’23). As in the prior edition, we organized the com-

petition on automated issue report classification, with a larger

dataset. This year, we featured an extra competition on au-

tomated code comment classification. In this tool competition

edition, five teams submitted multiple classification models to

automatically classify issue reports and code comments. The

submitted models were fine-tuned and evaluated on a benchmark

dataset of 1.4 million issue reports or 6.7 thousand code com-

ments, respectively. The goal of the competition was to improve

the classification performance of the baseline models that we

provided. This paper reports details of the competition, including

the rules, the teams and contestant models, and the ranking of

models based on their average classification performance across

issue report and code comment types.

Index Terms—Tool-Competition, Labeling, Benchmark, Issue

Reports, Code Comments.

I. INTRODUCTION

The first competition was held in 2022 [1], [2] and this one
continues the series with the second edition of the Natural
Language-based Software Engineering (NLBSE’23) tool com-
petition on automated issue report classification. In addition,
we also featured a competition on code comment classification
for the first time, given the importance of identifying relevant
information from comments to support developers in software
development and maintenance tasks [3], [4]. Both competitions
aimed to bring practitioners and researchers together into de-
veloping more accurate classification models for automatically
identifying the type of given issue report or code comment.

We focused on issue report classification for two reasons: (i)
it is an important task for developers in the context of the issue
management and prioritization process [5], and (ii) extensive
research has been dedicated to addressing this problem using
natural language processing (NLP) and machine learning (ML)
techniques [6], [7]. Similarly, several works have shown the
importance of source code comments in software development
and maintenance [8]–[10]. For example, well-written code
comments actively enhance code readability by documenting
code changes. Nonetheless, not all code comments fit this
role. Indeed, code comments are used to accomplish different

tasks, such as code documentation, license declaration, report
work in progress, etc. In other words, code comments contain
various kinds of information that can support developers in
different program comprehension and maintenance tasks [11].
To satisfy different needs, the information is written using
a mix of code and natural language sentences; consequently,
researchers have leveraged various NLP and ML-based tech-
niques to identify the types of information in these sentences.

Five teams [12]–[16] participated in the two competitions.
Each team proposed classification models trained and
evaluated on one of the two datasets we provided [17]. The first
dataset contains 1.4 million issue reports extracted from the
repositories of open-source projects and each issue is labeled
with one type. This is an expanded version of the dataset of
the NLBSE’22 tool competition [1], [2]. The second dataset
is a subset of Rani et al.’s dataset [3] and contains the ground
truth categories, i.e., information types, of 6,738 comment
sentences from 1,066 class comments of 20 projects written
in three programming languages: Java, Pharo, and Python [3].

The baseline models provided for issue classification were
based on two approaches; FastText [18] and RoBERTa [19].
FastText is used by Kallis et al.’s Ticket Tagger [20], [21]
and RoBERTa is used by Izadi’s CatIss [7], [22]. The base-
line models provided for code comment classification were
Rani et al.’s Random Forests [3], which performed best in
their evaluation.

Given these datasets and the classification results of the
baseline models, the participants of this year’s competitions
were expected to design their classifiers to outperform the
baselines in identifying the correct type(s) of issue reports or
code comments.

II. ISSUE REPORT CLASSIFICATION

In this section, we report the structure and measures for the
tool competition on issue report classification. The competition
followed a similar structure to the previous edition [2]. We
received feedback from last edition’s participants [22]–[26]
concerning the dataset that was used.

In this year’s competition, we incorporated their feedback
to improve the quality of the dataset. Specifically, we ex-



panded the dataset from 800 thousand to 1.4 million issue
reports, added a new category labeled documentation, included
common synonyms of labels, and finally removed multi-
label issues and non-English issues from the dataset. We also
introduced an additional RoBERTa [19] baseline model based
on last edition’s winner CatIss by Izadi [22].

The remainder of this section is organized as follows. We
first describe the dataset, then list the competition rules, then
summarize this year’s submissions, and finally, we present
the evaluation and results of the submissions. We published a
GitHub repository1 to guide and inform potential participants
about the competition.

A. Benchmark Dataset

We provided a dataset of 1,418,201 issue reports extracted
from the population of open-source projects hosted on GitHub.
The issues were extracted from GH Archive [27] using Google
BigQuery. We extracted closed issues during the first, second
and third quarter of 2022, i.e., January 1st to September 30st,
that contained any of the labels bug, features, question, and
documentation at the issue closing time. These are the most
frequently used labels on GitHub [7], [28].

We extracted the following data attributes for each issue:
its ID, the issue title or summary, the issue body, and
the issue author association, e.g., owner, contributor, or
member. Additionally, each issue is labeled with one class
that indicates its type, namely, bug, feature, question, or
documentation. Issues that are labelled with synonyms of
the above labels, as reported by Izadi et al. [7], are mapped
to the original labels and included in the dataset. To reduce
possible inconsistencies in the labeling rationale as discussed
by Colavito et al. [24], we exclude issue reports with multiple
labels and remove any non-English issue reports based on the
FastText language identification model lid.176.bin [18], [29].
The dataset was given in CSV format without applying any
further pre-processing on the issues.

We partitioned the dataset into a training set and a test
set. The distribution of 1,275,881 (90%) issues in the training
set is: 670,951 (52.6%) bugs; 472,216 (37%) features; 76,048
(6%) questions; and 56,666 (4.4%) documentations. The dis-
tribution of 142,320 (10%) issues in the test set is: 74,781
(52.5%) bugs; 52,797 (37.1%) features; 8,490 (6%) questions;
and 6,252 (4.4%) documentations.

We published a Jupyter notebook that performs the above
steps in our tool competition’s repository on GitHub.

B. Baselines and Competition Rules

We published two classification models as baselines for the
competition. The first baseline uses FastText [18], a static word
embedding used in the tool Ticket Tagger by Kallis et al. [17],
[20], [21] that was also used as baseline in last year’s compe-
tition. Our second baseline uses RoBERTa [19], the backbone
transformer in the CatIss tool by Izadi [7], [22], who was the
winner of the last edition of the competition.

1https://github.com/nlbse2023/issue-report-classification

The participants had to train and tune their classification
models using the training set and evaluate the models using
the test set. The test set was used to determine the official
classification results and the ranking of the contestant models.

The participants were free to select and transform any vari-
ables from the training set. Pre-trained models were permitted
but can only be finetuned on the training set. Any inputs or
features used to create or finetune the classifier, had to be de-
rived from the provided training set. Participants were allowed
to pre-process, sample, apply over/under-sampling, select a
subset of the attributes, perform feature engineering, filter
records, split the training set into a model-tuning validation set.

The participants were free to apply any pre-processing or
feature engineering on the test set except sampling, rebalanc-
ing, undersampling or oversampling techniques.

The proposed models were evaluated based on their clas-
sification performance on the test set. The classifiers had to
assign a single label to an issue: bug, feature, question, or
documentation. The classification performance of a model is
measured by the micro-average F1-score over all four classes.
Micro-averaging was chosen as the cross-class aggregation
method due to the class imbalance present in the data. While
the F1-score was used for ranking the models and determining
the winner of the competition, we also asked the participants
to report the following metrics: Precision and Recall for each
class [30]. Note that micro-average Precision and Recall scores
are the same as micro-average F1-score.

The competition’s GitHub repository contained specific in-
structions and rules, including replication package and results
of the baseline models based on FastText and RoBERTa.
More importantly, the repository contained notebooks aimed
to facilitate participation in the competition as they were ready
to be adapted, used, and executed.

C. Submitted Classification Models
Three teams submitted one or more classifiers to participate

in the competition, from which two papers were accepted.
As listed in Table I, none of the participants were able to
outperform the RoBERTa baseline based on the competition’s
assessment metric, i.e., the micro-average F1-score over all
classes. However, Laiq’s SGD-based classifier [12] performed
better than the FastText baseline. Participants used a variety of
machine learning approaches to address this challenge. Next,
we provide an overview of the two accepted approaches.

Laiq [12] used the SGD classifier [31], [32], which is an
efficient technique for solving convex loss functions with the
hinge loss function and implemented a linear SVM model.
The author tuned parameters such as alpha, penalty, and max
iterations to enhance the classification performance. The pre-
processing steps included merging the title and body fields
of each issue report, removal of special characters, HTML
tags, punctuation, numbers, consecutive white spaces, and stop
words, stemming of words, and conversion of labels to num-
bers. Laiq [12] then applied TF-IDF to the cleaned data to gen-
erate sparse matrices for both the training and testing datasets.
This work achieves a micro-average F1-score of 0.852.

https://github.com/nlbse2023/issue-report-classification


TABLE I
ISSUE CLASSIFICATION RESULTS OVER THE FOUR ISSUE TYPES SORTED BY MICRO-AVERAGE F1-SCORE.

Classification Model Metric Bug Feature Question Documentation Average F1-score

RoBERTa
by Kallis and Izadi [17], [22]

Precision 0.911 0.895 0.730 0.759
Recall 0.939 0.896 0.568 0.697 0.890

F1-score 0.924 0.895 0.639 0.727

SGD
by Laiq [12]

Precision 0.870 0.840 0.770 0.780

Recall 0.920 0.860 0.380 0.570 0.852
F1-score 0.900 0.850 0.510 0.660

FastText
by Kallis et al. [17], [20], [21]

Precision 0.877 0.841 0.670 0.736
Recall 0.917 0.862 0.455 0.501 0.851
F1-score 0.896 0.851 0.542 0.596

SetFit
by Colavito et al. [13]

Precision 0.915 0.804 0.351 0.442
Recall 0.789 0.825 0.645 0.571 0.784
F1-score 0.847 0.814 0.455 0.498

Colavito et al.’s [13] work is based on SetFit [33] and
SBERT [34]. The authors investigated the impact of label
consistency on the performance of supervised issue classifi-
cation models by manually improving label correctness on a
subset of the train and test data. To mitigate the effects of label
noise, the authors randomly sampled 400 instances from the
dataset and manually labeled them. This smaller, hand-labeled
dataset served as a gold standard for training and evaluating
their few-shot learner. The annotation procedure involved three
annotators independently labeling each issue, reaching a con-
sensus in cases of disagreement, and discarding cases where
the author’s intention could not be interpreted. The authors
aim to understand if a SetFit few-shot learner can generalize
the hand-labeled examples to the entire dataset using transfer
learning. The authors conducted multiple experiments with
different configurations and achieved a F1-score of 0.83 over
all classes. Finally, the authors also evaluated their model on
the challenge test set, and obtained an F1-score of 0.784.

D. Classifier Evaluation and Results
Based on the replication package provided by each team, we

replicated the results reported in their papers [12], [13]. We
executed the code using a workstation equipped with a RTX
3060 GPU. Training and fine-tuning of the RoBERTa baseline
lasted 17.5 hours, and GPU memory usage peaked at 12 GB.

The classification performance obtained by the proposed
classifiers on the test set is shown in Table I. The proposed
approaches were able to outperform the baselines per indi-
vidual classes or per evaluation metrics such as Precision
and Recall. For instance, Laiq’s SGD method achieves the
best result for the Precision of two classes; Question and
Documentation [12]. Covalito’s approach also obtains the best
results for the Bug class based on Precision measure and for
the Question class based on the Recall score [13]. However, we
observe that none of the proposed classifiers outperform the
RoBERTa baseline approach according to the micro-average
F1-score, which is the competition’s main assessment metric
which is the harmonic mean of Precision and Recall scores.
Hence, the first interesting observation is the importance of
evaluation metrics and the differences in the performance of
classifiers per issue report class. Next, all classifiers perform

the best for the Bug and the Feature classes while struggling
for the other two classes; Question and Documentation. This
can be due to the unbalanced nature of the dataset. Therefore,
approaches which can address this challenge or work well
with less data can improve this aspect. The third observation
is the fact that a traditional classifier such as the SGD-based
one proposed by Laiq [12] has been able to perform very
well, even outperforming the SetFit approach proposed by
Colavito et al. [13]. This is interesting as Transformer-based
models can be very resource-intensive, while traditional clas-
sifiers mostly have lower computational overhead. However,
in this case, note that the dataset used by Colavito et al. [13]
is much smaller than what is used to train the SGD classifier.
Hence, one cannot fairly compare the results obtained on the
smaller dataset with another approach trained on the larger
one. Additionally, Colavito et al. [13] showed that the few-
shot learning method outperforms a RoBERTa-based classifier
that is trained on the same limited dataset. This brings us to
the notion of noisy labels identified by Colavito et al. [13] in
the dataset collected from GitHub. The authors conducted an
error analysis and found that the presence of noisy labels was
a cause for misclassification in their previous work [24]. The
authors identified two reasons for the noise; (i) variability in
labeling rationale among different projects and (ii) difficulty
in distinguishing between Bugs and Questions related issue
reports.

In this round of the competition, the contestants have put in
their best effort to outperform the RoBERTa baseline on the
given dataset and the selected evaluation metric, i.e., the micro-
average F1-score). However, we have found that neither of the
participants has been able to outperform the baseline. There-
fore, we have decided not to announce a winner for this round
of the competition. Despite this, we recognize and appreciate
the hard work, creativity, and dedication put in by both teams.
Each work has its own unique merits that deserve recognition.

III. CODE COMMENT CLASSIFICATION

The code comment classification competition consisted of
building and testing a set of binary classifiers to classify code
comment sentences as belonging to one or more categories.
These categories represent the types of information that a



sentence is conveying, in comments of code classes. We
provided (i) a dataset of code comment sentences and (ii)
baseline classifiers based on the Random Forest model The
competition called for participants that proposed classifiers
with the goal of outperforming the baseline classifiers. We
provided a GitHub repository2 and a Colab notebook3 to guide
and inform potential participants about the competition.

A. Benchmark Dataset
The competition included a dataset composed of 1,060

manually-labeled class comments and 6,738 comment sen-
tences from 20 open-source projects written in three program-
ming languages: Java, Python, and Pharo. This dataset is a
subset of the one provided by Rani et al. [3]. The dataset
contains class comments of various open-source, popular, and
heterogeneous projects that vary in terms of contributors, size,
and development ecosystem. The Java projects are Apache
Spark, Guava, Guice, Eclipse, Vaadin, and Apache Hadoop.
The Python projects are Pandas, IPython, PyTorch, Mailpile,
Request, PipeEnv, and Django. The Pharo projects are Pillar,
Petit, PolyMath, Seaside, GToolkit, Roassal, and Moose.

A sample of comments extracted from the aforementioned
projects has been manually analyzed to identify the infor-
mation that each comment sentence conveys. Based on the
analysis, more than 19 types of information are found in the
comment sentences across the three programming languages.
For the competition, we focused on the most frequent cate-
gories, i.e., with 50+ coded sentences per category, for a total
of 19 code comment categories. Specifically, we selected seven
Java categories: summary, pointer, deprecation, rational, own-
ership, usage, and expand; five Python categories: summary,
parameters, usage, development notes, and expand; and seven
Pharo categories: key messages, intent, class references, ex-
ample, key implementation, responsibilities, and collaborators.
The definitions of these categories can be found in the original
paper by Rani et al. [3]. The 19 categories are found in 376
comments for Java, 340 for Pharo, and 344 for Python, for a
total of unique 1,060 comments.

We applied various pre-processing steps to the comments.
We split the comments into sentences based on the NEON
tool [35], changed the sentences to lowercase, transformed
multiple line endings into one ending, and removed special
characters, e.g., @#&%., !?\n. These symbols were removed
to ensure uniformity across languages, as they are used in each
language differently. We also removed periods in numbers or
special abbreviations, such as “e.g.”, “i.e.”, and numbers to
minimize incorrect splitting of the comments into sentences.

Each comment sentence can belong to one or more cat-
egories, to a maximum of 5 to 7 categories, depending on
the language. Each category represents the type of infor-
mation that the sentence is conveying. While one sentence
can belong to multiple categories, the competition focused
on binary classification for each category, rather than multi-
class classification. In other words, participants were meant to

2https://github.com/nlbse2023/code-comment-classification
3https://tinyurl.com/45ccyv6m

build multiple binary classifiers, each focusing on one category
to determine if a sentence does or does not belong to such
category. Therefore, for each category, we built the sets of
positive and negative sentences used for binary classification,
i.e., belonging and not belonging to a category, based on
the ground-truth categories of the 6,738 unique comment
sentences in our dataset. The distribution of positive and
negative sentences across categories is reported in Table II.

We randomly partitioned the comment sentence dataset
into training (80%) and testing (20%) sets, both containing
a similar proportion of positive and negative sentences as the
entire set of sentences for a category. The dataset was provided
in CSV files where the attribute ID represents the unique
sentence ID, class represents the class name referring to the
source code file where the sentence comes from, sentence
represents the text of the sentence, partition denotes the dataset
it belongs to, i.e., one for training and zero for testing, category
denotes the ground-truth category the sentence belongs to. The
distribution of these sentences in both training and test sets is
reported in Table II.

B. Baselines and Competition Rules

We trained and tested 19 binary Random Forests, one for
each category, as the competition baseline classifiers, using
the training and test sets. We used the Weka toolkit [36] to
train and test the models using the parameters determined in
Rani et al.’s work [3], since they lead to the best classification
performance according to their evaluation. The baseline mod-
els learn from two types of features for a comment sentence:

1) NLP features: these are binary features that indicate
whether or not the sentence matches grammar patterns
detected by the NEON tool [35], [37].

2) Textual features: these are continuous features based
on TF-IDF scoring. Each feature represents the im-
portance/weight of a word in the sentence considering
the word’s term frequency (TF) and inverse document
frequency (IDF) in a corpus of sentences.

More information about the features can be found in
Rani et al.’s work [3]. Potential participants were allowed to
use these features in their models, as they were made available
in our GitHub repository. Additionally, since the training
dataset is unbalanced, we used Weka’s ClassBalancer filter to
calibrate the instance weights that Weka uses during training
to account for data imbalance. The classification performances
of the baselines are shown in Table III.

The participants were expected to train their classification
models using the provided training dataset and evaluate them
on the testing dataset. However, we restricted the use of any
external sources beyond the class comment sentences and
associated source code of the class. Note that the dataset
provides the mapping of a class name to its class comment
sentences and to its project so that the participants could
identify the source code of the class from the project and thus
can leverage it to fine-tune their models. The projects’ source
code was released in our GitHub repository.

https://github.com/nlbse2023/code-comment-classification
https://tinyurl.com/45ccyv6m
https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/ClassBalancer.html


TABLE II
DISTRIBUTION OF POSITIVE/NEGATIVE COMMENT SENTENCES PER CATEGORY, LANGUAGE, AND DATASET (TRAINING AND TESTING).

Language Categories
Training Testing Training + Testing

Positive Negative Total Positive Negative Total Positive Negative Total

Java

Expand 505 1,426 1,931 127 360 487 632 1,786 2,418
Ownership 90 1,839 1,929 25 464 489 115 2,303 2,418
Deprecation 100 1,831 1,931 27 460 487 127 2,291 2,418
Rational 223 1,707 1,931 57 431 488 280 2,138 2,418
Summary 328 1,600 1,928 87 403 490 415 2,003 2,418
Pointer 289 1,640 1,929 75 414 489 364 2,054 2,418
Usage 728 1,203 1,931 184 303 487 912 1,506 2,418

2,263 11,246 13,509 582 2,835 3,337 2,845 14,081 16,926

Pharo

Responsibilities 267 1,139 1,406 69 290 359 336 1,429 1,765
Key messages 242 1,165 1,407 63 295 358 305 1,460 1,765
Key impl. points 184 1,222 1,406 48 311 359 232 1,533 1,765
Collaborators 99 1,307 1,406 28 331 359 127 1,638 1,765
Example 596 812 748 152 205 357 748 1,017 1,765
Class references 60 1,348 1,408 17 340 357 77 1,688 1,765
Intent 173 1,236 1,409 45 311 356 218 1,547 1,765

1,621 8,229 9’850 422 2,083 2’505 2’043 10’312 12,355

Python

Expand 402 1,637 2,039 102 414 516 504 2,051 2,555
Parameters 633 1,404 2,037 161 357 518 794 1,761 2,555
Summary 361 1,678 2,039 93 423 516 454 2,101 2,555
Dev. notes 247 1,792 2,039 65 451 516 312 2,243 2,555
Usage 637 1,401 2,038 163 354 517 800 1,755 2,555

2,280 7,912 10,192 584 1,999 2,583 2,864 9,911 12,775

Despite the restriction on external sources, the participants
were permitted to use pre-trained models as long as they were
fine-tuned on the given training set. Also, they were allowed
to perform pre-processing, sampling, over/under-sampling, and
feature selection and engineering on the training dataset, but
they were prohibited from performing the same steps on the
testing set except for pre-processing and feature engineering.

Since the competition focused on binary classification for a
given category, i.e., a sentence does or does not belong to a
category, we evaluated the classification performance of each
classifier using Precision, Recall, and F1-score on the testing
set. Although the participants were expected to report these
three metrics, we used the F1-score to measure the overall
performance of the models. The 19 F1-scores of the proposed
classifiers were compared against the 19 F1-scores achieved by
the baseline classifiers to rank the participants and determine a
winner. We only allowed the classifiers to implement a single
model, e.g., BERT or SVM, for all categories, rather than
implementing distinct models for different categories.

The winner of the competition was the model with the
highest score as determined by the following formula:

score(m) = (avg. F1) ⇥ 0.75 + (% OC) ⇥ 0.25

where score(m) represents the score of the model m, avg. F1
is the average of the F1-scores achieved by the proposed
model across all the 19 categories, and % OC represents
the proportion of the 19 categories for which the proposed
model outperforms the baseline Random Forest model by F1-
score. With this formula, the participants were encouraged to
outperform the baselines as much as possible, measured by
the F1-score, for as many categories as possible.

C. Submitted Classification Models

Three teams participated in the competition by submitting
one or more classification models. Two teams proposed fine-
tuned transformer-based models [14], [16] and the remaining
team proposed canonical machine learning models [15].

Al-Kaswan et al. [14] proposed SentenceTransformer-
Assisted Comment Classifiers (STACC), a set of
SentenceTransformers-based binary code comment classifiers.
These are lightweight classifiers trained and tested on the
provided dataset. The authors used SetFit [33], an efficient
and prompt-free framework for few-shot fine-tuning of
Sentence Transformers. For the fine-tuning, the authors
relied on the Optuna backend with SetFit to find the best
hyperparameters using data from the Java deprecation
category. The performance of the model with the best
hyperparameters was obtained on the data from all the
categories in the test set. Finally, the authors experimented
with appending the code file name to the corresponding
comments, separated by the ’|’ symbol, to improve the
performance of the models. The authors made all their
fine-tuned models available on the HuggingFace Hub and
integrated the models into an interactive HuggingFace Space
that is accessible online and via a free API [14].

Li et al. [16] relied on transfer learning from pre-trained
language models for code-related tasks. In particular, they
proposed to fine-tune CodeT5 [38], a Transformer-based
model pre-trained on source code from a variety of open-
source projects. In addition, the authors conducted a pre-
processing step to normalize the competition dataset, e.g.,
lowercase transformation and removal of special characters
such as #%.?. They also leveraged the NLP features provided



TABLE III
RESULTS OF THE CODE COMMENT CLASSIFICATION COMPETITION. THE MODELS ARE RANKED USING THE SCORE GIVEN IN SECTION III-B.

Participants Classification Model
Average

Precision

Average

Recall

Average

F1-score

Outperformed

Categories

Ranking

Score

Al-Kaswan et al. [14] STACC 0.710 0.794 0.744 19/19 0.808

Li et al. [16] CodeT5 0.728 0.606 0.657 19/19 0.743

Indika et al. [15]

Logistic Regression 0.540 0.560 0.547 19/19 0.660
Linear SVC 0.542 0.558 0.547 18/19 0.647
Random Forest 0.661 0.479 0.537 17/19 0.626
Decision Tree 0.495 0.506 0.493 18/19 0.607
Multinomial Naïve Bayes 0.484 0.589 0.493 16/19 0.604
Multi-Layer Perceptron 0.564 0.507 0.523 16/19 0.603
Bernoulli Naïve Bayes 0.478 0.585 0.523 16/19 0.602
K-Nearest Neighbors 0.526 0.490 0.503 16/19 0.588

Rani et al. [3] Random Forest 0.439 0.245 0.309 - -

by Rani et al. [3], e.g., phrases such as “see example” or
“results” for the Python category usage). These category-
specific features were wrapped between special tokens in the
form of <s>features<\s> to make the model pay more attention
to key features that can help with classification. A pre-trained
tokenizer based on the Byte-Pair Encoding (BPE) is used to
tokenize the code comments and fixed hyperparameters were
used to fine-tune the model.

Indika et al. [15] experimented with eight canonical ma-
chine learning models for code comment classification, namely
Logistic Regression, Linear SVC, Random Forest, Deci-
sion Tree, Multinomial Naïve Bayes, Multi-Layer Perceptron,
Bernoulli Naïve Bayes, and K-nearest Neighbors. The best
model hyperparameters, based on grid search, were found
using 10-fold cross-validation on the training set. The models
with the best hyperparameters were executed on the test set
to measure their classification performance. Before training
or inference, the authors included a pre-processing step to
adapt English sentences of a typical code comment to a
standard format: they applied a set of text transformations to
remove white spaces, expand English contraction, remove non-
alphanumeric characters, and more. Random oversampling
was applied to mitigate the issue of imbalanced positive and
negative comment sentences.

D. Classifier Evaluation and Results
We executed the code provided in the replication packages

of the three teams to replicate the results reported in the
corresponding papers [14]–[16]. For all three submissions, we
were able to replicate the results reported in the corresponding
papers.

For replicating Al-Kaswan et al. [14] the authors provided
Google Colab notebooks ready to use. However, due to the
complexity of the model, running the notebooks on Colab
demanded extensive computational resources that were only
available with a paid subscription. Therefore, we relied on a lo-
cal workstation, equipped with three Tesla T4 GPUs, each with
15GB of memory, to replicate the results. Following the advice
of the authors, we reduced the number of trials to two (2)
in the model selection pipeline, which executed successfully.
Additionally, the model training pipeline executed successfully

for 17 of 19 models, raising an exception that prevented the
training of the remaining two ones. After informing the authors
about the issue, they provided a new notebook that executed
their fine-tuned models hosted on HuggingFace. We executed
the notebook and were able to replicate the paper results. Al-
Kaswan et al.’s STACC classifiers achieved an average F1-
score of 0.744 and outperformed the baseline model on all
categories. Based on the results, the ranking score for the
competition is 0.808. The best STACC results coincide with
the best results of Li et al. [16]: Ownership (Java) shows 100%
F1-score. The two teams also share the class Development
notes as the worst performing case due to the same challenges
previously described.

Besides the entire pipeline for training their models,
Li et al. [16] provided all fine-tuned models ready to use
for inference as well as the dataset split in train, validation,
and test sets. In any case, we used a workstation equipped
with a Tesla V100S GPU with 32GB of memory to re-
execute their entire pipeline. This allowed us to verify that
there were no issues in the written report. Although split
into batches, the entire process requested approximately four
days of computation. As reported in the paper [16], the
proposed CodeT5 model achieves an average F1-score of
0.657 and outperformed the baseline model on all categories
(cf. Table III). Based on the results, the ranking score for the
competition is 0.743. The model achieves the best performance
with the class Ownership for the programming language Java
with an F1-score of 100%. In contrast, the model struggles
with the Development notes class (Python), as our model does,
probably due to a less formalism adopted by developers in
writing this kind of comments.

To replicate the eight models of Indika et al. [15], we
used the same workstation with the three Tesla T4 GPUs.
We executed the pre-trained best classifiers provided by the
authors, which match the results of their paper. In contrast
to the other two teams, by providing eight different models,
Indika et al. [15] showed that the best-performing model does
not necessarily outperform the baseline for all categories. For
example, although the proposed Decision Tree achieves only
0.607 with our ranking score, it shows the best performance on
the challenging case of Python’s Development notes category.



Indika et al.’s Logistic Regression model is the highest-
ranked model, achieving an average F1-score of 0.547 and
outperforming the baselines on all categories. Based on the
results, the ranking score for the competition is 0.660, which is
considerably lower than the models from the other two teams.

Table III reveals that all the proposed models significantly
outperform the baseline Random Forests by Rani et al. [3].
However, the transformer-based models STACC [14] and
CodeT5 [16] are significantly superior to the canonical models
proposed by Indika et al. [15], in terms of average Precision,
Recall, and F1-score. CodeT5’s Precision is slightly higher
than that of STACC, but STACC’s Recall is substantially
higher, thus explaining the STACC’s higher average F1-score.
It is interesting that Indika et al.’s Random Forests achieve
slightly higher Precision than the baseline Random Forests,
yet their Recall is substantially higher. These results are likely
explained by the fact that Indika et al. performed a hyper-
parameter search while the baseline Random Forests re-used
prior hyper-parameters which may not necessarily be optimal
for the competition dataset.

Table III shows that the highest score is achieved by Al-
Kaswan et al.’s models [14], making Al-Kaswan et al. the win-
ners of the competition. The competition ranking is as follows:

1) Al-Kaswan et al. [14] is the winner of the competition
with their transformer-based STACC models;

2) Li et al. [16] take the second place of the competition
with their transformed-based CodeT5 models; and

3) Indika et al. [15] take the third place with their logistic
regression classifiers.

IV. CONCLUSIONS AND FINAL REMARKS

The NLBSE’23 Tool Competition attracted five teams that
proposed a diverse set of classification models to automatically
classify issue reports or code comments.

Our issue report classification baseline model remained
uncontested despite the hard work from the participants [12],
[13]. We believe more models were trained and tested but
not submitted to the competition due to the difficulty in
outperforming our baseline. The baseline classifier [17], [22]
utilized RoBERTa [19], a state-of-the-art language model
based on the Transformer architecture, leveraging various
information sources from the issues. Careful pre-processing
of the issue reports appear to be the main factor for achieving
such performance. For the next edition, we plan to improve the
issue report classification dataset by reducing the variability in
labeling rationale as it affects the reliability and effectiveness
of models, which may lead to inaccurate results [13], [39].

Three teams participated in the code comment classification
competitions, all outperforming the baseline model
based on Random Forest [3]. The competition showed
a significant superiority of language-model-based approaches,
i.e., STACC [14] and CodeT5 [16], over canonical machine
learning models, e.g., SVMs, Logistic Regression, or Decision
Trees [3], [15]. This means that general-purpose textual
data (used by STACC [14]) and open-source code (used by
CodeT5 [16]) used for pre-training the models is beneficial for

code comment classification. Fine-tuning may have have had
an effect on these models, yet it is unclear by how much. In
contrast, lexical features and grammatical patterns used by the
canonical machine learning models are insufficient to achieve
adequate classification performance. While the teams per-
formed data pre-processing, it is unclear how much it helped
for improving the performance. Finally, we plan to include
in future editions of the code comment competition a larger
and more balanced dataset, deep-learning-based baselines,
and possibly, a code comment multi-label classification task.

We expect that future editions of the competition would
lead to more accurate models as well as their application to
additional software engineering tasks that require the analysis
and processing of (non)code-related textual artifacts. We also
plan to extend the competition with techniques previously used
for user review analysis [40]–[43], categorizing safety-related
issues [44], or fine-grained analysis of bug reports [45]–[49].

ACKNOWLEDGMENTS

We thank all the participants of the competition for their
support in launching the second edition of the NLBSE’23 Tool
Competition. We gratefully acknowledge the Horizon 2020
(EU Commission) support for the project COSMOS (DevOps
for Complex Cyber-physical Systems), Project No. 957254-
COSMOS. Chaparro was supported in part by grant CCF-
1955853 from the NSF.

REFERENCES

[1] A. Di Sorbo and S. Panichella, “Summary of the 1st Natural Language-
based Software Engineering Workshop (NLBSE 2022),” ACM SIGSOFT
Softw. Eng. Notes, vol. 48, no. 1, pp. 101–104, 2023.

[2] R. Kallis, O. Chaparro, A. Di Sorbo, and S. Panichella, “NLBSE’22
Tool Competition,” in Proceedings of The 1st International Workshop
on Natural Language-based Software Engineering (NLBSE’22), 2022.

[3] P. Rani, S. Panichella, M. Leuenberger, A. Di Sorbo, and O. Nierstrasz,
“How to identify class comment types? A multi-language approach for
class comment classification,” Journal of Systems and Software, vol.
181, p. 111047, 2021.

[4] P. Rani, S. Panichella, M. Leuenberger, M. Ghafari, and O. Nierstrasz,
“What do class comments tell us? An investigation of comment evolution
and practices in Pharo Smalltalk,” Empirical software engineering,
vol. 26, no. 6, p. 112, 2021, publisher: Springer.

[5] S. Panichella, G. Canfora, and A. Di Sorbo, “Won’t We Fix this Issue?
Qualitative characterization and automated identification of wontfix
issues on GitHub,” Information and Software Technology, vol. 139, p.
106665, 2021.

[6] S. Herbold, A. Trautsch, and F. Trautsch, “On the feasibility of au-
tomated prediction of bug and non-bug issues,” Empirical Software
Engineering, vol. 25, no. 6, pp. 5333–5369, 2020.

[7] M. Izadi, K. Akbari, and A. Heydarnoori, “Predicting the objective and
priority of issue reports in software repositories,” Empirical Software
Engineering, vol. 27, no. 2, p. 50, 2022, publisher: Springer.

[8] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, 2005, pp. 68–75.

[9] L. Pascarella and A. Bacchelli, “Classifying code comments in Java
open-source software systems,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). IEEE, 2017, pp.
227–237.

[10] A. Aghamohammadi, M. Izadi, and A. Heydarnoori, “Generating sum-
maries for methods of event-driven programs: An Android case study,”
Journal of Systems and Software, vol. 170, p. 110800, 2020, publisher:
Elsevier.



[11] P. Rani, A. Blasi, N. Stulova, S. Panichella, A. Gorla, and O. Nierstrasz,
“A decade of code comment quality assessment: A systematic literature
review,” Journal of Systems and Software, vol. 195, p. 111515, 2023.

[12] M. Laiq, “An Intelligent Tool for Classifying Issue Reports,” in Proceed-
ings of The 2nd International Workshop on Natural Language-based
Software Engineering (NLBSE’23), 2023, p. (to appear).

[13] G. Colavito, F. Lanubile, and N. Novielli, “Few-Shot Learning for Issue
Report Classification,” in Proceedings of The 2nd International Work-
shop on Natural Language-based Software Engineering (NLBSE’23),
2023, p. (to appear).

[14] A. Al-Kaswan, M. Izadi, and A. van Deursen, “STACC: Code Comment
Classification using Sentence Transformers,” in Proceedings of The 2nd
International Workshop on Natural Language-based Software Engineer-
ing (NLBSE’23), 2023, p. (to appear).

[15] A. Indika, P. Y. Washington, and A. Peruma, “Performance Comparison
of Binary Machine Learning Classifiers in Identifying Code Comment
Types: An Exploratory Study,” in Proceedings of The 2nd Interna-
tional Workshop on Natural Language-based Software Engineering
(NLBSE’23), 2023, p. (to appear).

[16] Y. Li, H. Wang, H. Zhang, and S. H. Tan, “Classifying Code Comments
via Pre-trained Programming Language Model,” in Proceedings of
The 2nd International Workshop on Natural Language-based Software
Engineering (NLBSE’23), 2023, p. (to appear).

[17] R. Kallis, M. Izadi, L. Pascarella, O. Chaparro, and P. Rani, “The
NLBSE’23 Tool Competition,” in Proceedings of The 2nd Interna-
tional Workshop on Natural Language-based Software Engineering
(NLBSE’23), 2023.

[18] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks
for Efficient Text Classification,” Aug. 2016, arXiv:1607.01759 [cs].
[Online]. Available: http://arxiv.org/abs/1607.01759

[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly Optimized
BERT Pretraining Approach,” Jul. 2019, arXiv:1907.11692 [cs].

[20] R. Kallis, A. Di Sorbo, G. Canfora, and S. Panichella, “Ticket Tagger:
Machine Learning Driven Issue Classification,” in 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
Sep. 2019, pp. 406–409, iSSN: 2576-3148.

[21] ——, “Predicting issue types on GitHub,” Science of Computer Pro-
gramming, vol. 205, p. 102598, May 2021.

[22] M. Izadi, “CatIss: An Intelligent Tool for Categorizing Issues Reports
using Transformers,” in 2022 IEEE/ACM 1st International Workshop on
Natural Language-Based Software Engineering (NLBSE), May 2022, pp.
44–47.

[23] S. Bharadwaj and T. Kadam, “GitHub Issue Classification Using BERT-
Style Models,” in 2022 IEEE/ACM 1st International Workshop on
Natural Language-Based Software Engineering (NLBSE), May 2022,
pp. 40–43.

[24] G. Colavito, F. Lanubile, and N. Novielli, “Issue report classification us-
ing pre-trained language models,” in 2022 IEEE/ACM 1st International
Workshop on Natural Language-Based Software Engineering (NLBSE).
IEEE, 2022, pp. 29–32.

[25] M. L. Siddiq and J. C. S. Santos, “BERT-Based GitHub Issue Report
Classification,” in 2022 IEEE/ACM 1st International Workshop on
Natural Language-Based Software Engineering (NLBSE), May 2022,
pp. 33–36.

[26] A. Trautsch and S. Herbold, “Predicting Issue Types with seBERT,”
in 2022 IEEE/ACM 1st International Workshop on Natural Language-
Based Software Engineering (NLBSE), May 2022, pp. 37–39.

[27] I. Grigorik, “GH Archive,” 2012. [Online]. Available: https://www.
gharchive.org/

[28] J. Cabot, J. L. C. Izquierdo, V. Cosentino, and B. Rolandi, “Exploring
the use of labels to categorize issues in open-source software projects,”
in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 2015, pp. 550–554.

[29] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and
T. Mikolov, “FastText.zip: Compressing text classification models,”
Dec. 2016, arXiv:1612.03651 [cs]. [Online]. Available: http://arxiv.org/
abs/1612.03651

[30] M. Izadi and M. N. Ahmadabadi, “On the evaluation of NLP-based
models for software engineering,” in 2022 IEEE/ACM 1st International
Workshop on Natural Language-Based Software Engineering (NLBSE).
IEEE, 2022, pp. 48–50.

[31] T. Zhang, “Solving large scale linear prediction problems using stochas-
tic gradient descent algorithms,” in Proceedings of the twenty-first
international conference on Machine learning, 2004, p. 116.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[33] L. Tunstall, N. Reimers, U. E. S. Jo, L. Bates, D. Korat, M. Wasserblat,
and O. Pereg, “Efficient Few-Shot Learning Without Prompts,” arXiv
preprint arXiv:2209.11055, 2022.

[34] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

[35] A. Di Sorbo, C. A. Visaggio, M. Di Penta, G. Canfora, and S. Panichella,
“An NLP-based Tool for Software Artifacts Analysis,” in IEEE Inter-
national Conference on Software Maintenance and Evolution, ICSME,
Luxembourg. IEEE, 2021, pp. 569–573.

[36] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009, publisher: ACM
New York, NY, USA.

[37] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora,
and H. C. Gall, “Exploiting Natural Language Structures in Software
Informal Documentation,” IEEE Transactions on Software Engineering,
vol. 47, no. 8, pp. 1587–1604, 2021.

[38] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” arXiv preprint arXiv:2109.00859, 2021.

[39] X. Wu, W. Zheng, X. Xia, and D. Lo, “Data quality matters: A case
study on data label correctness for security bug report prediction,” IEEE
Transactions on Software Engineering, vol. 48, no. 7, pp. 2541–2556,
2021, publisher: IEEE.

[40] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can I improve my app? Classifying user reviews
for software maintenance and evolution,” in International Conference
on Software Maintenance and Evolution. IEEE, 2015, pp. 281–290.

[41] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,”
in International Symposium on Foundations of Software Engineering.
ACM, 2016, pp. 499–510.

[42] A. Di Sorbo, G. Grano, C. A. Visaggio, and S. Panichella, “Investigating
the criticality of user-reported issues through their relations with app
rating,” J. Softw. Evol. Process., vol. 33, no. 3, 2021.

[43] S. Panichella, “Summarization techniques for code, change, testing, and
user feedback (Invited paper),” in 2018 IEEE Workshop on Validation,
Analysis and Evolution of Software Tests, VST@SANER 2018, Cam-
pobasso, Italy, March 20, 2018, C. Artho and R. Ramler, Eds. IEEE,
2018, pp. 1–5.

[44] A. Di Sorbo, F. Zampetti, C. A. Visaggio, M. Di Penta, and S. Panichella,
“Automated Identification and Qualitative Characterization of Safety
Concerns Reported in UAV Software Platforms,” ACM Trans. Softw.
Eng. Methodol., Sep. 2022, place: New York, NY, USA Publisher:
Association for Computing Machinery.

[45] Y. Song, J. Mahmud, N. De Silva, Y. Zhou, O. Chaparro, K. Moran,
A. Marcus, and D. Poshyvanyk, “BURT: A Chatbot for Interactive
Bug Reporting,” in Proceedings of the 45th International Conference
on Software Engineering (ICSE), 2023, p. (to appear).

[46] Y. Song, J. Mahmud, Y. Zhou, O. Chaparro, K. Moran, A. Marcus, and
D. Poshyvanyk, “Toward interactive bug reporting for (Android app)
end-users,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’22), 2022, pp. 344–356.

[47] Y. Song and O. Chaparro, “Bee: A tool for structuring and analyzing bug
reports,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE’20), 2020, pp. 1551–1555.

[48] O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus,
M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the quality of the
steps to reproduce in bug reports,” in Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE’19),
2019, pp. 86–96.

[49] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus,
G. Bavota, and V. Ng, “Detecting missing information in bug descrip-
tions,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE’17), 2017, pp. 396–407.

http://arxiv.org/abs/1607.01759
https://www.gharchive.org/
https://www.gharchive.org/
http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1612.03651

	Introduction
	Issue Report Classification
	Benchmark Dataset
	Baselines and Competition Rules
	Submitted Classification Models
	Classifier Evaluation and Results

	Code Comment Classification
	Benchmark Dataset
	Baselines and Competition Rules
	Submitted Classification Models
	Classifier Evaluation and Results

	Conclusions and Final Remarks
	References

