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ABSTRACT

Proponents of software veri�cation have argued that simpler code

is easier to verify: that is, that veri�cation tools issue fewer false

positives and require less human intervention when analyzing sim-

pler code. We empirically validate this assumption by comparing

the number of warnings produced by four state-of-the-art veri�-

cation tools on 211 snippets of Java code with 20 metrics of code

comprehensibility from human subjects in six prior studies.

Our experiments, based on a statistical (meta-)analysis, show

that, in aggregate, there is a small correlation (� = 0.23) between

understandability and veri�ability. The results support the claim

that easy-to-verify code is often easier to understand than code that

requires more e�ort to verify. Our work has implications for the

users and designers of veri�cation tools and for future attempts to

automatically measure code comprehensibility: veri�cation tools

may have ancillary bene�ts to understandability, and measuring

understandability may require reasoning about semantic, not just

syntactic, code properties.
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1 INTRODUCTION

Programmers must deeply understand source code in order to im-

plement new features, �x bugs, refactor, review code, and do other

essential software engineering activities [4, 56, 69, 90]. However,
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understanding code is challenging and time-consuming for devel-

opers: studies [59, 104] have estimated developers spend 58%–70%

of their time understanding code.

Complexity is a major reason why code can be hard to under-

stand [3, 5, 6, 69, 78]: algorithms may be written in convoluted

ways or be composed of numerous interacting code structures and

dependencies. There are two major sources of complexity in code:

essential complexity, which is needed for the code to work, and

accidental complexity, which could be removed while retaining the

code’s semantics [5, 14]. Whether the complexity is essential or

accidental, understanding complex code demands high cognitive

e�ort from developers [3, 78].

Researchers have proposed many metrics to approximate code

complexity [3, 19, 21, 39, 41, 64, 85, 106] using vocabulary size

(e.g., Halstead’s complexity [36]), program execution paths (e.g.,

McCabe’s cyclomatic complexity [58]), program data �ow (e.g.,

Beyer’s DepDegree [9]), etc. These syntactic metrics are intended

to alert developers about complex code so they can refactor or sim-

plify it to remove accidental complexity [4, 34, 69], or to predict

developers’ cognitive load when understanding code [62, 69, 78].

However, recent studies have found that (some of) these metrics

(e.g., McCabe’s) either weakly or do not correlate at all with code

understandability as perceived by developers or measured by their

behavior and brain activity [26, 69, 78]. Other studies have demon-

strated that certain code structures (e.g., if vs for loops, �at vs nested

constructs, or repetitive code patterns) lead to higher or lower un-

derstanding e�ort (a.k.a. code understandability or comprehensibil-

ity) [3, 13, 26, 41, 43, 52], which diverges from the simplistic way

metrics (e.g., McCabe’s) measure code complexity [3, 26, 41, 45, 78].

In this paper, we investigate the relationship between under-

standability and code veri�ability—how easy or hard it is for a de-

veloper to use a veri�cation tool to prove safety properties about the

code, such as the absence of null pointer violations or out-of-bounds

array accesses. Our research is motivated by the common assump-

tion in the software veri�cation community that simpler code is both

easier to verify by veri�cation tools and easier to understand by devel-

opers. For example, the Checker Framework [68] user manual states

this assumption explicitly in its advice about unexpected warnings:

“rewrite your code to be simpler for the checker to analyze; this

is likely to make it easier for people to understand, too” [91]. The

documentation of the OpenJML veri�cation tool says [93]: “suc-

cess in checking the consistency of the speci�cations and the code

will depend on... the complexity and style in which the code and

speci�cations are written” [67]. This assumption is widely held by

veri�cation experts but has never been validated empirically.

The intuition behind this assumption is that a veri�er can handle

a certain amount of code complexity before it issues a warning. If
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it is possible to remove the warning by changing the code, then the

complexity that caused it must be accidental rather than essential,

and therefore removing the warning reduces the overall complex-

ity of the code. For example, consider accessing a possibly-null

pointer in a Java-like language. A simple null check might use an if

statement. A more complex variant with the same semantics might

dereference the pointer within a try statement and use a catch

statement to intercept the resulting exception if the pointer is null.

The second, more convoluted variant (with its signi�cant acciden-

tal complexity) might not be veri�ed—a null pointer dereference

does occur, but it is intercepted before it crashes the program. A

veri�er would need to model exceptional control �ow to avoid a

false positive warning. Alternatively, a veri�er might warn about

code that makes unstated assumptions. For example, by derefer-

encing a possibly-null pointer without checking it �rst, the code

assumes that the pointer has already been checked. A veri�er might

warn that this is unsafe unless a human provides a speci�cation

that the pointer is non-null. In that case, the veri�er can verify the

dereference, but then must check that the value assigned to the

variable really is non-null at each assignment. A warning because

of a missing speci�cation can also indicate complexity that a human

might need to reason about to understand the code: the human

might need to determine why it is safe to dereference the pointer.

Our goal is to empirically validate the purported relationship

between veri�ability and understandability—and therefore either

con�rm or refute the assumption that easy-to-understand code is

easy to verify (and vice-versa). To do so, we need to measure veri�-

ability. Veri�ers analyze source code to prove the absence of partic-

ular classes of defects (e.g., null dereferences) using sound analyses.

A sound veri�er can �nd all defects (of a well-de�ned class) in the

code. However, most interesting properties of programs are undecid-

able [74], so all sound veri�ers produce false positive warnings: that

is, they conservatively issue a warning when they cannot produce a

proof. The user of the veri�er must sort the true positive warnings

that correspond to real bugs from false positive warnings due to the

veri�er’s imprecision or due to the need to state code assumptions as

speci�cations. The combination of false positivewarnings andwarn-

ings about unstated assumptions (which we refer to as “false posi-

tives” or “warnings” for brevity) is a good proxy for veri�ability be-

cause the fewer suchwarnings in a given piece of code, the less work

a developer using the veri�er will need to do to verify that code.

With that in mind, we hypothesize that a correlation exists be-

tween a code snippet’s comprehensibility, as judged by humans, and

its veri�ability, as measured by false positive warnings.

We conducted an empirical study to validate this hypothesis—

the �rst time that this common assumption in the veri�cation

community is tested empirically. Our study compares the num-

ber of warnings produced by three state-of-the-art, sound static

code veri�ers [60, 68, 93] and one industrial-strength, unsound

static analysis tool based on a sound core [16] with ≈18k measure-

ments code understandability proxies collected from humans in

six prior studies [13, 15, 69, 71, 78, 82] for 211 Java code snippets.

Such measurements come from 20 metrics in four categories [62]:

(1) human-judged ratings, (2) program output correctness, (3) com-

prehension time, and (4) physiological (i.e., brain activity) metrics.

We used a statistical meta-analysis technique [11, 37] to examine

the correlation between veri�ability and these understandability

metrics in aggregate. Given the small sample sizes of the original

studies and the danger of multiple comparisons, this meta-analysis

technique permits us to draw methodologically-sound conclusions

about the overall trends.

We found a small correlation between veri�ability and the prox-

ies for understandability, in aggregate (� = 0.23); individually, 13

of 20 metrics were correlated with veri�ability. This trend suggests

that more often than not, code that is easier to verify is easier for

humans to understand.

One implication of this result is that our results provide evidence

for a relationship between the semantics of a piece of code and

its understandability, which may explain (in part) the apparent

ine�ectiveness of prior syntactic approaches. This implies that the

veri�ability of a code snippet, as measured automatically by the

warnings issued by extant veri�cation tools, might be a useful

input to models of code understandability [15, 78, 94]. Another

implication is that when using a veri�cation tool, developers should

consider making changes to the code to make it easier to verify

automatically: doing so is more likely than not to make the code

easier for a human to understand. If a developer makes a change to

remove a false positive without changing the code’s semantics, any

complexity they remove must have been accidental. This means

that veri�cation tools provide a secondary bene�t beyond their

guarantees of the absence of errors: code that can be easily veri�ed

should be easier for future developers to improve and extend.

In summary, the main contributions of this paper are:

• empirical evidence of a correlation between code understand-

ability and veri�ability derived via meta-analysis, supporting

the common assumption that easier-to-verify code is easier

for humans to understand (and vice-versa). The results have

implications for the design and deployment of veri�cation

tools and for developing more accurate automated metrics

of code comprehensibility; and

• an online replication package [27] that enables veri�cation

and replication of our results and future research.

2 EMPIRICAL STUDY DESIGN

Our goal is to assess the correlation between human-based code

comprehensibility metrics and code veri�ability—i.e., how many

warnings static code veri�cation tools issue. Intuitively, our goal is

to check if code that is easy to verify is also easy for humans to un-

derstand. To that end, we formulate these research questions (RQs):

RQ1 How do individual human-based code comprehensibility

metrics correlate with tool-based code veri�ability?

RQ2 How do human-based code comprehensibility metrics corre-

late with tool-based code veri�ability in aggregate?

RQ3 What is the impact of each veri�cation tool on the aggregated

correlation results?

RQ4 Do di�erent kinds of comprehensibility metrics correlate

better or worse with tool-based veri�ability?

RQ1 and RQ2 encode our hypothesis: that a correlation exists

between tool-based code veri�ability and human-based code com-

prehensibility. RQ1 asks whether individual metrics correlate with

veri�ability. However, due to the limitations of prior studies, sample

sizes for the metrics considered individually are too small to draw
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Table 1: Datasets (DSs) of code snippets and understandability measurements/metrics used in our study. The metrics types are

“C” for correctness, “R” for ratings, “T” for time, and “P” for physiological.

DS Snippets NCLOC Participants Understandability Task Understandability Metrics Meas.

1 [82] 23 CS algorithms 6 - 20 41 students Determine prog. output

C: correct_output_rating (3-level correctness score for program output)

R: output_di�culty (5-level di�culty score for program output)

T: time_to_give_output (seconds to read program and answer a question)
2,829

2 [71] 12 CS algorithms 7 - 15 16 students Determine prog. output

P: brain_deact_31ant (deactivation of brain area BA31ant)

P: brain_deact_31post (deactivation of brain area BA31post)

P: brain_deact_32 (deactivation of brain area BA32)

T: time_to_understand (seconds to understand program within 60 seconds)

228

3 [15] 100 OSS methods 5 - 13 121 students Rate prog. readability R: readability_level (5-level score for readability/ease to understand) 12,100

6 [78] 50 OSS methods 18 - 75 50 students and

13 developers

Rate underst./answer Qs

R: binary_understandability (0/1 program understandability score)

C: correct_verif_questions (% of correct answers to veri�cation questions)

T: time_to_understand (seconds to understand program)
1,197

9 [13] 10 OSS methods 10 - 34 104 students Rate read./complete prog.

C: gap_accuracy ([0-1] accuracy score for �lling in program blanks)

R: readability_level_ba (5-level avg. score for readability b/a code completion)

R: readability_level_before (5-level score for readability before code completion)

T: time_to_read_complete (avg. seconds to rate readability and complete code)

716

F [69] 16 CS algorithms 7 - 19 19 students Determine prog. output

P: brain_deact_31(deactivation of brain area BA31)

P: brain_deact_32 (deactivation of brain area BA32)

R: complexity_level (score for program complexity)

C: perc_correct_output (% of subjects who correctly gave program output)

T: time_to_understand (seconds to understand program within 60 seconds)

935

reliable conclusions. Therefore, RQ2 asks whether there is a pat-

tern to the answers to RQ1 that summarizes the overall correlation

trend. We answer RQ2 statistically by combining the results of the

individual metrics targeted by RQ1 with a meta-analysis.

RQ3 asks whether veri�ability, measured using only one tool’s

warnings, correlates with comprehensibility. Intuitively, we aim

to check (1) if the patterns of correlations are similar across tools,

(indicating generalizability), and (2) whether any particular tool

dominates the results. To answer the second part, we use a “leave-

one-out” ablation analysis, dropping each tool individually. RQ4

asks whether there is any di�erence in correlation between ver-

i�ability and di�erent proxies for code comprehensibility. Based

on prior work [62], we focus on four metric categories: correctness,

rating, time, and physiological. Together, the answers to RQ3 and

RQ4 help us explain our RQ1 and RQ2 results: they explore the

tool(s) and metric(s) responsible for the observed correlations.

To answer our RQs, we �rst compiled a set of human-based code

comprehensibility measurements from prior studies (section 2.1).

Then, we de�ned our metric for code veri�ability (section 2.2) and

executed four veri�cation-based tools on the same code snippets

to measure how often each snippet cannot be veri�ed (sections 2.3

and 2.4). Next, we conducted an analysis of the warnings produced

by the veri�ers to ensure that they met our de�nition of “false

positive” (section 2.5). Finally, we correlated the comprehensibility

metrics with the number of warnings produced by the tools and

analyzed the correlation results using a meta-analysis (section 2.6).

We did a correlation study rather than try to establish causation

because that would require expensive controlled experiments with

human subjects. Since correlation cannot exist without causation, it

is practical to re-use existing studies and establish correlation �rst

before attempting a causation study, which we leave as future work.

2.1 Code and Understandability Datasets

We used existing datasets (DSs) from six prior understandability

studies [13, 15, 69, 71, 78, 82], which are summarized in table 1. Each

study used a di�erent set of code snippets and proxy metrics to

measure understandability using di�erent groups of human subjects

who performed speci�c understandability tasks—see table 1.

To select these datasets, we leveraged the systematic literature

review conducted by Muñoz et al. [62], who found ten studies that

measured code understandability with publicly available data. From

these ten studies, we selected the �ve studies whose snippets were

written in Java, since the veri�ers we consider only work on Java

code—see section 2.3. To identify the datasets and facilitate repli-

cation, we use the same nomenclature as Muñoz et al.’s: DS1, DS2,

DS3, DS6, and DS9. Since those �ve studies were conducted before

2020, we performed a literature search of additional comprehensi-

bility studies from 2020 to early 2023 and found the one by Peitek

et al. [69] (Dataset F or DSF), who also used Java snippets.

In total, we used ≈18k understandability measurements (see the

“Meas.” column in table 1) for 211 Java code snippets, collected from

364 human subjects using 20 metrics. The 211 snippet programs

are 5 to 75 non-comment/blank LOC or NCLOC—17 NCLOC on

avg.—with di�erent complexity levels, as reported by the method-

ology of their respective studies [13, 15, 69, 71, 78, 82]. Datasets

3, 6, and 9 derive from open source software projects (OSS)—e.g.,

Hibernate, JFreeChart, Antlr, Spring, & Weka [13, 15, 78]—and the

other datasets are implementations of algorithms from 1st-year

programming courses (e.g., reversing an array) [69, 71, 82]. The

original studies selected short code snippets to control for potential

cofounding factors that may a�ect understandability [69, 71, 82].

We selected the understandability metrics used in the meta-study

conducted by Muñoz et al. [62]—see table 1 for the metrics, their

type, and a brief description of them (our replication package has

full descriptions [27]). We also used Muñoz et al.’s categorization

of the metrics. Correctness metrics (marked with a C in table 1)

measure the correctness of the program output given by the par-

ticipants. Time (T) metrics measure the time that participants took

to read, understand, or complete a snippet. Rating (R) metrics in-

dicate the subjective rating given by the participants about their

understanding of the code snippet or code readability, using Likert
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scales. Physiological (P) metrics measure the concentration level of

the participants during program understanding, via deactivation

measurements of brain areas (e.g., Brodmann Area 31 or BA31 [82]).

Study participants were mostly CS undergraduate/graduate stu-

dents with intermediate-to-high programming experience, as re-

ported in the original papers [13, 15, 69, 71, 78, 82]. Only DS6’s

study included professional developers [78]—see table 1.

We used all the available data from the six original studies. Their

measurements come in aggregate or individual form: e.g., the phys-

iological measurements in DS2 [71] and DSF [69] are provided

per snippet averaged across participants, while the DS3 measure-

ments come for each participant and snippet [15]. Some studies also

included an uneven numbers of participants per snippet, due to dif-

ferent methodological decisions. For example, DS9’s study included

a random assignment of participants to one of six sequences of �ve

snippets [13]. In DS6’s study [78], six snippets were understood by

eight participants and the remaining 44 snippets were understood

by nine. For these reasons, each dataset’s number of measurements

(see the “Meas.” column in table 1) is not always divisible by the

number of snippets and participants.

2.2 Proxy for Code Veri�ability

We de�ne code veri�ability as the e�ort that a developer incurs

when using a veri�cation tool to prove safety properties about a

snippet of code. Since measuring this e�ort is infeasible without

running a study with veri�cation tool users, we use false positive

counts as an automatable proxy for veri�ability.

We de�ne a “false positive” as a veri�er warning that indicates

the veri�er is unable to prove that a code snippet is correct due

to a weakness in the veri�er (i.e., undecidablilty [74]) or due to a

missing code speci�cation, which a human should provide. In e�ect,

a false positive warning represents a “fact” about the code that the

veri�er needs, but cannot prove with the snippet’s code only.

Our de�nition of “false positive” di�ers from the typical one

when evaluating the precision and recall of a veri�er. In that context,

it is assumed that correct speci�cations are explicit and available,

and “false positive” means a fact that the veri�er cannot prove, even

with a speci�cation. Conversely, in our context, we want a proxy

for the di�culty of verifying a snippet. That di�culty includes

both writing speci�cations and suppressing false positive warnings,

so it is sensible to include both in our proxy for veri�ability. In

other words, the fewer warnings a veri�er issues, the less work a

developer using the veri�er must do to verify a code snippet.

We considered two other proxies for veri�ability: number of false

positives after writing speci�cations and number of “facts” veri�ed

about the code. We discarded the former proxy because the full con-

text of how the snippets are intended to be used is not available and

because writing speci�cations is error- and bias-prone. The latter

was discarded because none of the veri�ers provide the proxy di-

rectly, and because approximating whether or not a veri�er needs to

even check a fact is undecidable for some properties considered by a

veri�er (e.g., determining what is considered a resource in the code

by a resource leak veri�er [48]), so a precise count is impossible.

2.3 Veri�cation Tools

We used the following criteria to select veri�cation tools:

(1) Each tool must be based on a sound core—i.e., the underlying

technique must generate a proof.

(2) Each tool must be actively maintained.

(3) Each tool must fail to verify at least one snippet.

(4) Each tool must run mostly automatically.

(5) Each tool must target Java.

Criterion 1 requires that each tool be veri�cation-based. Our

hypothesis implies that the process of veri�cation can expose code

complexity: that is, our purpose in running veri�ers is not to ex-

pose bugs in the code but to observe when the tools produce false

positive warnings (due to code complexity). Therefore, each tool

must perform veri�cation under the hood (i.e., must attempt to

construct a proof) for our results to be meaningful. This criterion

excludes non-veri�cation static analysis tools such as FindBugs [7]

which use unsound heuristics. Exploring whether those tools cor-

relate with comprehensibility is future work. However, criterion 1

does not require the tool to be sound: merely that it be based on a

sound core. We permit soundiness [55] (and intentionally-unsound

tools) because practical veri�cation tools commonly only make

guarantees about the absence of defects under certain conditions.

Criteria 2 through 5 are practical concerns. Criterion 2 requires

the veri�er to be state-of-the-art so that our results are useful to

the community. Criterion 3 requires each veri�er to issue at least

one warning—for tools that verify a property that is irrelevant to

the snippets (and so do not issue any warnings), we cannot do a

correlation analysis. Criterion 4 excludes proof assistants and other

tools that require extensive manual e�ort. Criterion 5 restricts the

scope of the study: we focused on Java code and veri�ers. We made

this choice because (1) veri�ers are usually language-dependent, (2)

many prior code comprehensibility studies on human subjects used

Java—e.g., 5/10 studies in Muñoz et al. [62] and no other language

has more than 2/10 studies—and (3) Java has received signi�cant

attention from the program veri�cation community due to its preva-

lence in practice. We discuss the threats to validity that this and

other choices cause in section 4.

2.3.1 Selected Verification Tools. By applying the criteria de�ned

above, we selected four veri�cation tools:

Infer [16] is an unsound, industrial static analysis tool based on

a sound core of separation logic [65] and bi-abduction [17]. Sepa-

ration logic enables reasoning about mutations to program state

independently, making it scalable; bi-abduction is an inference pro-

cedure that automates separation logic reasoning. Infer is unsound

by design: despite internally using a sound, separation-logic-based

analysis, it uses heuristics to prune all but the most likely bugs

from its output, because it is tailored for deployment in industrial

settings. Infer warns about possible null dereferences, data races,

and resource leaks. We used Infer version 1.1.0.

The Checker Framework [68] is a collection of pluggable type-

checkers [30], which enhance a host language’s type system to track

an additional code property, such as whether each object might be

null. The Checker Framework includes many pluggable typecheck-

ers. We used the nine that satisfy criterion 4, which prevent pro-

gramming mistakes related to: nullness [24, 68], interning [24, 68],

object construction [47], resource leaks [48], array bounds [46], sig-

nature strings [24], format strings [101], regular expressions [86],

and optionals [92]. We used Checker Framework version 3.21.3.
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Table 2: Number of snippets each tool warns on and the total number of warnings per dataset.

Snippets Warned On Total Warnings

Tool \ Dataset 1 2 3 6 9 F All 1 2 3 6 9 F All

Infer 0/23 0/12 1/100 5/50 0/10 1/16 7/211 0 0 1 7 0 1 9

Checker Fr. 3/23 0/12 18/100 28/50 4/10 3/16 56/211 7 0 51 83 4 3 148

JaTyC 3/23 1/12 88/100 40/50 10/10 2/16 144/211 14 3 327 537 37 6 924

OpenJML 14/23 6/12 69/100 41/50 10/10 13/16 153/211 29 11 808 219 24 29 1,120

All Tools 17/23 7/12 93/100 48/50 10/10 15/16 190/211 50 14 1,187 846 65 39 2,201

The Java Typestate Checker (JaTyC) [60] is a typestate anal-

ysis [88]. A typestate analysis extends a type system to also track

states—for example, a typestate systemmight track that a File is �rst

closed, then open, then eventually closed. Currently-maintained

typestate-based Java static analysis tools include JaTyC [60] (a type-

state veri�er) and RAPID [25] (an unsound static analysis tool based

on a sound core that permits false negatives when veri�cation is ex-

pensive). We chose to use JaTyC rather than RAPID for two reasons.

First, JaTyC ships with speci�cations for general programming mis-

takes, but RAPID focuses on mistakes arising from mis-uses of

cloud APIs; the snippets in our study do not interact with cloud

APIs. Second, JaTyC is open-source, but RAPID is closed-source.

JaTyC warns about possible null dereferences, incomplete protocols

on objects that have a de�ned lifecycle (such as sockets or �les),

and about violations of its ownership discipline, which is similar in

spirit to Rust’s [50]. We used JaTyC commit b438683.

OpenJML [93] converts veri�cation conditions to SMT formulae

and dispatches those formulae to an external satis�ability solver.

OpenJML veri�es speci�cations expressed in the Java Modeling

Language (JML) [54]; it is the latest in a series of tools verifying JML

speci�cations by reduction to SMT going back to ESC/Java [29].

OpenJML veri�es the absence of a collection of a common program-

ming errors, including out-of-bounds array accesses, null pointer

dereferences, integer over- and under�ows, and others. We used

OpenJML 0.17.0-alpha-15 with the default solver z3 [23] v. 4.3.1.

2.3.2 Verification Tools Considered but Not Used. We considered

and discarded three other veri�ers: JayHorn [44], which fails cri-

terion 2 [79]; CogniCrypt [51], which fails criterion 3; and Java

PathFinder [38], which fails criterion 4.

2.4 Snippet Preparation and Tool Execution

We acquired the snippets from prior work [62, 69] but had to make

some modi�cations to prepare them for tool execution. DS3 in-

cluded 4 commented-out snippets, which we uncommented. To

make the snippets compilable, we created “stubs” for the classes,

method calls, etc. they use without modifying the snippets them-

selves. Since the the snippets themselves did not change, their un-

derlying, measured code comprehensibility did not change either:

in the original studies, the snippets were provided to the humans

in isolation. At the same time, our modi�cations would change the

programs’ state if the snippets were to be executed. We performed

a manual analysis of tool warnings to ensure our modi�cations did

not cause spurious warnings (see section 2.5). We created scripts

to execute the veri�ers on the snippets and display all veri�cation

failures for each tool. Table 2 shows descriptive statistics of the

warnings issued by each tool on each dataset.

2.5 Code Correctness and Warning Validation

We assumed that every warning issued by a veri�er about a snippet

is a “false positive”, according to the de�nition we presented in

section 2.2. In e�ect, this means that we are treating the snippets as

if they are correct. For example, if a snippet dereferences a pointer

without a null check, we assume that pointer is non-null; if a snippet

accesses an array without checking a bound, we assume that the

bound was checked elsewhere in the program, etc. Each veri�er

warning therefore represents some fact that the veri�er needs,

but cannot prove with the snippet’s code only. We consider these

reasonable assumptions because: (1) no context about the snippets

is available (or was presented to the human subjects in the prior

studies), and (2) the snippets are likely to be correct as researchers

showed them to humans in prior comprehensibility studies.

However, to check that these assumptions do not skew our cor-

relation analysis, we manually validated whether a representative

sample of tool warnings were indeed false positives (according to

our de�nition from section 2.2). After executing the veri�ers, one

author examined a representative subset of the warnings (a sample

of 344 of 2,201, at 95% con�dence level and 5% of error margin)

and recorded the cause of each. A second author examined the �rst

author’s assessment and both authors discussed the cases where

the assessment was incorrect or needed more details, reaching con-

sensus in case of disagreements (of which there were < 5). Of these

344 warnings, none were “real bugs” in the sense that they are guar-

anteed to make the code fail when executed. Many do represent

potential bugs: that is, code that does not check boundary condi-

tions such as nullability; however, these warnings could be removed

by writing a speci�cation for the relevant veri�er indicating the

assumptions made by the snippet. This means these warnings are

all false positives, according to our de�nition from section 2.2.

In the sample, the most common reasons for a veri�er to warn

were: (1) violation’s of JaTyC’s Rust-like rules for mutability, and

2) violations of the veri�ers’ assumptions about nullability. Other

common causes were possible integer over- and under�ows, too

large or too small array indexes, and unsafe casts. Our analysis of

warnings for each snippet indicates a fairly uniform distribution of

warning types over the datasets. Our replication package provides

our detailed analysis of warnings [27].

2.6 Correlation and Analysis Methods

2.6.1 Aggregation. We aggregated the comprehensibility measure-

ments and the number of tool warnings for each code snippet in the

datasets. The resulting pairs of comprehensibility and veri�ability

values per snippet were correlated for sets of snippets.
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Speci�cally, we averaged the individual code comprehensibil-

ity measurements per snippet for each metric. For example, for

each snippet in DS1 we averaged the 41 time_to_give_output mea-

surements collected from the 41 participants in the correspond-

ing study [82]. Following Muñoz et al. [62], we averaged discrete

measurements, which mostly come from Likert scale responses

in the original studies. For example, the metric output_di�culty

(from DS1) is the perceived di�culty in determining program out-

put using a 0-4 discrete scale. While there is no clear indication of

whether Likert scales represent ordinal or continuous intervals [61],

we observed that the Likert items in the original datasets repre-

sent discrete values on continuous scales [62], so it is reasonable

to average these values to obtain one measurement per snippet.

All physiological measurements given by the original studies are

averaged across all participants who understood a given snippet.

Regarding code veri�ability, we summed up the number of warn-

ings from the veri�cation tools for each snippet. We considered

averaging rather than summing up. However, since the correlation

coe�cient that we used (see below) is robust to data scaling (i.e., the

average is essentially a scaled sum), imbalances in the number of

warnings from each tool do not change the correlation results. Fur-

ther, for RQ3, we performed an ablation experiment to investigate

possible e�ects of warning imbalances on correlation.

2.6.2 Statistical Methods. We used Kendall’s ��� [49] to correlate the

individual comprehensibility metrics and the tool warnings because

(1) it does not assume the data to be normally distributed and have

a linear relationship [20], (2) it is robust to outliers [20], and (3) it

has been used in prior comprehensibility studies [62, 69, 78]. As

in previous studies [69, 78], we follow Cohen’s guidelines [20] and

interpret the correlation strength as none when 0 ≤ |� | < 0.1, small

when 0.1 ≤ |� | < 0.3, medium when 0.3 ≤ |� | < 0.5, and large

when 0.5 ≤ |� |.

To answer RQ1, we �rst stated the expected correlation (as ei-

ther positive or negative) between each comprehensibility metric

and code veri�ability that would support our hypothesis. For some

metrics, such as correct_output_rating in DS1, a negative correlation

indicates support for the hypothesis—if humans can deduce the

correct output more often, the hypothesis predicts a lower number

of warnings from the veri�ers. A positive expected correlation, such

as for time_to_understand in DS6, indicates that higher values in

that metric support the hypothesis—e.g., if humans take longer to

understand a snippet, our hypothesis predicts that more warnings

will be issued on that snippet. We computed the correlation (and

its strength) between the comprehensibility metrics and code veri-

�ability and compared the observed correlations with the expected

ones to check if the results validate or refute our hypothesis.

To answer RQ2, we performed a statistical meta-analysis [11]

of the RQ1 correlation results. A meta-analysis is appropriate for

answering RQ2 because it combines individual correlation results

that come from di�erent metrics as a single aggregated correla-

tion result [11, 62]. In disciplines like medicine, a meta-analysis is

used to combine the results of independent scienti�c studies on

closely-related research questions (e.g., establishing the e�ect of

a treatment for a disease), where each study reports quantitative

results (e.g., a measured e�ect size of the treatment) with some

degree of error [11]. The meta-analysis statistically derives an es-

timate of the unknown common truth (e.g., the true e�ect size of

the treatment), accounting for the errors of the individual stud-

ies. Typically, a meta-analysis follows the random-e�ects model

to account for variations in study designs (e.g., di�erent human

populations) [11]. Intuitively, a random-e�ects-based meta-analysis

estimates the true e�ect size as the weighted average of the e�ect

sizes of the individual studies [11], where the weights are estimated

via statistical methods (e.g., Sidik and Jonkman’s [80]).

Since the comprehensibility measurements come from di�erent

studies with di�erent designs (i.e., with di�erent goals, comprehen-

sibility interpretations and metrics, code snippets, human subjects,

etc.), a random-e�ects meta-analysis is appropriate to estimate an

aggregated correlation. In our case, however, we �rst combine the

results of the individual correlation analyses (i.e., for each metric)

for each dataset into a single aggregated correlation per dataset, to

avoid the “unit-of-analysis” problem (see [37], §3.5.2). This problem

arises in meta-analysis when there are inputs that are not inde-

pendent (i.e., are themselves correlated), typically because they

represent multiple measurements obtained on the same population.

Because most of our datasets include multiple metrics that were

derived from the same subjects and snippets, and therefore, are

related (e.g., readability_level_ba and readability_level_before from

DS9 depend on one another), a naïve application of meta-analysis

that treated each metric as independent would over-weight studies

with multiple metrics, because it would “double-count” their sta-

tistical power (i.e., multiply the statistical power of the study by

the number of metrics it contains). We con�rmed that most of the

combinations of metrics within a single study showed medium or

large correlations (19/28 combinations are medium or large corre-

lations; of those, 13 are large), so the “unit-of-analysis” problem

could seriously skew our results.

Dealing with the unit-of-analysis problem in meta-analyses of

small numbers of studies (as in our case) with multiple correlated

metrics is an open problem in statistical methods research. We con-

sidered the recently-proposed correlated and hierarchical e�ects

(CHE) model [73], but discovered that (for our data) it was highly

sensitive to the choice of the rho parameter (which represents an

assumption about howmuch variance there is between the di�erent

metrics in each study). Since we wanted to be conservative in our

choice of statistical method, we chose the “brute force” aggregation

approach suggested by [37], which trades statistical precision for

simplicity and conservatism: it combines the correlation results of

the various metrics in each study into a single estimate of correla-

tion, which guarantees that no statistical power is derived from the

presence of multiple metrics on the same population (even if such

power might be warranted). Though it also has a rho parameter,

the results for our data are insensitive to the choice of rho, with

extremely high and low values of rho giving nearly-identical results.

All meta-analyses in section 3 use rho = 0.6.

To perform the random-e�ects meta-analysis, we followed a

standard procedure for data preparation and analysis [11]. First,

we transformed Kendall’s � values into Pearson’s ��� values [100].

Then, we transformed the � values to be approximately normally dis-

tributed, using Fisher’s scaling. Next, we normalized the signs of the

individual metric correlations (i.e., the � values) so that a negative
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correlation supports our hypothesis (the choice of negative is arbi-

trary; choosing positive leads to the same results with the opposite

sign): we multiplied by -1 the correlation value for metrics where

a positive correlation would support the hypothesis. This strategy

has been used in other disciplines when combining di�erent metrics

whose signs have opposite interpretations, e.g., in [97]. We used R’s

dmetar package (version 0.0.9000) to aggregate the correlations of

the metrics from each study [37], and the R’s metafor package [99]

(version 3.8-1) to run the meta-analysis and generate forest plots

to visualize the Pearson’s � values, their estimated con�dence in-

tervals, the estimated weights for the aggregated correlation, and

additional meta-analysis results (e.g., p-values and heterogeneity).

To answer RQ3, we applied the same methodology as RQ2 for

each individual tool’s warnings (i.e., no aggregation was used).

We also performed a “leave one tool out” ablation experiment to

check if any single tool was dominating the overall meta-analysis

results. To answer RQ4, we repeated the same methodology for

only the metrics in each metric category: time, correctness, rating,

and physiological—i.e., we performed four meta-analyses, one for

each metric group.

While we provide the �-values of all of these statistical analyses,

we emphasize that they should be interpretedwith caution given the

relatively small sample sizes (and, for RQ1, that fact that 20 metrics

are considered). For example, DS2 only contains 12 snippets, which

means only 12 data points were used for correlation for its metrics.

We also used a meta-analysis (RQ2-RQ4) because interpreting the

individual metric results (RQ1) to draw general conclusions for our

hypothesis can be misleading [12]. Our meta-analysis also obviates

the need for statistical correction to avoid multiple comparisons,

such as Holm-Bonferroni’s [40]: the meta-analysis aggregates all

of the results and informs us of the overall trend. We use the same

interpretation guidelines for Pearson’s � values that we used for

Kendall’s � : small when 0.1 ≤ |� | < 0.3, etc. [20, 69, 78].

3 STUDY RESULTS AND DISCUSSION

We present and discuss the results of our study in this section.

Scripts and data that generate these results are available in our

replication package [27].

3.1 RQ1: Individual Correlation Results

Table 3 summarizes the results of each metric’s correlation (based

on Kendall’s �) with the total number of warnings from all tools.

We provide descriptive statistics about these results, but we empha-

size that these results should be interpreted with caution: “vote-

counting” (e.g., checking the number of statistically-signi�cant

metrics in each direction) can lead to misleading conclusions [12].

We avoid directly drawing conclusions from these results and in-

stead, we investigate the aggregated trend of all metrics with a

meta-analysis in section 3.2.

Table 3 shows that for 13 of the 20 (65%) metrics, the direction of

the correlation supports our hypothesis. For 4 metrics, there is no

correlation, and for the remaining 3 metrics, the correlation is in

the opposite direction than expected. Table 3 indicates the strength

of the correlation in the rightmost column. Of the metrics where we

found a medium or higher correlation, 8/8 are in the direction that

supports our hypothesis. For the other 5 metrics that support our

Table 3: Correlation results based on Kendall’s ��� (K.’s ���) for

each dataset (DS) and Metric. A metric falls into one Type:

Correctness, Time, Rating, & Physiological. The expected cor-

relation direction (Exp. Cor.), if our hypothesis is correct, is

either Positive or Negative. We assess ��� ’s direction/strength,

compared to the expected correlation (Exp?): ‘-’ means no

correlation, ‘Y/y’ means expected and measured correlations

match (thus supporting our hypothesis), and ‘N/n’ means

they do not match. Capital letters in darker colors ( Y / N )

mean a medium or higher correlation. Lowercase letters and

lighter colors ( y / n ) mean a small correlation. ��� ’s signi�-

cance is tested at the � < 0.05� < 0.05� < 0.05 (*) & � < 0.01� < 0.01� < 0.01 levels (**).

DS Metric Type Exp. Cor. K.’s ��� Exp?

1

correct_output_rating C Negative -0.34* Y

output_di�culty R Negative -0.43** Y

time_to_give_output T Positive 0.41** Y

2

brain_deact_31ant P Negative -0.31 Y

brain_deact_31post P Negative -0.45 Y

brain_deact_32 P Negative -0.38 Y

time_to_understand T Positive 0.14 y

3 readability_level R Negative -0.17* y

6

binary_understand R Negative 0.01 -

correct_verif_questions C Negative 0.02 -

time_to_understand T Positive 0.05 -

9

gap_accuracy C Negative -0.34 Y

readability_level_ba R Negative 0.08 -

readability_level_before R Negative 0.13 n

time_to_read_complete T Positive -0.23 n

F

brain_deact_31 P Negative -0.18 y

brain_deact_32 P Negative -0.18 y

complexity_level R Positive 0.35 Y

perc_correct_out C Negative -0.16 y

time_to_understand T Positive -0.13 n

hypothesis and the 3 metrics that do not, their correlation is small.

While we cannot directly draw conclusions from these results about

the overall trend, they are suggestive. We examine the aggregate

trend rigorously with a meta-analysis in section 3.2.

With regard to metric categories, 3/4 correctness (C) metrics, 3/6

rating (R) metrics, 2/5 time (T) metrics, and 5/5 physiological (P)

metrics correlate with veri�ability. All 3 metrics that anti-correlate

with veri�ability are concentrated in the rating and time categories.

These two metric categories are the most subjective: ratings are

opinions, and some time metrics require the human subjects to

signal the experimenter when they complete the task. These results

suggest that there may be a relationship between metric categories

and the correlation with veri�ability; we further investigate the

di�erences between metric categories in section 3.4.

3.2 RQ2: Aggregate Correlation Results

Because direct interpretation of table 3 is di�cult due to the di�erent

sample sizes of the various studies, we performed a meta-analysis

to understand the overall trend (see �g. 1). As noted in section 2.6.2,
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Figure 1: Results of the random-e�ects meta-analysis of the

metrics in table 3, after aggregating the results by dataset to

avoid the unit-of-analysis problem (section 2.6.2).

the results are presented by dataset rather than by metric to avoid

unit-of-analysis errors [37].

The forest plot in �g. 1 displays the observed correlation (Per-

son’s ��� value, obtained from the Kendall’s � value as described

in section 2.6.2) and the 95% con�dence interval (Estimate [95%

CI]), as well as the estimated weight for each dataset (Weight).

This information is shown numerically and graphically in �g. 1.

Each box’s size is the dataset’s estimated weight (a larger box size

means a larger weight), and the box’s middle point represents the

correlation with respect to the dashed vertical line at zero. There

is a negative correlation if the box is to the left of the vertical line;

positive if it is to the right; all metrics have been normalized so that

the expected correlation is negative (that is, a negative correlation

supports our hypothesis). The horizontal lines visualize the con-

�dence intervals for each dataset. At the bottom, the plot shows

the aggregated correlation (on the right) and related information

calculated by the meta-analysis. The diamond at the bottom of the

plot visualizes the aggregated correlation; the width of the diamond

represents the con�dence interval.

Figure 1 shows a small aggregated correlation supporting an

a�rmative answer to RQ2 (� = −0.23, with a 95% CI that con-

tains negligible, small, medium correlations: � = −0.46 to � = 0.03,

� = 0.07). We interpret these results overall as support for the

hypothesis that tool-based veri�ability and humans’ ability to un-

derstand code are correlated to some extent.

The heterogeneity of the considered studies is non-negligible

(�2 = (� − � � )/� = (6.74 − 5)/6.74 = 25.8% – not shown in �g. 1),

indicating that 25.8% of the correlation variation (i.e., variance) we

observe is due to the studies measuring di�erent factors rather than

due to chance. This result validates our choice of a random-e�ects

model for the meta-analysis.

The plots in �g. 1 show wide con�dence intervals for all the

datasets except DS 3 and DS6, which indicates relatively high vari-

ability in the correlations. This indicates that most of these studies

were under-powered for our purpose: the number of snippets con-

sidered was not high enough to give the meta-analysis much con�-

dence in the correlation results. The meta-analysis correspondingly

gives the largest weights to the two datasets with the most snippets:

about 35% weight to DS3 (with 100 snippets) and about 25% weight

to DS6 (with 50 snippets). Future work should explore running

understandability experiments with larger numbers of snippets,

which would enable us to gain further con�dence in our results.

3.3 RQ3: Correlation Results By Tool

To answer RQ3, we repeated the analyses used to answer RQ1 and

RQ2 independently for each tool (i.e., no warning aggregation). We

also repeated the analysis in a “leave-one-out” ablation experiment.

We report only the summary results for each tool (i.e., the results

of the meta-analyses) for space reasons; forest plots similar to �g. 1

as well as the individual correlation results on each tool+metric

combination are available in our replication package [27].

Repeating the meta-analysis on only the warnings produced by

each tool individually gave similar results to the meta-analysis in

�g. 1, except for Infer. The Checker Framework results supports our

hypothesis more strongly than the overall meta-analysis (� = −0.26,

95% CI of [−0.44,−0.06], � = 0.02). The results of OpenJML and

JaTyC support the hypothesis more weakly than the overall results

(� = −0.12, with a 95% CI of [−0.29, 0.07], � = 0.16 for OpenJML

and � = −0.17 with a 95% CI of [−0.39, 0.08], � = 0.14 for JaTyC).

Infer has too few warnings to draw meaningful conclusions from

its results (� = −0.09 with a 95% CI of [−0.94, 0.91], � = 0.60).

From these results, we conclude that, while some tools support

the hypothesis less strongly than the overall meta-analysis, all the

tools but Infer show the same trend. These results support the over-

all meta-analysis results (RQ2): the correlation measured for 3 of

the 4 studied tools suggests that the correlation between veri�a-

bility and understandability indeed exists (in small magnitude); no

tool shows a markedly di�erent trend except Infer, whose trend is

not meaningful due to its small warning count.

We were also concerned that a single tool might be dominating

the overall results. To mitigate this threat, we performed an ablation

study by repeating the meta-analysis on warning data aggregated

from each combination of three tools (i.e., excluding the warnings

of one tool only). Overall, the results are extremely similar for each

combination of tools to the overall results—the results without

Infer are in fact nearly identical—with � values ranging from −0.23

to −0.20; CI lowerbounds ranging from −0.46 to −0.37, and CI

upperbounds ranging from −0.01 to 0.06; and � values from 0.04

to 0.10. We conclude from this ablation experiment that no single

tool dominates the RQ2 results.

Taken together, the results in this section show that the correla-

tion found for RQ2 is not entirely driven by any tool: the overall

results remain similar (if slightly weaker) for every tool individually

except Infer and for each combination of three tools (i.e., without

each tool). We interpret these results to mean that the correlation

exists regardless of the speci�c veri�er in use—meaning that our

results apply to veri�cation in general.
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3.4 RQ4: Correlation Results by Metric Type

In section 3.1, we observed that the correctness and physiological

metric categories appeared to support our hypothesis more strongly

than the rating and time categories. To test this observation, we

repeated our meta-analyses for each of the four metric categories.

The results refute the idea that these categories are a major

in�uence on the results. The correctness, rating, and time metrics

show overall results similar to �g. 1, but with wider con�dence

intervals: � = −0.28 with 95% CI of [−0.70, 0.27], � = 0.20 for

correctness; � = −0.25 with 95% CI of [−0.54, 0.09], � = 0.11 for

rating; and � = −0.22with 95% CI of [−0.58, 0.21], � = 0.23 for time.

The results for the physiological metrics show that they have a

minimal impact: � = −0.32 but with a huge 95% CI of [−1.00, 0.98].

These results, especially for the physiological metrics, are likely

due to the smaller sample sizes created by considering only one

metric type; e.g., there are physiological metrics in only two datasets

(DS2 and DSF) with 28 total snippets between them. The dataset

with the most weight in the overall results (DS3) only has rating

metrics, which reduces the meta-analysis’ con�dence in the other

types. Finally, the heterogeneity for the three metric categories with

useful results (i.e., not physiological) is higher than in the overall

results (with �2 of 57%, 49%, and 50% for correctness, rating, and

time metrics, respectively).

3.5 Robustness Experiments

We ran additional experiments to probe the robustness of the �nd-

ings for the RQs and mitigate some threats to validity.

3.5.1 Handling Code Comments in Dataset 9. DS9’s original study

had 3 versions of each of its 10 snippets, with three types of code

comments: “good”, “bad”, and no comments [13]. The results pre-

sented elsewhere in this section used the “No comments” (NC)

version of DS9, because none of the four veri�ers use comments as

part of their logic. However, this choice might be source of possible

bias, so we analyzed how the correlation results would change if

we had used the “Good comments” (GC) or “Bad comments” (BC)

versions of the dataset. Note that because none of the veri�ers take

comments into account, their warnings are exactly the same—the

only di�erences are in the comprehensibility measurements.

Table 4 shows how the correlation results di�er for the three

versions of DS9. A signi�cant di�erence is observed in the two

readability metrics: when the comments are bad, these metrics are

anti-correlated with veri�ability: that is, humans rated the snippets

on which the tools issued more warnings asmore readable. We see a

similar phenomenon for the time metrics, but it occurs only for the

good (rather than bad) comments. To explain this phenomenon, we

compared the distribution of the metrics across comment categories

and analyzed the scatter plots of the data used for correlation. Our

analysis revealed that such disparity in correlation stems from

a combination of (1) outliers found in the human measurements

(likely due to data collection imprecisions in the original study [13])

and (2) the low number of data points in DS9. For example, we

found that bad comment code was rated more readable by a few

participants than code with no comments, even though the snippets

were semantically the same. These unusual measurements led to

outliers that had a considerable impact on the correlation results

across comment categories (because of the small number of data

Table 4: Correlation results (Kendall’s���) on di�erent versions

of DS9: "No" (NC), "Bad" (BC), and "Good Comments" (GC). A

** indicates statistical signi�cance at the � < 0.01� < 0.01� < 0.01 level.

Metric Exp. Cor. NC BC GC

gap_accuracy Negative -0.34 -0.18 -0.34

readability_level_ba Negative 0.08 0.44 -0.18

readability_level_before Negative 0.13 0.42 -0.05

time_to_read_complete Positive -0.23 -0.39 -0.75**

Table 5: Correlation results (Kendall’s ���) for OpenJML, for

each timeout-handling approach: (1) ignore timeouts; (2)

under-estimate the warnings hidden by timeouts; (3) over-

estimate the warnings hidden by timeouts. ��� ’s signi�cance is

tested at the � < 0.05� < 0.05� < 0.05 (*) and � < 0.01� < 0.01� < 0.01 levels (**).

Approach

DS Metric 1: Ignore 2: Under 3: Over

3 readability_level -0.20** -0.23** -0.17*

6

binary_understand -0.07 -0.07 0.00

correct_verif -0.06 -0.06 0.00

time_to_understand 0.11 0.11 0.05

points). The e�ect of this phenomenon on the overall results is low,

because DS9 is given very low weight (6.34%, lowest among all

datasets) by the meta-analysis due to its small sample size.

3.5.2 Handling OpenJML Timeouts. OpenJML uses an SMT solver

under the hood. Though modern SMT solvers return results quickly

for most queries using sophisticated heuristics, some queries do

lead to exponential run time, making it necessary to set a time-

out when analyzing a collection of snippets. We used a 60 minute

timeout, which led to 2/50 snippets in DS6 and 39/100 snippets

in DS3 timing out (and zero in the other datasets). We considered

three approaches in our correlation analysis to handle timeouts: (1)

ignore snippets containing timeouts entirely, (2) count each timeout

as zero warnings (but do count any other warnings issued in the

snippet before timing out), or (3) count each snippet that timed out

as the maximum warning count in the dataset. All the results for

RQ1-RQ4 were produced by following approach 3. The reason we

chose approach 3 over approach 2 is that timeouts typically occur

on the most complicated SMT queries, which might hide many

warnings. Therefore, approach 2 underestimates the warning count

that a no-timeout run of OpenJMLwould encounter, while approach

3 overestimates the warning count in a no-timeout run. We re-ran

the correlation analysis under all three conditions. The results are

in table 5 and do not show any signi�cant di�erences between the

strategies for timeouts—the overall direction and strength of the

correlations are similar, and the absolute size of the di�erences is

small, meaning that the impact on the meta-analysis is negligible.

3.6 Results Discussion and Implications

3.6.1 Program Semantics and Understandability. Veri�cation warn-

ing counts (indirectly) encode program semantics rather than syn-

tactic properties of the code. Veri�cation tools are trying to prove

semantic properties: checking syntactic properties is decidable, so

it is not the target of veri�ers (which �nd approximate solutions
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to undecidable, semantic problems, e.g., using SMT solvers). Our

results suggest that there might be complexity caused by seman-

tics, and veri�ers are well suited to reasoning about that kind of

complexity. Previous work using decidable syntactic metrics for

complexity [3, 21, 41, 64, 78, 85, 89, 106] certainly could not capture

semantics (since any non-trival semantic property of a program is

undecidable [74])—see section 5.

On one side, the measured correlation between veri�ability and

understandability increases our con�dence that there is a semantic

component to human code understanding. On the other side, the

small correlation we measured indicates that there are other factors

to code understanding beyond just program semantics. Neither of

these conclusions are particularly surprising, but program under-

standability research has so far mostly focused on the non-semantic

components (such as variable names or syntactic metrics—see sec-

tion 5). Our work motivates the need for future studies that investi-

gate the semantic component of code understanding; in particular,

the speci�c semantic factors make code simple or complex, and

how they impact understandability. Fortunately, our work also of-

fers a path forward: the veri�cation community has already built

many tools that attempt to verify semantic properties (i.e., veri�ers),

which gives us an opportunity to leverage those existing tools to im-

prove our understanding of code complexity and understandability.

3.6.2 Incorporating Verifiability into Comprehensibility Models.

Most prior attempts to design automated metrics or models that

measure or predict code understandability have used syntactic fea-

tures that do not account for program semantics [3, 21, 41, 64, 78, 85,

89, 106]. Rather, they used syntactic features such as code branch-

ing, vocabulary size, and executions paths, among other proxies

that attempt to capture code complexity (see section 5). Many of

these features have shown to be poor predictors of code under-

standability [3, 26, 41, 45, 78]. We believe one of the reasons for this

is because they do not capture complexity arising from program

semantics. Based on the link we found between veri�ability and

comprehensibility, we hypothesize that semantic code properties

would lead to more accurate models of understandability.

Future work should validate this hypothesis by incorporating

veri�ability into models that predict human-based comprehensibil-

ity [15, 78, 94] and measuring its impact on prediction performance.

If the link between veri�ability and comprehensibility exists (as our

results suggest), veri�ability information should complement the

syntactic features of these models. Veri�ability can be captured by

adapting existing veri�cation tools or by leveraging tool warning

data. For example, we could provide the number of warnings a tool

produces on a snippet as an input feature to these models.

3.6.3 Reducing False Positives to Increase Code Comprehensibility.

Developers could use the warning count of veri�ers to know when

code might be complex, i.e., when it might need to be refactored

to reduce accidental complexity. While coding, the developer can

monitor the warning count of veri�ers on a code snippet (e.g., a

method they are writing or updating), knowing the code is cor-

rect. If this count increases, they could assess potential complex

parts of the method and come up with changes to the method that

would be semantically equivalent (e.g., replacing recursion, which

is traditionally hard for veri�ers to reason about, with a loop). This

auxiliary bene�t of using veri�cation tools has not been studied in

the literature, and might represent an opportunity to make veri�ers

more appealing to everyday developers.

This usage scenario poses a research opportunity too: what if

we could automatically determine and suggest to the developer a

semantically-equivalent refactoring that is easier to verify? Such

a refactoring would change the code to perform the same task,

but would cause a veri�er to issue fewer warnings. The measured

correlation between veri�ability and understandability wouldmean,

more often than not, that applying such a refactoring might make

the code easier to understand. Since it is unclear if such refactoring

is possible, more research should be conducted. However, if it is

possible and the developer is aware of the correlation, we anticipate

they would be more willing to (1) use veri�ers in their everyday

coding tasks, and (2) accept the refactoring suggestion. One possible

issue with this approach is that our correlation includes warnings

caused by missing speci�cations; there is large existing literature

on speci�cation inference (e.g., [22, 28, 96]) that could be leveraged

to focus only on false positives when speci�cations are explicit.

3.6.4 Code Verifiability vs. Understandability vs. Complexity. Our

study found a correlation between code understandability and ver-

i�ability, yet it did not �nd whether one of the two causes the

other (i.e., correlation does not imply causation). Further research

is needed to determine whether one causes the other, or whether

there are other factors that cause both. However, based on our re-

sults and discussion, we hypothesize that code complexity causes

both humans and veri�cation tools to struggle to understand code.

Future studies should investigate this and other possible causes.

4 LIMITATIONS AND THREATS TO VALIDITY

Our study shows a correlation between veri�ability and understand-

ability, but do not show one causes the other. So, our results must be

interpreted carefully: further work is needed to determine causality.

Regarding threats to external validity, the correlation we found

may not generalize beyond the speci�c conditions of our study.

The snippets are all Java code, so the results may not generalize to

other languages. We only used a few veri�ers, as we were limited

by parcity of practical tools that can analyze the snippets. While

limitations or bugs in individual tools could skew our results, we

mitigated this threat by re-running the experiments individually

for each tool and with an ablation experiment (section 3.3), which

demonstrated that no single tool dominates the results. The snip-

pets are small compared to full programs; the comprehensibility of

larger programs may di�er. Further, 3/6 datasets are snippets from

introductory CS courses rather than real-life programs, but this is

mitigated by the other three datasets of open-source snippets.

Another threat is that subjects in the prior studies were mostly

students. Only DS6 used professional software engineers (and only

13/63 participants—the other 50 were students), so our results may

not apply to more experienced programmers. Future work should

conduct understandability studies with professional engineers.

Beyond the datasets and tools, there are threats to internal and

construct validity. We assumed the snippets are correct as written,

and that each veri�er warning therefore represents either a false

positive or a speci�cation that a human would need to write to

verify the code. The presence of a bug would make a snippet seem

“harder to verify” in our analysis (because every veri�er would
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warn about it), even if the snippet is easy for humans to under-

stand, skewing the results. We mitigated this threat by manually

examining a representative subset of the warnings as described in

section 2.4; we did not observe any bugs in the snippets.

5 RELATED WORK

Code complexity metrics. Researchers have proposed many met-

rics for code complexity [3, 21, 41, 64, 78, 85, 106], though the

concept is not easy to de�ne due to di�erent interpretations [5, 6].

Most metrics rely on simple, syntactic properties such as code

size or branching paths [64, 69]. These metrics are used to detect

complex code so developers can simplify it during software evolu-

tion [4, 34, 69]. The motivation is that complex code is harder to

understand [3, 78], which may have important repercussions on

developer e�ort and software quality (e.g., bugs introduced due to

misunderstood code). Our correlation results imply that code that

is easier to verify might also be simple and easier to understand

by humans; we believe the underlying mechanism might be that

simple code �ts into the expected code patterns of a veri�cation

technique. Our results also suggest that a complexity metric that

aims to capture human understandability should consider not only

syntactic information about the code, but also its semantics.

Empirical validation of complexity metrics. Scalabrino et

al. [78] collected code understandability measurements from devel-

opers and students on open-source code. They correlated their mea-

surements with 121 syntactic complexity metrics (e.g., cyclomatic

complexity, LOC, etc.) and developer-related properties (e.g., code

author’s experience and background). They found small correla-

tions for only a few metrics, but a model trained on combinations of

metrics performed better. Another study found similar results [94].

Researchers have explored the limitations of classical complexity

metrics [3, 26, 41, 45, 78]. For example, Ajami et al. [3] found that

di�erent code constructs (e.g., ifs vs. for loops) have di�erent e�ects

on how developers comprehend code, implying that metrics such as

cyclomatic complexity, which weights code constructs equally, fail

to capture understandability [69]. Recent work has proposed new

metrics such as Cognitive Complexity (COG) [18, 76], which assigns

di�erent weights to di�erent code constructs. Muñoz et al. [62]

conducted a correlation meta-analysis between COG and human

understandability. They found that time and rating metrics have a

modest correlation with COG, while correctness and physiological

metrics have no correlation. They did not take into account the

unit-of-analysis problem in their meta-analyses.

We extend prior work with empirical evidence of the correlation

between veri�ability and human understandability. To the best of

our knowledge, we are the �rst to investigate this empirically.

Studying code understandability. Researchers have studied

code understandability and factors a�ecting it via controlled exper-

iments and user studies [3, 13, 35, 41, 43, 69, 71, 82]. Precisely de�n-

ing understandability is di�cult, so some studies [13, 15, 62, 66, 72]

use it interchangeably with readability (a di�erent, yet related con-

cept). Measurements include the time to read, understand, or com-

plete code; the correctness of output given by the participants;

perceived code complexity, readability or understandability; and (re-

cently) physiological measures from fMRI scanners [69, 71, 82], bio-

metrics sensors [31, 33, 105], or eye-tracking devices [1, 10, 31, 95].

Our study utilizes these human-based measurements of understand-

ability to assess their correlation with veri�ability.

Factors that a�ect understandability include: code constructs [3,

43] and patterns [13, 41, 52], identi�er quality and style [83, 102],

comments [13], information gathering tasks [10, 53, 82, 83], com-

prehension tools [87], code reading behavior [2, 70, 81], author-

ship [32], high-level comprehension strategies [81], programmer

experience [102, 104], and the use of complexity metrics [103]. Our

work investigates a new factor impacting understandability: code

veri�ability. Our results suggest there is a correlation between these

variables, yet future studies are needed to assess causality.

Studies of veri�cation and static analysis tools. A study

conducted to evaluate a code readability model [15] is closely re-

lated to ours. The model was found to correlate moderately with

snippets on which FindBugs [7] issued warnings. Unlike the tools

in our study, FindBugs is not a veri�cation tool (it uses heuristics to

�ag possibly-buggy code). We correlated veri�ability with human

understandability; the earlier study correlated FindBugs warnings

with an automated readability model trained on human judgments.

Though veri�cation and static analysis tools are becoming more

common in industry [8, 75], studies of their use and the challenges

developers face in deploying them [8, 57, 63, 84, 98] suggest that

false positives remain a problem in practice [42, 63]. Our work gives

a new perspective the problem of false positives. We have shown

that the presence of false positives from veri�ers correlates with

more di�cult-to-understand code. We hope that this perspective

encourages developers to view false positives as opportunities to

improve their code rather than as barriers to �nding defects [77].

6 CONCLUSIONS AND FUTUREWORK

Our empirical study on the correlation between tool-based veri�-

ability and human-based metrics of code understanding suggests

there is a connection between whether a tool can verify a code

snippet and how easy it is for a human to understand. Though our

results are suggestive, our meta-analysis shows that extant studies

on human code understandability lack su�cient power to enable us

to draw a stronger conclusion, so more studies of understandability

(preferably including many more snippets of code) are needed. Fur-

ther, our work has shown only a correlation: establishing a causal

link between veri�ability and understandability—perhaps through

a mutual cause, such as complexity—remains future work.

Veri�ability is a promising alternative that complements tradi-

tional code complexity metrics, and future work could combine

measures of tool-based veri�ability with modern complexity met-

rics such as cognitive complexity that seem to capture di�erent

aspects of human understandability into a uni�ed, automatic model.

Our results are also promising support for the prospect of increased

adoption of veri�ers: our results o�er a new perspective on the

classic problem of false positives, since they suggest that false pos-

itives from veri�ers are opportunities to identify potentially more

complex code and make it more understandable by humans.
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