
BOMs Away! Inside the Minds of Stakeholders:
A Comprehensive Study of Bills of Materials for Software Systems

Trevor Stalnaker
twstalnaker@wm.edu

William & Mary
Williamsburg, Virginia, USA

Nathan Wintersgill
njwintersgill@wm.edu

William & Mary
Williamsburg, Virginia, USA

Oscar Chaparro
oscarch@wm.edu
William & Mary

Williamsburg, Virginia, USA

Massimiliano Di Penta
dipenta@unisannio.it
University of Sannio
Benevento, Italy

Daniel M German
dmg@uvic.ca

University of Victoria
BC, Canada

Denys Poshyvanyk
denys@cs.wm.edu
William & Mary

Williamsburg, Virginia, USA

ABSTRACT
Software Bills of Materials (SBOMs) have emerged as tools to fa-
cilitate the management of software dependencies, vulnerabilities,
licenses, and the supply chain. While significant effort has been
devoted to increasing SBOM awareness and developing SBOM for-
mats and tools, recent studies have shown that SBOMs are still an
early technology not yet adequately adopted in practice. Expanding
on previous research, this paper reports a comprehensive study that
investigates the current challenges stakeholders encounter when
creating and using SBOMs. The study surveyed 138 practitioners
belonging to five stakeholder groups (practitioners familiar with
SBOMs, members of critical open source projects, AI/ML, cyber-
physical systems, and legal practitioners) using differentiated ques-
tionnaires, and interviewed 8 survey respondents to gather further
insights about their experience. We identified 12 major challenges
facing the creation and use of SBOMs, including those related to the
SBOM content, deficiencies in SBOM tools, SBOMmaintenance and
verification, and domain-specific challenges. We propose and dis-
cuss 4 actionable solutions to the identified challenges and present
the major avenues for future research and development.

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement.

KEYWORDS
Software Bill of Materials, Survey, Interviews, Software Supply
Chain, Open Source Software

ACM Reference Format:
Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di
Penta, Daniel M German, and Denys Poshyvanyk. 2024. BOMs Away! Inside
the Minds of Stakeholders: A Comprehensive Study of Bills of Materials
for Software Systems. In 2024 IEEE/ACM 46th International Conference on

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623347

Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3623347

1 INTRODUCTION
The software supply chain has increasingly grown in complexity
with the proliferation of open-source software [76, 125] and AI/ML
components [77, 78, 123]. Organizations and developers often ac-
complish their tasks by integrating components from a variety of
vendors [69]. However, leveraging external packages does not come
without a cost. The fate of a software product is intrinsically tied
to its evolving dependencies [57]. If a dependency displays a vul-
nerability, then so too could the final product, potentially leading
to severe consequences [107]. Moreover, failing to comply with the
license terms of software dependencies could lead to severe legal
and economic consequences for organizations [64, 115, 127, 128].

In this scenario, Software Bills of Materials (SBOMs) have
emerged as mechanisms that facilitate the management of soft-
ware dependencies [100], leading to improved management of soft-
ware vulnerabilities, enhanced license compliance, and increased
transparency in the software supply chain [99].

While SBOMs were introduced in the early 2010s [6], the 2021
US Presidential Executive Order 14028 on Improving the Nation’s
Cybersecurity [10] gave new momentum to SBOM formalization
and adoption [9] as it required companies selling software to the US
government to provide SBOMs. This was prompted by recent sup-
ply chain attacks, such as the SolarWinds breach [110] and critical
vulnerabilities such as those affecting the Log4J library [87], which
impacted many users [67, 97]. SBOMs are currently championed
by the US National Telecommunications and Information Admin-
istration (NTIA) [98, 100] and well-known organizations such as
the Linux Foundation [7] and OWASP [4]. Significant effort has
been put into promoting SBOM formats and tools that can create
and process SBOMs [102], with the goal of increasing adoption and
fully enabling the benefits that SBOMs offer [99].

Although organizations and developers have acknowledged the
importance of SBOMs and anticipate using them more frequently
in the coming years [70, 120], recent research highlighted concerns
regarding their commitment to SBOMs and the actual benefits
SBOMs bring to their projects [70, 70, 129]. These concerns arise
due to the lack of industry agreement regarding the content of
SBOMs across different domains, as well as how they should be
employed and integrated into their development and operational

https://doi.org/10.1145/3597503.3623347
https://doi.org/10.1145/3597503.3623347

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta, Daniel M German, and Denys Poshyvanyk

processes [18, 70]. An additional barrier is the lack of mature tools
for SBOM production and consumption [70, 129, 131].

In light of these findings, it is imperative to understand (i) how
developers and other stakeholders currently create and use SBOMs,
(ii) additional opportunities/benefits that SBOMs can offer for differ-
ent types of software and stakeholders, (iii) the specific challenges
that prevent stakeholders from fully exploiting the SBOM benefits,
and (iv) actionable solutions to overcome such challenges.

This paper contributes to the body of knowledge about SBOM
adoption by reporting a comprehensive empirical investigation
of the aforementioned aspects. The study combined survey
questionnaires with semi-structured interviews. Given the diverse
types of modern software systems which SBOMs should support,
we distributed five distinct questionnaires to different groups of
stakeholders, resulting in a total of 150 responses (84 responses
indicating SBOM familiarity). Specifically, the surveys targeted
software practitioners familiar with SBOMs, contributors of critical
open-source systems (OSS) [109], AI/ML, Cyber-Physical Systems
(CPS) [46], and legal practitioners. To gain a deeper understanding
of the key SBOM experiences, opportunities, challenges, and
solutions collected in the surveys, we conducted semi-structured
interviews with eight participants from different groups.

Our study expands our understanding of the limitations and chal-
lenges of SBOM formats and tools, identifies areas that research and
practice on SBOM support should focus on, and provides a thorough
discussion of potential solutions to overcome these barriers.

In summary, the main contributions of this paper are:
• An empirical study of SBOMadoption, challenges, and solutions.
The study targeted five groups of stakeholders, according to the
different types of software that SBOMs should support, offering
greater scope and different perspectives about SBOM adoption
compared to recent prior studies [39, 129, 131];

• A deep analysis and discussion of how software stakeholders
use and create SBOMs, new opportunities/benefits that SBOM
can offer, and challenges that prevent stakeholders from fully
exploiting the SBOM benefits; and

• A thorough discussion and proposal of actionable solutions for
the identified challenges and obstacles, as well as key areas
that researchers and practitioners should focus on to improve
SBOM production and consumption.

2 BACKGROUND AND RELATEDWORK
Bills of Materials (BOMs) refer to the list of raw materials, compo-
nents, and parts needed to manufacture an end product [95, 117].
The concept has been transferred to software systems as Software
BOMs (SBOMs), which identify a project’s dependencies and their
provenance. Three major SBOM format specifications currently
exist: SPDX [20], CycloneDX [16], and SWID [74]. While the NTIA
has not officially endorsed any one specification [105], SPDX was
officially recognized as a standard by ISO in 2021 [73].

Software component inventory, vulnerability analysis, and
license compliance are primary SBOM use cases [62]. SPDX,
supported by the Linux Foundation [7], began as a solution
for managing open-source licenses and later became an SBOM
standard for documenting software components, licenses, security-
related information, and other metadata. CycloneDX, supported

by OWASP [4], provides virtually the same features as SPDX, but
focuses primarily on security and vulnerability management.

Both specifications support several file formats. SPDX: tag/value
(.spdx), JSON, YAML, RDF/XML, and spreadsheets (.xls) [34];
CycloneDX: JSON, XML, and “protocol buffers” [32]. Example
SBOMs for each format can be found at [55] and [25] respectively.

The differing design philosophies result in a few notable dif-
ferences [62, 63]. Unlike CycloneDX, SPDX can represent code
snippets within files (and their licenses), and supports annotations
(adding comments to an SPDX document, e.g., clarifications about
ambiguous legal content). CycloneDX natively supports “compo-
sitions”, which allow expressing the completeness level of a BOM
element (e.g., dependency relationships)—SPDX does not support
this feature directly (only through annotations). CycloneDX offers
more robust support for vulnerability management. For example,
CycloneDX allows software suppliers to assert software vulnerabil-
ities via the Vulnerability Exploitability eXchange (VEX) format,
which SPDX does not support.

As modern software systems go beyond the mere integration
of libraries and frameworks, various initiatives have proposed dif-
ferent types of BOMs, to account for other components typically
integrated into a software system (e.g., hardware devices, firmware,
APIs, or AI/ML models). Practitioners have proposed BOMs for:
• external services/APIs (SaaSBOMs) [50, 54, 79];
• hardware (HBOMs) [52] and firmware (FBOMs) [35, 36, 59];
• operational (e.g., configuration) environments (OBOMs) [53]; &
• datasets (DataBOMs) [42] and AI models (AIBOMs) [45, 129].
Our study targets specific populations of software stakeholders

(e.g., AI and Cyber-Physical Systems practitioners) to understand
needs that could be potentially fulfilled by various kinds of BOMs.

While SBOMs have existed for some time [1, 6, 44, 74], they are
only now beginning to be widely known [104, 130]. The analysis of
their uses and shortcomings has been investigated only by a few re-
cent studies [39, 46, 47, 70, 94, 124, 129, 131], which we discuss next.

A survey from the Linux Foundation examined the current state
of SBOM usage and readiness in industry [70], aiming to identify
the main use cases, benefits, and unmet needs for SBOMs. The
study examined SBOM adoption, claiming that of 400 organizations
surveyed worldwide, an estimated 78% would use SBOMs by 2022
and 88% by 2023. Our work differs in that we seek to identify the
SBOM usage needs of developers, not organizations.

Caven et al. surveyed US Department of Defense officials to
examine what features they look for when making procurement
decisions, including features that are part of SBOMs [47]. They
found that, generally, source code used in development was the
least-important feature to include in SBOMs, and SBOMs were
valued differently by people of different roles. In contrast to
their survey, our study investigates the adoption of SBOMs from
different perspectives, by targeting different sub-populations of
stakeholders via distinct questionnaires and follow-up interviews.

In a study on C/C++ libraries [124], Tang et al. found little ev-
idence of SBOMs being used in open-source projects. Of 24K+
GitHub repositories examined, fewer than ten contained recog-
nizable SBOMs, yet some use package manager files, which provide
similar information as SBOMs (i.e., they are "quasi-SBOMs").

The gray literature review by Zahan et al. examined common
benefits and challenges of adopting SBOMs [131]. Benefits

BOMs Away! Inside the Minds of Stakeholders:
A Comprehensive Study of Bills of Materials for Software Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Methodology and scope of SBOM studies
Study Research methods Considered BOMs Study participants

Boms Away Five surveys and
follow-up interviews

SBOMs, HBOMs,
AIBOMs, & DataBOMs

SBOM Producers,
Consumers, Tool Makers,
Standard Makers, and Educators;
Developers of Critical OSS projects;
AI/ML, CPS, & Legal
practitioners/researchers

Xia et al.’s [129] Interviews to derive
one survey SBOMs & AIBOMs Developers

Zahan et al.’s [132] Grey literature review SBOMs -
Linux Found. [70] One survey SBOMs Software organizations

include enhanced dependency, vulnerability, risk, and licensing
management, and better competitive advantage. Challenges include
the lack of SBOM tooling, interoperability, and value, as well as
extra effort and disclosure of sensitive information. In our work, we
study how these benefits and challenges are perceived by different
stakeholder groups, who use a variety of software and BOM types.

Xia et al. interviewed 17 software practitioners to derive 25 state-
ments about SBOM practices, tools, & concerns. They surveyed 65
practitioners, who indicated their agreement with the statements
and commented on their experience with SBOMs. Ten findings were
derived from their responses, including the need to integrate SBOM
formats to support various usage scenarios (e.g., including vulnera-
bility data), limited level of SBOM awareness, immaturity of SBOM
tools, and lack of suitable trust mechanisms. Our study extends this
prior work as it: (1) includes five surveys that target diverse stake-
holders (e.g., AI/ML, CPS, and legal practitioners), (2) investigates
usage, challenges, & solutions for different BOMs and software
types, (3) analyzes the specific challenges of creating and using
SBOMs, and (4) discusses solutions to overcome these challenges.

Lin et al. explored the use of SBOM tools for DevSecOps and
software composition analysis [93]. Balliu et al. compared six state-
of-the-art tools that generate SBOMs for Java systems and compared
how accurate the SBOMs are in listing project dependencies, com-
pared to those given byMaven [39]. The tools capture a different set
of project dependencies, missing much of the Maven dependency
tree. While Balliu et al. discuss open challenges for accurate/effec-
tive SBOMgeneration and usage, our study provides amore compre-
hensive view of different stakeholders’ problems regarding SBOMs,
beyond Java systems, SBOM tools, and security-related applications.

There are different proposals to track datasets and AI model in-
formation [43, 66, 72, 96]. None of them apply the concept of BOMs
to data/model supply chains. The term DataBOM was introduced
and discussed by Barclay et al. [42] without, however, surveying
developers to investigate its feasibility. Potential use cases for the
AI/ML domain are mentioned, but DataBOMs are never considered
within the context of AIBOMs. In our study, we ask stakeholders
about the potential relationship between DataBOMs and AIBOMs.

The concept of AIBOM was proposed by Chan in 2017 [45],
but no specific implementation details or recommendations were
given. Barclay et al., building on their previous work, explored how
SBOMs might be applied in the context of AI/ML systems [41].

Table 1 provides a comparison between our study and the most
related prior studies, regarding methodology & scope. A more de-
tailed comparison can be found in our replication package [122].

3 STUDY DESIGN
The goal of our study is to investigate the challenges encountered
by stakeholders when creating and using SBOMs, and how such

Figure 1: Research methodology (image credits at [122])

challenges can be addressed. The context of the study consists of
five stakeholder groups: software developers, project leaders and
contributors, AI/ML, CPS, and legal practitioners.

The study aims to address the following research questions (RQs):
RQ1: How do software stakeholders create and use SBOMs?
RQ2: What are the challenges of creating and using SBOMs?
RQ3: What are actionable solutions to SBOM challenges?
We next describe the study methodology to answer the RQs,

which includes five distinct surveys and follow-up interviews with
participants from different stakeholder groups (fig. 1).

As the study involves human subjects, the methodology (includ-
ing procedures to gather contact information, recruitment methods,
survey/interview questions and format, data analysis, and dissem-
ination methods) has been approved by the ethical board of the
University directly involved in running the study.

3.1 Survey Design
Considering the study goal and the RQs, we have designed the
survey questionnaires considering previous literature on SBOMs
described in Section 2, general guidelines for survey design [68], as
well as SE specific guidelines [81–85, 111].

Since the study foresees the involvement of a general population
of: (1) software developers and other stakeholders that have inter-
acted with SBOMs, and (2) domain specialists (AI/ML, CPSs, and le-
gal practitioners), we designed questionnaires with questions asked
to all stakeholder groups and questions asked to specific groups.

Table 2 summarizes the information we asked for in the sur-
veys. A detailed description of all questions can be found in our
replication package [122]. The surveys contain a mix of (five-point)
Likert-scale, multiple-option, and open-ended questions that asked
about: SBOM content, use cases, benefits, distribution preferences,
challenges, potential solutions, dependency management practices,
and legal aspects. All questionnaires also featured a consent form,
a statement about data confidentiality, and a demographics sec-
tion (asking about professional role, software domains, education,
known programming languages, and knowledge about software
security and licensing). Participants who completed the survey
entered into a lottery to win one of ten $50 USD Amazon gift cards.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta, Daniel M German, and Denys Poshyvanyk

Table 2: Survey questions for different participant groups
Survey Group Question Topics
SBOM Community and Adopters SBOM content and use cases, SBOM benefits/challenges, SBOM usage for security (by role: consumers, producers, etc.)
Contributors of Critical OSS SBOM content and use cases, OBOM content and adoption, other BOM practices
AI/ML Developers/Researchers AIBOM content and use cases, DataBOM content and use cases, benefits/challenges of BOMs for AI/ML
CPS Developers/Researchers SBOM content and use cases, HBOM content and adoption, benefits/challenges of BOMs for CPSs
Legal Practitioners SBOM requirements, SBOMs in legal agreements, software licensing, DataBOM use cases

3.2 Participant Identification
To explore different facets of SBOMs and their usage, we identified
five participant groups: SBOM Community and Adopters, con-
tributors of critical OSS [109], as well as AI/ML, Cyber-Physical
Systems (CPS), and legal practitioners.
SBOM Community and Adopters (SBOM C&A). These are peo-
ple who work with SBOMs in different manners [37, 46]. Contacting
people who directly use SBOMs and related technologies allowed us
to obtain firsthand feedback on how SBOMs are currently used, as
well as any perceived deficiencies in current SBOM standards and
tools. Within this group, we identified five sub-groups of stakehold-
ers. While we did not explicitly categorize individual stakeholders
when selecting potential participants, we asked the participants to
self-identify as belonging to one or more of the following groups:

• SBOM Consumers: People who read an existing SBOM to
gather information about dependencies, vulnerabilities, or licenses.

• SBOM Producers: People who document a software system
and its dependencies in an SBOM using a particular format (e.g.,
SPDX, CycloneDX, or SWID).

• SBOM Tool Makers: People who contribute to the devel-
opment of tools that facilitate the creation or use of SBOMs, e.g.,
SBOM generators from project build scripts or dependencies.

• SBOM Educators: People who create or compile educational
resources about SBOMs, including guides and tutorials.

• SBOM Standard Makers: People who contribute to speci-
fications for the creation and usage of SBOMs. These individuals
may come from government agencies, corporations, or academia.

Eligible participants for this group have been identified based on
their potential experience with SBOMs, the supply chain, and soft-
ware development, via a combination of three different approaches:

(1) Keyword-based search of GitHub repositories. Combining
manual effort and automated tools (based on GitHub APIs [14]), we
located public GitHub repositories by searching issues, commits,
and files for keywords and traces related to SBOMs and the sup-
ply chain. We identified contributors who may have worked with
SBOMs by locating repositories with SBOM-related files (e.g., asso-
ciated with the SPDX, CycloneDX, and SWID formats). From these
repositories, we mined relevant commits, matching keywords such
as "SBOM," "SPDX," and “bill of materials”. From the matched com-
mits, we gathered only publicly available contact information. A
similar approach to identify participants was used by Xia et al. [129].

(2) Identifying dependencies between GitHub repositories. We
found extra eligible participants by (i) examining GitHub profiles/or-
ganizations that listed projects with SBOM-related tags as topics,
and (2) using GitHub’s dependency feature [21] to locate dependent
projects with SBOM-related tags. These repositories and their con-
tributors logically represent groups currently using SBOMs. In total,
we identified 4,423 developer email addresses via GitHub mining.

(3) Sharing the survey in relevant mailing lists. To locate
additional individuals familiar with SBOMs, we published a call
for participants through SBOM-related mailing lists, including the
SPDX [31] and the OpenChain mailing lists [3].
Developers of Critical Open Source Systems. The Open Source
Software Foundation’s workgroup on Securing Critical Projects
compiled a list of the 102 most critical OSS, comprising 564 to-
tal repositories [109]. The projects include the Linux Kernel, pro-
gramming languages, package managers, build systems, databases,
etc. Given the role of SBOMs in the software supply chain, we
sought to administer a targeted survey examining these critical
projects, which are widely depended on and may have a greater
need to produce, use, and distribute SBOMs. The actions of these
projects are also likely to represent and set the tone for the rest of
the open-source landscape. Also, examining these projects allowed
us to assess how SBOMs have spread beyond early adopters.

Using the GitHub API, we mined the top-10 contributors (by # of
commits) for each of these 564 repositories. Where there were fewer
than ten total contributors, we examined all that were available.
CPS Developers and Researchers. These are people with ex-
pertise in cyber-physical systems (autonomous vehicles, medical
monitoring and industrial control systems, robots etc.), which entail
a close interaction between hardware and software. Given these
systems have their own supply chains and are becoming more pop-
ular in certain domains, surveying this group allowed us to examine
unique challenges facing the usage of SBOMs and HBOMs, as well
as how the two may interact. CPS participants were identified from
our professional network.
AI/ML Developers and Researchers. These are: (i) Top-10 (by
number of commits) developers that contribute to a machine learn-
ing project hosted on GitHub (with 100+ stars) and expose a public
profile. AI/ML projects were identified by matching the projects’
topics to keywords such as "machine learning" or "artificial intel-
ligence" (see the full list of keywords in our replication package
[122]); and (ii) AI/ML practitioners in our academic/professional
network.

AI/ML components have their own supply chains, but are also
increasingly integrated into traditional software products. Mod-
el/data provenance is essential to security (e.g., model poisoning),
licensing, usage, and research of AI/ML systems. The needs, chal-
lenges, and use cases facing AI/ML developers may be similar and
different from those of typical SBOM users. By surveying this group,
we aimed to understand these similarities and differences.
Legal Practitioners. Through our professional network, we iden-
tified a legal practitioner with a technical background who could
answer questions about non-technical challenges facing SBOM use.
This includes examining how SBOMs interact with regulations,
contractual obligations, and more. The views of one respondent
are not representative of the field at large, but with only a small

BOMs Away! Inside the Minds of Stakeholders:
A Comprehensive Study of Bills of Materials for Software Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

pool of legal practitioners having software development and SBOM
experience, this group is the hardest group to survey at scale.

3.3 Survey Response Collection and Analysis
Survey responses were collected using Qualtrics [28]. Survey par-
ticipants were only presented with questions related to the group(s)
they selected. The survey for SBOM community and adopters was
kept open for four months, with three waves of invitations. The
remaining surveys were kept open for two to four weeks.

Via email and mailing list posts, we invited 4.4k+ individuals
to participate in the surveys and received 229 complete responses
in total (see Table 3). After removing personal information, the
responses were analyzed following the procedure described below,
resulting in 150 valid responses. Table 4 overviews the demograph-
ics for all the study participants.

For the closed-ended questions, we aggregated results using de-
scriptive statistics and discussed them. In particular, we examined
responses from Likert-scale questions to determine practitioner sen-
timents, as well as frequently-selected answers to multiple-choice
questions to identify common SBOM use cases and challenges. We
report the most frequently selected answers in Section 4.

For the open-ended questions, a coding approach was applied
in line with [121]. Two authors ("annotators" in the following)
performed a first phase of open coding on the first 28 valid responses
of 101 received for the SBOM community and adopters survey. They
independently assigned one or more codes to each response.

Once both annotators completed the open coding for the first 28
valid responses, they convened to settle disagreements and consoli-
dated a set of labels. Since multiple codes could be assigned to each
response and disagreements were discussed, we did not base our
analysis on inter-rater agreements.

From this point, the remaining responses were coded by the an-
notators independently. During the further coding, the annotators
started from the previously-established codes (available in a shared
spreadsheet); yet, they had the option of adding new codes, that
would, in turn, become available to the other annotator.

After the coding was completed, annotators met to discuss their
coding and reconcile the disagreement cases. Results were analyzed
by leveraging descriptive statistics on the codes the annotators
assigned to each question. Our replication package contains the
code catalog derived from the analysis for each survey and question,
which includes the tag and a brief description of the code [122].

Throughout the whole coding process, the annotators flagged
and reviewed answers that were nonsensical, did not answer the
survey questions, were copy-pasted from the web, or appeared to
be generated through ChatGPT [108]. These were reviewed by (1)
inspection and discussion between annotators; (2) searching the
response text using Google and validating if the text was found
verbatim on the Web; or (3) validating the presence of prose, ab-
normal wordiness, and unusual markup characteristic of ChatGPT
responses. In this way, 41 responses were removed from the anal-
ysis. Another 20 responses were removed because of numerous
blank or repeated answers, and 18 were discarded as spam (e.g.,
same email/IP addresses or identical responses). The annotators ex-
amined the survey responses and independently flagged potentially
invalid responses. They discussed the cases and reached a consensus
on the responses to remove and the main reason for removal.

Table 3: Number of Survey Respondents

Survey Full
Resps

Valid
Resps

Fam. w/
SBOMs

Inter-
views Role #

SBOM C&A 179 101 61 4 P 34
Critical 22 22 13 1 C 31
ML 21 20 8 1 TM 24
CPS 6 6 1 1 E 14
Legal 1 1 1 1 SM 16
Total 229 150 84 8 O 7

P=Producer, C=Consumer, TM=Tool Maker, E=Educator, SM=Std. Maker, O=Other

Table 4: Abbreviated participant demographics
Survey Top Software Domains Top Roles Experience (yrs)

SBOM C&A
Web apps 76% (38) Programmer 30% (18) 0-5 16% (8)
Desktop apps 56% (28) Project Lead 15% (9) 6 - 20 47% (23)
Middleware 52% (26) Consultant 11% (7) 21+ 37% (18)

Critical
Web apps 68% (15) Programmer 41% (9) 0-5 5% (1)
Desktop apps 45% (10) Project Lead 27% (6) 6 - 20 45% (10)
Middleware 36% (8) Consultant 9% (2) 21+ 50% (11)

ML
Deep learning 65% (13) ML/DL Engineer 20% (4) 0-5 45% (9)
Non-deep learning 5% (1) Researcher 20% (4) 6-10 50% (10)
Both 30% (6) Data Scientist 15% (3) 11-15 5% (1)

CPS -
Project Lead 17% (1) 10-15 17% (1)
Researcher 17% (1) 16-20 67% (4)
Programmer 17% (1) 21+ 17% (1)

Legal - - 13

3.4 Interviews Design and Response Analysis
We conducted one-hour semi-structured interviews with eight par-
ticipants of the surveys (see Table 3), to gather deeper knowledge
about their experience and responses.

Upon agreeing to answer surveys, respondents indicated will-
ingness to be contacted for follow-up interviews. We selected re-
spondents from the 5 surveys whose responses warranted further
investigation. In particular, we sought interviews with respondents
who (1) gave detailed replies highlighting interesting use cases,
challenges, and potential solutions; (2) demonstrated experience in
their field; and (3) diversified our interviewee pool in terms of their
role (consumers, producers, etc.). We hoped to capture a variety
of perspectives from respondents familiar with SBOMs and those
that were not but had interesting thoughts on how SBOMs might
affect them. Potential interviewees were identified independently
by researchers during the open-coding process, and 11 participants
were contacted upon consensus. In total, 8 participants accepted
and completed an interview (Table 3).

The interviews were conducted in two parts. The first part asked
follow-up and clarification questions which varied depending on
the survey responses of each interviewee (e.g., You highlight the
importance of identifiers for each software element. Why are these
identifiers so important?). For interviewees in the SBOM community
and adopters group, a second part of the interview featured five
questions that were common across all interviews in that group.
They asked about general themes and trends observed in the survey
which had a broad impact on stakeholders. Our replication package
contains the protocol we followed for the interviews [122].

Interviews were conducted over Zoom and recorded with the
participants’ permission. The recordings were transcribed using the
Whisper speech recognition tool [113]. The interviews included two
authors, taking notes about the given responses. The same authors
parsed and analyzed participant responses and notes individually,

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta, Daniel M German, and Denys Poshyvanyk

employing an open coding strategy like that used in the analysis of
the survey responses and discussing the coding when needed.

Interviewees were given a $50 USD Amazon gift card.

4 STUDY RESULTS
56% (84/150) of the study participants are familiar with SBOMs (see
Table 3). The 22 respondents from the "Critical" survey belong to
16 of the 102 (15.7%) critical OSS.

4.1 RQ1: SBOM Creation and Usage
4.1.1 SBOM awareness and formats. Of the 50 producers, con-
sumers, and tool makers surveyed, 16 reported using SPDX, 8 Cy-
cloneDX, and 12 both. SWID [100] was used by only 5 respondents,
often with other formats. Those that consume SBOM, do so fre-
quently: 35.5% (11/31) of participants stated they use them daily
and 29% (9/31) weekly. Of the 22 critical OSS survey participants,
9 were unfamiliar with SBOMs and 7 were aware of SBOMs, while
not adopting them yet. One interviewee mentioned how the limited
interest is also due to the limited tool support and the need for man-
ually maintaining SBOMs (in line with Zahan et al.’s findings [131]).

It is possible that private organizations and closed-source
projects use SBOMs—in any of the standard formats or their own—
yet our study did not find any evidence of that. For example, it is
known that CERN uses CycloneDX [75, 112] and popular standards
have been mentioned by Eggers et al. for the nuclear industry [58].

Of 6 CPS respondents, 3 were familiar with HBOMs and 2 had
used them, but with bespoke formats.

No ML practitioners surveyed were aware of BOM formats for
AI systems or datasets, but one interviewed standard maker was
on an SPDX team that worked on adding fields to SPDX 2.x for
ML systems: fields for “describing data, the data sources, the data
owners who you receive the data from, like did you buy it? Did
you get it from open source? What were the references for the data
you used to train the model? If it’s available, also the pointer to
the public information about the data”. At the time of writing this
paper, we have also learned that CycloneDX has added a Machine
Learning Bill of Materials (ML-BOM) to its specification [51].

Participants expressed that pressure to maintain SBOMs pri-
marily targets industry and projects at the end of a supply chain,
while projects near the beginning have little incentive to produce
them. Some projects, such as the Linux kernel, may have no real
dependencies of their own and so do not require dependency man-
agement methods. As one interviewee noted, "I don’t see a rush
to add SBOMs to the originating open source. I see a rush to add
SBOMs to the middle folks..."

This results in downstream components creating SBOMs on
behalf of their dependencies. Other than being a cumbersome task
done for somebody else; as one interviewee said, "[the risk is]
miss[ing] something because you got to go back and dig back
through all these different dependencies."

4.1.2 SBOMuse cases, benefits, and data fields. In line with existing
SBOM documentation [99] and prior studies [70, 129, 131], we
found that security, dependency tracking [116], and licensing are
the main use cases for SBOMs. Out of 61 SBOM practitioners, 55
mentioned as main use case dependency management, 22 licensing
concerns, and 22 software security (e.g., vulnerability) management.

Other responses include software versioning (14), provenance (10),
documentation (6), and transparency (4).

While tracking vulnerabilities was a main use case for con-
sumers (80.7%), producers (100%), and tool makers (83.3%), some
respondents were concerned that SBOMs might provide a road map
of vulnerabilities for attackers. This misconception, also identified
by Zahan et al. [131], has been addressed by NTIA [101] and our
interviewees rejected the notion of "security by obscurity."

When 41 SBOM producers, tool makers, and standard makers
were asked which data fields should be included in SBOMs, re-
sponses varied. The most common answers were general informa-
tion about the software components: version number (24 of 41),
license (22), component name (18), and a URL to the component
(18). Notably, 13 respondents indicated that the SBOM should con-
tain unique identifiers for the software component the SBOM is
documenting and/or its dependencies [2, 5, 12, 13, 19, 71].

Although we found little evidence to suggest AI and DataBOMs
are being used in practice, respondents mentioned two potential use
cases. These BOMs could facilitate ML model reproducibility and
help to identify / verify datasets across academic papers. Specifically,
AIBOMs can provide transparency into how a model was trained,
providing information about its architecture, hyper-parameters,
and any pre-trained base models used. By providing provenance
and usage information, a linked DataBOM can also make developers
aware if a model was trained using a poisoned, biased, or illegally
sourced dataset.

When asked about the ideal relationship between AI and
DataBOMs, 9 of 20 (45%) respondents stated they should be separate
documents and 5 (25%) that they should be complementary. Only 2
(10%) proposed that the documents should be combined.

The surveyed and interviewed CPS practitioners mentioned that
BOMs could serve as regulatory documents for critical embedded
systems (consistent with the findings of [46]), and that they could
increase the transparency and reproducibility of research results
in academic communities. For these tasks, the BOMs must commu-
nicate information related to the physical hardware components
(part numbers, manufacturer, etc.), firmware, and other software
(including configurations) of the system.

4.1.3 SBOM generation process, tooling, and distribution. There
was little consistency in the tools used across participants, with
there being a mix of in-house, commercial (e.g., Anchore [22]), and
open source solutions (e.g., ScanCode [29]).

Despite the NTIA recommendations [103], there is currently no
agreed-upon method for distributing SBOMs. Respondents have the
expectation that the developers of third-party components they use
should be the ones creating, maintaining, and distributing SBOMs
along with their software. 5 of 12 (41.67%) critical OSS develop-
ers asked about SBOM deficiencies mentioned distribution as a
challenge moving forward.

Concerning support for DataBOMs and AIBOMs, two survey
participants mentioned that Hugging Face dataset cards [61] could
serve as DataBOMs. Three respondents mentioned the same ser-
vice’s model cards, providing similar information to AIBOMs. Other
tools mentioned include DVC [24] andML-Flow [27]. These formats
are “quasi-AIBOMs” since, to our knowledge, no formal AIBOM
standards have been implemented and accepted in practice.

BOMs Away! Inside the Minds of Stakeholders:
A Comprehensive Study of Bills of Materials for Software Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

When asked when SBOMs should be generated, producers said:
during each build (28/34), when publishing a major release (21/34),
during deployment (19/34), and at the developer’s discretion (7/34).

4.2 RQ2: SBOM Challenges
We summarize and discuss the challenges of using and creating
SBOMs, expressed by the participants.
(C1) Complexity of SBOM specifications. A common key con-

cern among participants is the complexity of SBOM specifications,
as stated in this comment: "[...] one core issue [...] is definitely a
tension between use case coverage and the complexity of the spec."

Adding support for new use cases lengthens and complicates
SBOM specifications. A standard maker mentioned: "[They say,]
‘the spec’s too complicated. All I want to do is X. [...] You’re
missing something for X, so I want to add that in,’ which makes it
more complicated for the other 99 people [without that use case]."

We noticed that the user’s perception of the SBOM specification
is in part determined by their use case. “If all you’re interested
in is licensing, [...] [you] don’t want to have to learn [about other
domains like security] just to be able to use the spec.” However,
"even if [SBOM producers] don’t have that use case in mind, [their]
consumers [might]."

Participants also mentioned the lack of adequate educational
resources about the SBOM specifications to better communicate
their content. One interviewee mentioned: "It’s not just simplicity
in the spec. It’s not simplicity in the tooling, but how we message
it and how we communicate it. Because if we send them to the
[standard] spec website, they’ll take a look at that and go, well,
I’m not going through all that work".
(C2) Determining data fields to include in SBOMs. While

some fields (software versions, licenses, or component names) are
commonly agreed upon, others depend on the use case. For example,
practitioners seeking to analyze their software for vulnerabilities
may require BOMs to link to an external vulnerability database.

Interesting is the case of BOMs for AI/ML. AI/ML respondents
expressed the need to include provenance information about
datasets and models in SBOMs, to enable model verification
and reproducibility. Other than standard SBOM fields, the 20
respondents from this group pointed out fields such as descrip-
tions of the training data (17) and validation/testing data (14),
preprocessing steps taken on the data (13), dataset version (13),
and used optimizers/loss functions (13). When asked about fields
needed in DataBOMs, they highlighted data sources (18), data
transformations (18), preprocessing steps (17), dataset size (16),
known/potential biases (14), and data collection procedures (14).

Of the 6 surveyed CPS practitioners, 3 expressed a need for
hardware part numbers, 2 for testing and quality assurance
data, 1 for system deployment information, 1 for manufacturer
information and location (e.g., company and geographical location),
and 1 for known limitations about parts (e.g., if they are not
suitable for certain tasks due to security risks).

Adding additional fields to SBOM specifications makes the
documents more useful, but as mentioned previously, also
contributes to the complexity of the specification (C1).
(C3) Incompatibility between SBOM standards. Responses

show that competing standards confuse developers. When consum-
ing SBOMs, 23.33% of the SBOM practitioners stated that different

Figure 2: Perceived sufficiency of SBOM tooling.

standards pose a challenge, due to interoperability issues between
standards and inconsistency between standards and tooling.

Despite this, one practitioner said: "Competition is good [...] I
definitely think that we have moved faster because of CycloneDX
and SPDX having this kind of competition."

There are also multiple ways of creating an SBOM for the same
piece of software, often for backward compatibility reasons. One
practitioner remarked: "You may have two SBOMs that technically
represent the same software, but they’re being produced by two
different tools and they look radically different."

Fortunately, respondents suggested there are plans to increase
and maintain interoperability among different standards. As one
interviewee put it, "I think [the standards are] on two different
paths now. [...] To say one’s going to die over the other, or try to
do the grand convergence and bring them together, you’re just not
going to, it’s just going to take too long. [...] it makes much more
sense to try to get the two groups to collaborate."

Addressing incompatibility between standards would likely
require a community-led effort, creating clear mappings between
them, and developing tools that support these mappings.
(C4) Keeping SBOMs up to date. Once an SBOM has been

created, it must be maintained along with the software it represents.
Substantial changes to an SBOM over time are known as SBOM
drift [15]. Such changes can occur suddenly, such as a dramatic in-
crease in the number of dependencies when an application is added
to a container [80], or when new vulnerabilities are discovered in
dependencies asynchronously from changes in the software — one
interviewee described SBOMs as "a static vulnerability snapshot
of the state of a [piece of] software at a certain point of time."

When asked about deficiencies in standards, 4.35% of partic-
ipants expressed issues concerning keeping SBOM updated (1),
upkeep requirements (1), and the syncing of SBOM versions (1).
Of 3 critical OSS developers that consume SBOM, 1 mentioned
difficulties in keeping SBOMs up-to-date. This motivates a need for
tools which can dynamically update SBOMs as changes occur [114].
(C5) Insufficient SBOM tooling. Figure 2 shows stakeholders’

views on whether current SBOM tools address the needs of their
users. While we generally found a lack of consensus among
participants, we observe that tool makers are slightly more neg-
ative. These results, combined with the participants’ open-ended
answers, suggest that current tool support is insufficient. One
participant identified a lack of "automated ways to generate SBOM
for embedded code like assembly, C, C++."

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta, Daniel M German, and Denys Poshyvanyk

Across stakeholder groups, there was little familiarity with tools.
85% of the ML respondents were unaware of any tool support
for generating AIBOMs, and 90% were unaware of tooling for
DataBOMs. Only one CPS practitioner was aware of existing tools.
Part of the problem may be low demand. One practitioner had used
"a few [SBOM] tools [but] they [didn’t] work very well," noting
that "it would be nice if they were fixed" but "nobody seems to care
because maybe nobody’s using them."

Some projects with specific features may be unable to use current
tooling, as no support exists for them yet. For example, one prac-
titioner noted that current tooling could not "run fast on projects
with tens of thousands of files... They’re not designed to work with
very, very large projects." Two producers faced challenges involving
projects that used multiple programming languages, suggesting an
unmet need for tools to support multi-language projects. Similarly,
tools should be available for SBOMs to be created when only
certain types of information are available, such as building SBOMs
from binaries: "[T]here’s source SBOMs. There’s binary only
SBOMs. There’s SBOMs that have dependency information. There’s
SBOMs that have really just information about the package [...]."
(C6) Inaccurate and incomplete SBOMs. An SBOM is only

as good as the information that it provides. If the information is
inaccurate or incomplete, it becomes difficult for teams to make
informed decisions concerning the dependencies, licensing, and
security of their projects.

According to the results, currently available SBOMs are of
varying quality and are often found wanting. 33% of SBOM
consumers from the SBOM C&A survey mentioned poor quality
SBOMs as one of the challenges they had faced in using SBOMs.
25% of the consumers from the critical OSS groups stated the same.
Surprisingly, 12% of the SBOM producers had the same complaint.

Consider that the minimum SBOM requirement would be to
include all direct and transitive dependency information, including
the URLs of their sources. The legal practitioner we interviewed
mentioned that, in his/her experience, this condition is rarely met.

Participants also discussed "false positives" in BOMs. For
example, using a dependency that has a vulnerability does not
necessarily mean the software will be impacted. Determining if a
project is actually impacted is a more difficult problem and requires
more sophisticated tooling.

The problem of inaccurate SBOMs also impacts tool developers.
One respondent described how "it’s been difficult to build tooling
that accepts an SBOM when I’m not sure if all the fields that I’ll
need to depend on have been filled out."
(C7) Verifying SBOM accuracy and completeness. 33% of

the critical OSS contributors mentioned how SBOM verifiability
is a major challenge. This was also reported by 3 participants of
the SBOM practitioner survey. That being said, the enforcement of
SBOM correctness should not be so strict that it impedes SBOM cre-
ation and adoption. For example, the legal practitioner we contacted
cautioned that holding BOM creators liable for inaccuracies in the
documents they produce is a disincentive to creating SBOMs at all.

For security reasons, consumers will also need mechanisms
to validate the integrity of an SBOM, to check that nobody has
(maliciously) altered it in transit. Well-known solutions, e.g., those
based on hashing and checksums, can be applied to this context.

(C8) Differences across ecosystems and communities. Par-
ticipants indicated that SBOM support varies across languages and
package ecosystems. One interviewee mentioned: "a big part of the
bottleneck is just retrieving all the information that needs to go
into the SBOM and getting it from different sources [...] some lan-
guage communities do a better job of capturing the metadata [to]
include in the SBOM." Some respondents even suggested that tools
from the same standard (e.g., CycloneDX) drastically vary in quality
across languages. As another participant mentioned, this "creates an
ecosystem challenge for getting that data in an SBOM in a reliable
way, because there are some data sources that you can’t really trust."

We also observed challenges of creating SBOMs for languages
with limited or no package managers. A survey respondent
mentioned: "For C/C++ projects, dependencies are typically defined
in autotools or cmake files, and Node, Ruby, Python, Golang, etc
all have their own dependency management systems; typically
recording exact versions is an output of the build process, although
this doesn’t come "out of the box" with C/C++ projects".

25% of the critical OSS developers surveyed who were familiar
with SBOMs listed a lack of language support as a deficiency in
current SBOM specifications, while 8.7% of SBOM practitioners
agreed. When asked about tool deficiencies, 41.67% of critical OSS
developers surveyed who were familiar with SBOMs expressed
a need for more language-specific tooling.
(C9) SBOM completeness and data privacy trade-off. AI/ML

participants indicated that AIBOMs and DataBOMs may entail
a tradeoff between completeness and privacy on large datasets,
given that these datasets may contain personally identifiable,
private, sensitive, or proprietary information. CPS respondents also
mentioned privacy concerns in BOMs, as CPS may actively collect
and process private and sensitive data from the environment.
(C10) SBOMs for legacy packages and repositories. One

interviewee expressed the challenge of generating SBOMs for
legacy software, which may be deployed and used by certain user
groups. Even if SBOMs become well-adopted and automatically
generated during software builds, the question of what to do about
legacy software remains. Software that is still regularly maintained
could feasibly have an SBOM created, but it is more challenging
for older systems where the original source code is missing or
for systems written in languages that are now substantially less
common (e.g., COBOL). These languages are less likely to be
supported by open-source SBOM tooling. This is particularly
problematic for entities like the US government [65] or the banking
industry [92]. Community-driven effort may be needed to generate,
store, and share SBOMs in such situations.

An important question is, whether, for existing systems, only
the newest releases require an SBOM, or if older releases that are
still used by dependents also require SBOMs. The respondent said:
"if ecosystems did start to publish SBOMs, [...] it would be great to
see [centralized repository maintainers] go back in time, generate
SBOMs for older packages"
(C11) Inability to locate dependencies for SBOMs. There

may be cases where during the production or consumption of an
SBOM, a certain dependency cannot be located. This could happen
if a dependency was removed from a package manager (perhaps
it was malicious or no longer maintained) or from the associated
repository. One practitioner mentioned: "They [dependencies] may

BOMs Away! Inside the Minds of Stakeholders:
A Comprehensive Study of Bills of Materials for Software Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

have been yanked and removed from the upstream package reg-
istries, meaning that the mere fact of detecting that they exist could
be a challenge" and "In some cases, [finding your dependency is] a
lost cause in the sense that your source may be dead, the repository
has disappeared and you’re left to have to sift through random
snapshots of archive.org calls made on the website. That’s rare,
but that happens." Previous work shows that malicious packages
exist [38, 48, 60, 86, 88–91, 119, 132] and are commonly removed
from package managers once detected [49]. Since CVEs are for
vulnerabilities [11], entries for malware are not typically created,
potentially leaving developers with a dead dependency reference
and little way to discover the security threat the dependency poses.

A centralized database indexed on global IDs and containing
provenance information for software repositories / distributions
could allow developers to access critical information for projects
that are no longer hosted or available. This would essentially be
a third-party SBOM archive.
(C12) Unclear SBOM direction and low adoption. A recent

US executive order [10] requires companies selling software to
the US government to provide corresponding SBOMs. While this
has created incentives to create and maintain SBOMs, our results
indicate how the adoption and knowledge of SBOM are still fairly
limited. Moreover, while incentives for library users are clear, those
for library creators are not. Therefore, given the effort and knowl-
edge needed for creating SBOMs, most developers forgo this effort.

The Information Technology Industry Council [18] wrote an
open letter in response to recent pushes from the US federal
government to mandate SBOMs [118]. They assert that SBOMs
are not yet suitable contract requirements: "The presence of
multiple, at times inconsistent or even contradictory, efforts
suggests a lacking maturity of SBOMs." They also raise concerns
about cloud services, legacy software (C10), and the protection of
confidential or proprietary information (C9), all issues mentioned
by respondents during our study. Though, many of these concerns
have also been addressed by the NTIA [101].

This suggests a fear that the work required to create and main-
tain SBOMs will outweigh their benefits. As one of our practitioners
said, "I hope that the hype around SBOM will lead to something
that’s productive [...] and will not just be something which is a com-
pliance requirement that’s going to be met in a minimal way.” This
fear was shared by practitioners across domains. Across our sur-
veys, three respondents expressed worry that SBOMs would not be
useful and another three feared that they would be time-consuming.

Lastly, as we were reminded by numerous respondents, SBOMs
are still not-mature-yet technology that will take time to mature.
Currently, there is still a need to motivate and implement support
for consumer use cases. In an interview, one respondent stated,
“You know, if you are a large organization and, say, you take a
magic wand, and tomorrow all your software vendors start to
provide accurate SBOMs, what are you going to do with this?”

4.3 RQ3: Solutions to SBOM Challenges
In this section, we discuss solutions for the identified challenges.
The proposed solutions do not address (C3), (C10), & (C11): these
require additional research to mitigate effectively, but insights and
potential directions are discussed in their challenge descriptions.
Table 5 provides a summary of the proposed solutions.

(S1) Multi-dimensional SBOM specifications. We identify
three dimensions that contribute to the complexity SBOM specifica-
tion: (1) the intended use case of an SBOM, (2) the type of software
the SBOM is generated for, and (3) the amount of information docu-
mented in an SBOM. Providing clear guidance for these dimensions
is needed to inform consumers/producers which fields an SBOM
should contain (C2). The ultimate goal is to reduce the cognitive
load placed on users of the specification (C1).

SBOM use cases. As discussed, dozens of potential use cases exist
for SBOMs [8], but including fields tailored for each of these results
in cluttered specifications (see (C1)). In interviews, we learned that
the SPDX team is working on profiles [106] which define the fields
required in an SBOM document meant for a specific use case. This
will allow producers to create SBOMs tailored to their use case
without worrying about irrelevant fields to them. One practitioner
mentioned that "being able to call [use case] out in these profiles
will make [what to expect in the quality] a lot clearer. And I think
that might help with [poor quality SBOMs] (C6). Not so much
making the quality of the SBOMs better, but at least making it
obvious what the quality is." Another said: "Let’s say I want to just
graph the relationships, right? There’s a lot of data that’s included
in the SBOM that I wouldn’t necessarily need. And if some of that
data is expensive to calculate, then the tool that gives me the SBOM
would run a lot faster if all I was ever looking for was a way to kind
of graph the relationships."

Types of software. Different types of software require different
information to adequately describe them. ML-related software re-
quires fields that firmware or cloud services likely will not. Even
though all three fall under the umbrella of software, it may be pru-
dent to separate them into distinct SBOM types (AIBOM, FBOM,
SaaSBOM, etc.), so that it is easier for end users to know the type
of system the SBOM describes. This model of different SBOM types
has already been adopted by CycloneDX [56].

Amount of information in SBOMs. Within the same use case
and software type, users may desire different amounts of data
in an SBOM. One practitioner noted: "it would be interesting to
have different levels [...] where this has ‘level 1’ data. [...] This tool
generates ‘level 2’ data, this tool generates ‘level 3’ data...". These
data levels reflect the amount of information a user can expect to
find in the SBOM. Lower data levels could potentially be used for
privacy-sensitive applications (C9). Data levels could also create
some standardization in tooling: "I think it would help people who
are writing tools [...] to be able to then differentiate between the
level of data that they can expect to see within the SBOM."

Adding this flexibility to standards does not necessarily make
them more complex or difficult to use. One practitioner indicated
that "even though the minimum requirements that have been pro-
vided [...] seem to be or could be construed as daunting, the essence
of what needs to be provided in SBOM can be surprisingly simple."
Educational resources and documentation will have to be well-
crafted to explain this approach.
(S2) Enhanced SBOM tooling and build system support.

Across all surveys, three respondents suggested better libraries as
a tooling solution. One said, "Increased investment in open source
libraries that can be incorporated in end user commercial and open

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta, Daniel M German, and Denys Poshyvanyk

Table 5: How each SBOM solution addresses the SBOM challenges and the roles impacted by the challenges/solutions
(S1) Multi-dimensional SBOM specifications

- Structure SBOM specifications considering three dimensions, i.e., use cases, types of software, and amount of information needed (a.k.a. information level)
- Create more structured, easy-to-navigate, and easy-to-search specifications
- Improve educational material about SBOM specifications

Challenge How the Solution Addresses the Challenge Roles
(C1) Complexity of SBOM specifications Shorter and easy-to-browse SBOMs specs. without unneeded information (per use case, system, etc.) P, C, TM, E, SM

(C2) Determining data fields to include in SBOMs Optional SBOM fields added only when required.
Information levels determine optional, recommended, and mandatory SBOM fields. P, C, TM, E, SM

(C6) Inaccurate and incomplete SBOMs SBOMs not incomplete if irrelevant/hard-to-find info for a given use case is not required. P, C, TM
(C9) SBOM completeness and data privacy trade-off SBOMs can tailor the required fields for data privacy according to defined information levels. P, C, TM, SM

(S2) Enhanced SBOM tooling and build system support
- Develop libraries and base infrastructure for SBOM production, consumption, and verification
- Develop SBOM tooling for binaries and programming languages with no package managers
- Integrate SBOM creation into build and continuous integration (CI) systems and AI/ML frameworks (TensorFlow, etc.)

Challenge How the Solution Addresses the Challenge Roles
(C4) Keeping SBOMs up to date SBOM tools compatible with build and CI/CD automation to create/update SBOMs at each build. P, C, TM
(C5) Insufficient SBOM tooling Improved SBOM tools with support for multiple programming languages and AI/ML frameworks. P, C, TM

(C6) Inaccurate and incomplete SBOMs SBOM tools integrated with build automation and AI/ML frameworks create SBOMs with
dependencies actually used in binaries, releases, and AI/ML models. P, C, TM

(C7) Verifying SBOM accuracy and completeness Tools to check that SBOMs created from source code and binaries contain the same dependency info. P, C, TM
(C8) Differences across ecosystems and communities Improved SBOM tools would lead to increased SBOM adoption across languages and ecosystems. P, C, TM

(S3) Strategies for SBOM verification
- Third-party (community-based) certification/verification of SBOMs

Challenge How the Solution Addresses the Challenge Roles
(C6) Inaccurate and incomplete SBOMs With verification mechanisms in place, certified SBOMs would be more accurate and complete. P, C, TM
(C7) Verifying SBOM accuracy and completeness Verifying and certifying SBOM content leads to enhanced accuracy and completeness. P, C, TM

(S4) Increasing incentives for SBOM adoption
- Create mandates to create and use SBOMs for different stakeholders
- Minimize the effort to create and maintain SBOMs (e.g., by developing tools integrated with existing systems and processes)
- Increase motivation to develop (open-source) SBOM tooling (e.g., via integration and badging in code repositories such as GitHub)
- Promote SBOMs benefits/usage and improve educational materials (e.g., by promoting successful cases of SBOM usage and tooling)

Challenge How the Solution Addresses the Challenge Roles
(C5) Insufficient SBOM tooling Increased incentives for SBOM adoption would drive further development of SBOM tooling. P, C, TM, E, SM

(C12) Unclear SBOM direction SBOM mandates and promotion/education materials clarify SBOM benefits and usage costs.
SBOM incentives would better involve open-source communities in SBOM creation/usage/promotion. P, C, TM, E, SM

source tools [can address current deficiencies in tooling]." Well-
maintained, easy-to-use libraries would serve as the foundation
and motivation to develop SBOM tools (C5) providing functional-
ity for creating, maintaining (C4), parsing, and managing SBOMs,
enhancing the user experience and, potentially, SBOM adoption.

Our findings indicate the need for language-specific SBOM pro-
duction tools. A language-agnostic tool is unlikely to adequately
support all scenarios. As such, there is work to be done creating
SBOM generation tools for different ecosystems, including resolv-
ing disparities in the quality of available tools. Creating better tools
will be a community effort: "part of it is just [...] being willing to get
in and help out with the quality of those tools." Language-specific
tooling can be built on language-agnostic libraries (C8).

SBOMs will likely become more accurate and complete with
better tool support (C6). Respondents from the critical OSS sur-
vey pointed out that quasi-SBOM files are typically accurate and
are generated/checked automatically by tools: mature SBOM tools
would likely be able to perform similarly.

Moreover, in the current landscape of varying SBOM quality,
consumption tools may also be responsible for checking the ac-
curacy of the SBOMs consumed (C7). A respondent noted that
consumption tools "have a perhaps harder job to make sure that
the data that’s being generated is accurate."

Furthermore, existing build systems (e.g., Maven or Gradle)
should be made SBOM-aware: capable of reading and generating
SBOMs: "[O]ne way [for SBOMs to be easier to use] would be for

build tools to start generating them without asking." We have ob-
served from our surveys that developers tend to prefer processes or
tools that are commonly used or predetermined: "when the recom-
mended way of doing something is the default, then it gets done
more often." SBOM generation functionality in build tools would
more easily facilitate the update of SBOMs (C4).

We have seen that developers rely on package management sys-
tems to obtain a list of their project’s dependencies. Many of these
systems also provide quasi-SBOM files. If SBOM generation and ac-
quisition could be handled at the package manager level, we would
likely see a large uptick in adoption (C12). SBOMs could be stored
along with other package information and queried through APIs.
Indeed, interviewed practitioners suggested that SBOMs should be
kept as close to the source as possible. As an SBOM moves further
from the source, it is less likely to be up-to-date (C4).

GitHub recently unveiled new functionality capable of gen-
erating SPDX documents for a cloud repository [17]. Through
integration with GitHub’s Dependency Graph tool [33], this
capability supports SBOM generation for a number of popular
languages and is easily accessible to developers, marking a strong
start for SBOM integration.

It was also suggested that ML libraries could generate AIBOMs
or play an integral part in easily accessing required information:
"eventually there’ll be [...] something built into TensorFlow or
PyTorch [...] that outputs a document [...] that tells you the key
elements [like] the hyper-parameters."

BOMs Away! Inside the Minds of Stakeholders:
A Comprehensive Study of Bills of Materials for Software Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(S3) Strategies for SBOM verification. One initially apparent
method to approach incomplete or incorrect SBOMs would be to
hold parties accountable for the SBOMs they generate (C6), but this
could lead to unintended consequences. A legal practitioner said,
"[a] requirement for them to certify that it is complete or correct is
only going to result in fear of creating SBOMs. ‘Perfect’ should not
be the enemy of ‘good.’" Beyond this, SPDX SBOMs are licensed
under Creative Commons 0 (CC0) [23, 30], meaning no warranty
is included and the producer assumes no liability. The open-source
licensing of tools protects their creators from litigation since many
licenses also do not provide a warranty [26]. According to the
legal practitioner we interviewed, issues of liability would likely
only arise if proprietary software or service provided a warranty.
He/she "could see there being contractually accepted liability as
part of [one party agreeing to provide an accurate SBOM]."

Two other solutions emerged from our surveys (C7). A
third-party certification or review board could approve SBOMs and
endorse them. However, as one respondent put it, "central author-
ities have never seemed to work too well in our industry [...]". An
alternative, decentralized approach could involve the assessment
of SBOMs by their consumers and other stakeholders, with issues
reported to the SBOM producer or posted in a shared database.
(S4) Increasing incentives for SBOMadoption.There is a need

to either minimize the effort needed to create and maintain SBOMs
(such as improving current development toolkits to generate them)
or by gaining other benefits, such as having tools that consume
SBOMand helpwith developer tasks. Similarly, it is necessary tomo-
tivate the creators of the development toolkits to support SBOM cre-
ation (C5). Github’s new SBOM tools are a step in the right direction.
Also, issuing badges might be a simple incentive that might promote
the adoption of SBOMs (as it has been in other domains [126]) (C12).

Similar to Executive Order 14028, other stakeholders could
require their participants to provide SBOMs. For example, the
scientific publication of tools and models could require that artifacts
be accompanied by SBOMs (C12). These SBOMs would increase
the transparency of the work and ideally increase reproducibility.

At the same time, better marketing and educational materials
that emphasize the importance of SBOMs are needed, both for
software developers and consumers. As one user put it, "It’s not
just simplicity in the spec [nor] simplicity in the tooling, but how
we message it and how we communicate it."

Ultimately, creating and using SBOMs should be done because
it helps to create and maintain better, more secure, and reliable
software, and that ultimately benefits society.

5 THREATS TO VALIDITY
External Validity. The conclusions of our study apply to the

population that participated in the survey and interviews. By design,
we cannot overly generalize our results [40], yet our observations
pertaining to open-source developers may extend to other open-
source projects. Generalizability for the industry is more difficult,
but industries within the same country will abide by the same
legislation and regulations, likely resulting in similar use cases and
challenges. Ultimately, our goal was not to claim generalizability,
but to gain a clearer understanding of the current landscape of
SBOM usage, the challenges therein, and how to overcome them.
While the number of respondents for the ML, CPS, critical, and legal

surveys is rather small, they provided insights from the perspectives
of practitioners (belonging to different areas) who may or may not
use SBOMs firsthand, which are still valuable to understand the
current landscape and future directions of SBOMs.
Internal Validity. To mitigate researcher bias in open-ended

response coding, we followed an iterative, hybrid coding process
that included discussion for all disagreements to reach a consensus
such that the codes applied to a given response most accurately
reflected its content. To ensure that we surveyed practitioners with
different backgrounds, we employed a diverse set of strategies to
find participants, including the search for relevant repositories on
GitHub, posting to relevant mailing lists, and contacting practition-
ers through our professional network. However, the low response
rate and self-selection bias may have influenced the results by at-
tracting participants interested in the survey topic. We formulated
our survey/interview questions to follow best practices and sur-
vey/interview design guidelines. We ensured questions were clear
and concise, avoiding language that would bias respondents to-
wards a certain answer, and providing clarification and defining
terms we used when necessary. Additionally, we mitigated potential
confirmation bias in our qualitative analysis by performing indepen-
dent coding, discussing disagreements, and reaching a consensus
backed with facts from the data. While we attempted to remove
AI-generated responses from results, they remain a well-accepted
risk in this kind of study.

6 CONCLUSION
This paper reports and discusses the findings from a study—
conducted through surveys and interviews with software practi-
tioners—on the use of bills of materials for software systems. Other
than targeting a general population of SBOM adopters, we also
targeted specialized populations of developers of critical OSS, as
well as AI/ML, CPS, and legal practitioners.

The study results indicate that, while the adoption of SBOMs
is still low, practitioners utilize them in a variety of use cases at
various stages of software development and maintenance, including
software licensing, dependency management, and security assess-
ment. While SBOMs have the potential to aid in both research and
industry, tool support and SBOM standards are nearly nonexistent
in specific areas such as AI/ML and CPS.

The wide variety of use cases for SBOMs, and the complex-
ity and heterogeneity of software systems, have led to numerous
challenges, such as the complexity of standard specifications, inade-
quate tooling, or data privacy vs. completeness tradeoffs. To address
such challenges, our study has identified a number of solutions and
opened the road for future research and development in this area.

DATA AVAILABILITY
We provide an anonymized replication package containing sur-
vey and interview protocols, aggregated results, a code catalog for
survey and interview responses with definitions, code to process
results, and other data required for verifiability [122].

ACKNOWLEDGEMENTS
We thank the study participants for their time and valuable contri-
butions. This research was partially funded by NSF CCF-2217733. A
complete, detailed list of image attributions can be found at [122].

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta, Daniel M German, and Denys Poshyvanyk

REFERENCES
[1] [n. d.]. CycloneDX History. https://cyclonedx.org/about/history/.
[2] [n. d.]. GitOID. https://www.iana.org/assignments/uri-schemes/prov/gitoid.
[3] [n. d.]. OpenChain Main Mail List. https://lists.openchainproject.org/g/main.
[4] [n. d.]. OWASP. https://owasp.org/.
[5] [n. d.]. Software Heritage. https://www.softwareheritage.org/.
[6] [n. d.]. SPDX Overview. https://spdx.dev/about/.
[7] [n. d.]. The Linux Foundation. https://www.linuxfoundation.org/.
[8] 2013. SPDX Technical Team Use Cases 2.0. https://wiki.spdx.org/view/

Technical_Team/Use_Cases/2.0. Accessed: 2023-29-03.
[9] 2016. Cybersecurity Supply Chain Risk Management. https://csrc.nist.gov/

projects/cyber-supply-chain-risk-management
[10] 2021. EXECUTIVE ORDER 14028. https://www.nist.gov/itl/executive-order-

14028-improving-nations-cybersecurity
[11] 2021. What is a CVE? https://www.redhat.com/en/topics/security/what-is-cve.
[12] 2022. Annex F External repository identifiers (Normative). https://spdx.github.

io/spdx-spec/v2.3/external-repository-identifiers/#f42-gitoid.
[13] 2022. Common Platform Enumeration (CPE). https://csrc.nist.gov/Projects/

Security-Content-Automation-Protocol/Specifications/cpe.
[14] 2022. GitHub REST API documentation. https://docs.github.com/en/rest?

apiVersion=2022-11-28. Accessed: 2023-28-03.
[15] 2022. SBOM Drift. https://docs.anchore.com/current/docs/sbom_management/

sbom_drift/.
[16] 2023. CycloneDX Specifications. https://github.com/CycloneDX/specification
[17] 2023. Introducing self-service SBOMs. https://tinyurl.com/mt9jwcdx.
[18] 2023. ITI. https://www.itic.org/.
[19] 2023. purl-spec. https://github.com/package-url/purl-spec.
[20] 2023. SPDX Specifications. https://spdx.dev/specifications/
[21] [n.d.]. About the dependency graph. https://tinyurl.com/28r3v6e2. Accessed:

2023-28-03.
[22] [n.d.]. Anchore. https://anchore.com/platform/. Accessed: 2023-29-03.
[23] [n.d.]. CC0 1.0 Universal (CC0 1.0) Public Domain Dedication. https://

creativecommons.org/publicdomain/zero/1.0/. Accessed: 2023-29-03.
[24] [n.d.]. Data Version Control. https://dvc.org/. Accessed: 2023-29-03.
[25] [n.d.]. Example of an SPDX SBOM. https://github.com/spdx/spdx-examples/

blob/master/example1/spdx2.2/example1.spdx.
[26] [n.d.]. The MIT License. https://opensource.org/license/mit/.
[27] [n.d.]. mlflow. https://mlflow.org/. Accessed: 2023-29-03.
[28] [n.d.]. Qualtrics. https://www.qualtrics.com/. Accessed: 2023-28-03.
[29] [n.d.]. ScanCode. https://www.nexb.com/scancode/. Accessed: 2023-29-03.
[30] [n.d.]. SPDX Object Property: dataLicense. https://spdx.org/rdf/spdx-terms-

v2.1/objectproperties/dataLicense___1140128580.html. Accessed: 2023-29-03.
[31] [n.d.]. spdx@lists.spdx.org. https://lists.spdx.org/g/spdx. Accessed: 2023-28-03.
[32] [n.d.]. Specification Overview. https://cyclonedx.org/specification/overview/.
[33] [n.d.]. Supported package ecosystems. https://docs.github.com/en/code-

security/supply-chain-security/understanding-your-software-supply-
chain/about-the-dependency-graph#supported-package-ecosystems.

[34] [n.d.]. Using SPDX. https://spdx.dev/resources/use/.
[35] Amy Nelson, Jiewen Yao, Vincent Zimmer. 2021. Traceable Firmware Bill of

Materials Overview. https://tinyurl.com/2p8ujxau.
[36] Andrei Costin. 2022. Securing Your Iot Device With Fboms From Devastating

Cyberattacks. https://euhubs4data.eu/blog/securing-iot-device-with-fboms/.
[37] Arushi Arora, Virginia Wright, and Christina Garman. 2022. Strengthening

the Security of Operational Technology: Understanding Contemporary Bill of
Materials. JCIP The Journal of Critical Infrastructure Policy 3, 1 (2022), 111.

[38] Aadesh Bagmar, Josiah Wedgwood, Dave Levin, and Jim Purtilo. 2021. I Know
What You Imported Last Summer: A study of security threats in the Python
ecosystem. arXiv preprint arXiv:2102.06301 (2021).

[39] Musard Balliu, Benoit Baudry, Sofia Bobadilla, Mathias Ekstedt, Martin Mon-
perrus, Javier Ron, Aman Sharma, Gabriel Skoglund, César Soto-Valero, and
Martin Wittlinger. 2023. Challenges of Producing Software Bill Of Materials for
Java. arXiv preprint arXiv:2303.11102 (2023).

[40] Sebastian Baltes and Stephan Diehl. 2016. Worse than spam: Issues in sam-
pling software developers. In Proceedings of the 10th ACM/IEEE international
symposium on empirical software engineering and measurement. 1–6.

[41] Iain Barclay, Alun Preece, Ian Taylor, Swapna Krishnakumar Radha, and Jarek
Nabrzyski. 2022. Providing assurance and scrutability on shared data and ma-
chine learning models with verifiable credentials. Concurrency and Computation:
Practice and Experience (2022), e6997.

[42] Iain Barclay, Alun Preece, Ian Taylor, and Dinesh Verma. 2019. Towards trace-
ability in data ecosystems using a bill of materials model. arXiv (2019).

[43] Emily M Bender and Batya Friedman. 2018. Data statements for natural lan-
guage processing: Toward mitigating system bias and enabling better science.
Transactions of the Association for Computational Linguistics 6 (2018), 587–604.

[44] "Bill Bensing". 2022. History of the Software Bill of Material (SBOM).
https://billbensing.com/software-supply-chain/history-software-bill-of-
material-sbom/.

[45] Brian Ka Chan. 2017. Artificial Intelligence Bill of Materials (AI-
BOM). https://minddata.org/bill-of-artificial-intelligence-materials-boaim-
Brian-Ka-Chan-AI.

[46] Seth Carmody, Andrea Coravos, Ginny Fahs, Audra Hatch, Janine Medina, Beau
Woods, and Joshua Corman. 2021. Building resilient medical technology supply
chains with a software bill of materials. NPJ Digital Medicine 4, 1 (2021), 34.

[47] Peter J Caven, Shakthidhar Reddy Gopavaram, and L Jean Camp. 2022. Inte-
grating Human Intelligence to Bypass Information Asymmetry in Procurement
Decision-Making. In MILCOM 2022-2022 IEEE Military Communications Confer-
ence (MILCOM). IEEE, 687–692.

[48] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,
Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou. 2016. Following devil’s
footprints: Cross-platform analysis of potentially harmful libraries on android
and ios. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 357–376.

[49] Catalin Cimpanu. 2017. Ten Malicious Libraries Found on PyPI - Python Pack-
age Index. https://www.bleepingcomputer.com/news/security/ten-malicious-
libraries-found-on-pypi-python-package-index/. Accessed: 2023-27-03.

[50] Cloud Security Alliance. 2022. SaaS Governance Best Practices for Cloud
Customers. https://cloudsecurityalliance.org/artifacts/saas-governance-best-
practices-for-cloud-customers/.

[51] CycloneDX. [n. d.]. https://cyclonedx.org/.
[52] CycloneDX. 2022. Hardware Bill of Materials (HBOM). https://github.com/

CycloneDX/bom-examples/tree/master/HBOM.
[53] CycloneDX. 2022. Operations Bill of Materials (OBOM). https://github.com/

CycloneDX/bom-examples/tree/master/OBOM.
[54] CycloneDX. 2022. Software-as-a-Service BOM (SaaSBOM). https://github.com/

CycloneDX/bom-examples/tree/master/SaaSBOM.
[55] CycloneDX. 2022. Software Bill of Materials (SBOM). https://github.com/

CycloneDX/bom-examples/tree/master/SBOM.
[56] CycloneDX. [n.d.]. Capabilities. https://cyclonedx.org/capabilities/.
[57] Massimiliano Di Penta, Daniel M. Germán, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. 2010. An exploratory study of the evolution of software licensing. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. 145–154.
https://doi.org/10.1145/1806799.1806824

[58] Shannon Leigh Eggers, Drew Christensen, Tori Brooke Simon, Baleigh Rae
Morgan, and Ethan S Bauer. 2022. Towards Software Bill of Materials in the
Nuclear Industry. Technical Report. Idaho National Lab.(INL), Idaho Falls, ID
(United States).

[59] Eliot Beer. 2022. Firmware security in the spotlight after novel ransomware
attacks. https://thestack.technology/firmware-attacks-focus/.

[60] William Enck and LaurieWilliams. 2022. Top Five Challenges in Software Supply
Chain Security: Observations From 30 Industry and Government Organizations.
IEEE Security Privacy 20, 2 (2022), 96–100. https://doi.org/10.1109/MSEC.2022.
3142338

[61] Hugging Face. [n.d.]. Dataset Cards. https://huggingface.co/docs/hub/datasets-
cards. Accessed: 2023-29-03.

[62] FOSSA Inc. [n. d.]. A Practical Guide to CycloneDX. https://fossa.com/learn/
cyclonedx.

[63] FOSSA Inc. 2023. CycloneDX vs SPDX. https://www.youtube.com/watch?v=
IQledp8WccU.

[64] GRGangadharan, VincenzoD’Andrea, StefanoDe Paoli, andMichaelWeiss. 2012.
Managing license compliance in free and open source software development.
Information Systems Frontiers 14 (2012), 143–154.

[65] GAO. 2016. Federal Agencies Need to Address Aging Legacy Systems. https:
//www.gao.gov/assets/files.gao.gov/assets/gao-16-696t.pdf.

[66] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman
Vaughan, Hanna Wallach, Hal Daumé Iii, and Kate Crawford. 2021. Datasheets
for datasets. Commun. ACM 64, 12 (2021), 86–92.

[67] Google. 2021. Understanding the Impact of Apache Log4j Vulnerabil-
ity. https://security.googleblog.com/2021/12/understanding-impact-of-apache-
log4j.html.

[68] Robert M. Groves, Floyd J. Jr. Fowler, Mick P. Couyper, James M. Lepkowski,
Eleanor Singer, and Roger Tourangeau. 2009. Survey Methodology, 2nd edition.
Wiley.

[69] GuardRails. 2023. What is a Software Bill of Materials, and Why is it Impor-
tant For Security? https://www.guardrails.io/blog/what-is-a-software-bill-of-
materials-and-why-is-it-important-for-security/. Accessed: 2023-29-03.

[70] Stephen Hendrick. 2022. Software Bill of Materials (SBOM) and Cybersecurity
Readiness. https://tinyurl.com/293v3xte.

[71] Henk Birkholz, Jessica Fitzgerald-McKay, Charles Schmidt, David Waltermire.
2021. Concise Software Identification Tags. https://www.ietf.org/archive/id/
draft-ietf-sacm-coswid-19.html.

[72] Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia
Chmielinski. 2018. The dataset nutrition label: A framework to drive higher
data quality standards. arXiv preprint arXiv:1805.03677 (2018).

[73] ISO. 2021. ISO/IEC 5962:2021 Information technology — SPDX Specification
V2.2.1. https://www.iso.org/standard/81870.html.

[74] ISO. 2023. ISO/IEC 19770-2:2015. https://www.iso.org/standard/65666.html.

https://cyclonedx.org/about/history/
https://www.iana.org/assignments/uri-schemes/prov/gitoid
https://lists.openchainproject.org/g/main
https://owasp.org/
https://www.softwareheritage.org/
https://spdx.dev/about/
https://www.linuxfoundation.org/
https://wiki.spdx.org/view/Technical_Team/Use_Cases/2.0
https://wiki.spdx.org/view/Technical_Team/Use_Cases/2.0
https://csrc.nist.gov/projects/cyber-supply-chain-risk-management
https://csrc.nist.gov/projects/cyber-supply-chain-risk-management
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.redhat.com/en/topics/security/what-is-cve
https://spdx.github.io/spdx-spec/v2.3/external-repository-identifiers/#f42-gitoid
https://spdx.github.io/spdx-spec/v2.3/external-repository-identifiers/#f42-gitoid
https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/cpe
https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/cpe
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.anchore.com/current/docs/sbom_management/sbom_drift/
https://docs.anchore.com/current/docs/sbom_management/sbom_drift/
https://github.com/CycloneDX/specification
https://tinyurl.com/mt9jwcdx
https://www.itic.org/
https://github.com/package-url/purl-spec
https://spdx.dev/specifications/
https://tinyurl.com/28r3v6e2
https://anchore.com/platform/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://dvc.org/
https://github.com/spdx/spdx-examples/blob/master/example1/spdx2.2/example1.spdx
https://github.com/spdx/spdx-examples/blob/master/example1/spdx2.2/example1.spdx
https://opensource.org/license/mit/
https://mlflow.org/
https://www.qualtrics.com/
https://www.nexb.com/scancode/
https://spdx.org/rdf/spdx-terms-v2.1/objectproperties/dataLicense___1140128580.html
https://spdx.org/rdf/spdx-terms-v2.1/objectproperties/dataLicense___1140128580.html
https://lists.spdx.org/g/spdx
https://cyclonedx.org/specification/overview/
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph#supported-package-ecosystems
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph#supported-package-ecosystems
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph#supported-package-ecosystems
https://spdx.dev/resources/use/
https://tinyurl.com/2p8ujxau
https://euhubs4data.eu/blog/securing-iot-device-with-fboms/
https://billbensing.com/software-supply-chain/history-software-bill-of-material-sbom/
https://billbensing.com/software-supply-chain/history-software-bill-of-material-sbom/
https://minddata.org/bill-of-artificial-intelligence-materials-boaim-Brian-Ka-Chan-AI
https://minddata.org/bill-of-artificial-intelligence-materials-boaim-Brian-Ka-Chan-AI
https://www.bleepingcomputer.com/news/security/ten-malicious-libraries-found-on-pypi-python-package-index/
https://www.bleepingcomputer.com/news/security/ten-malicious-libraries-found-on-pypi-python-package-index/
https://cloudsecurityalliance.org/artifacts/saas-governance-best-practices-for-cloud-customers/
https://cloudsecurityalliance.org/artifacts/saas-governance-best-practices-for-cloud-customers/
https://cyclonedx.org/
https://github.com/CycloneDX/bom-examples/tree/master/HBOM
https://github.com/CycloneDX/bom-examples/tree/master/HBOM
https://github.com/CycloneDX/bom-examples/tree/master/OBOM
https://github.com/CycloneDX/bom-examples/tree/master/OBOM
https://github.com/CycloneDX/bom-examples/tree/master/SaaSBOM
https://github.com/CycloneDX/bom-examples/tree/master/SaaSBOM
https://github.com/CycloneDX/bom-examples/tree/master/SBOM
https://github.com/CycloneDX/bom-examples/tree/master/SBOM
https://cyclonedx.org/capabilities/
https://doi.org/10.1145/1806799.1806824
https://thestack.technology/firmware-attacks-focus/
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/MSEC.2022.3142338
https://huggingface.co/docs/hub/datasets-cards
https://huggingface.co/docs/hub/datasets-cards
https://fossa.com/learn/cyclonedx
https://fossa.com/learn/cyclonedx
https://www.youtube.com/watch?v=IQledp8WccU
https://www.youtube.com/watch?v=IQledp8WccU
https://www.gao.gov/assets/files.gao.gov/assets/gao-16-696t.pdf
https://www.gao.gov/assets/files.gao.gov/assets/gao-16-696t.pdf
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://www.guardrails.io/blog/what-is-a-software-bill-of-materials-and-why-is-it-important-for-security/
https://www.guardrails.io/blog/what-is-a-software-bill-of-materials-and-why-is-it-important-for-security/
https://tinyurl.com/293v3xte
https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-19.html
https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-19.html
https://www.iso.org/standard/81870.html
https://www.iso.org/standard/65666.html

BOMs Away! Inside the Minds of Stakeholders:
A Comprehensive Study of Bills of Materials for Software Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[75] Laman Jalilova. 2021. Consolidation Of Cern Accelerator Build Infrastructure.
https://cds.cern.ch/record/2778929/files/Laman_Jalilova_CERN_Report.pdf.

[76] Andrew Jamieson. 2020. Quantifying Complexity: The Challenges of Sup-
ply Chain Security. https://www.eetimes.com/quantifying-complexity-the-
challenges-of-supply-chain-security/. Accessed: March 26, 2023.

[77] Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R Schorlemmer, Rohan
Sethi, Yung-Hsiang Lu, George K Thiruvathukal, and James C Davis. 2023. An
empirical study of pre-trained model reuse in the hugging face deep learning
model registry. arXiv preprint arXiv:2303.02552 (2023).

[78] Wenxin Jiang, Nicholas Synovic, Rohan Sethi, Aryan Indarapu, Matt Hyatt,
Taylor R Schorlemmer, George K Thiruvathukal, and James C Davis. 2022. An
Empirical Study of Artifacts and Security Risks in the Pre-trained Model Supply
Chain. In Proceedings of the 2022 ACM Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses. 105–114.

[79] John P. Mello Jr. 2022. SBOMs in the SaaS era: 5 reasons why you should consider
a SaaSBOM. https://tinyurl.com/36pe3vvh.

[80] Josh Bressers. 2022. Fast and Furious: Doubling Down on SBOM Drift. https:
//thenewstack.io/fast-and-furious-doubling-down-on-sbom-drift/.

[81] Barbara A. Kitchenham and Shari Lawrence Pfleeger. 2002. Principles of survey
research part 2: designing a survey. ACM SIGSOFT Software Engineering Notes
27, 1 (2002), 18–20.

[82] Barbara A. Kitchenham and Shari Lawrence Pfleeger. 2002. Principles of survey
research: part 3: constructing a survey instrument. ACM SIGSOFT Software
Engineering Notes 27, 2 (2002), 20–24.

[83] Barbara A. Kitchenham and Shari Lawrence Pfleeger. 2002. Principles of survey
research part 4: questionnaire evaluation. ACM SIGSOFT Software Engineering
Notes 27, 3 (2002), 20–23.

[84] Barbara A. Kitchenham and Shari Lawrence Pfleeger. 2002. Principles of survey
research: part 5: populations and samples. ACM SIGSOFT Software Engineering
Notes 27, 5 (2002), 17–20.

[85] Barbara A. Kitchenham and Shari Lawrence Pfleeger. 2003. Principles of survey
research part 6: data analysis. ACM SIGSOFT Software Engineering Notes 28, 2
(2003), 24–27.

[86] Ravie Lakshmanan. [n. d.]. Researchers Uncover 29 Malicious PyPI Packages
Targeted Developers with W4SP Stealer. https://thehackernews.com/2022/11/
researchers-uncover-29-malicious-pypi.html. Accessed: 2023-27-03.

[87] Ravie Lakshmanan. 2021. Extremely Critical Log4J Vulnerability Leaves Much
of the Internet at Risk. https://thehackernews.com/2021/12/extremely-critical-
log4j-vulnerability.html. Accessed: 2022-05-12.

[88] Ravie Lakshmanan. 2022. Malicious NPM Package Caught Mimicking Material
Tailwind CSS Package. https://thehackernews.com/2022/09/malicious-npm-
package-caught-mimicking.html. Accessed: 2023-27-03.

[89] Ravie Lakshmanan. 2022. Multiple Backdoored Python Libraries Caught
Stealing AWS Secrets and Keys. https://thehackernews.com/2022/06/multiple-
backdoored-python-libraries.html. Accessed: 2023-27-03.

[90] Ravie Lakshmanan. 2022. Researchers Uncover PyPI Package Hiding Mali-
cious Code Behind Image File. https://thehackernews.com/2022/11/researchers-
uncover-pypi-package-hiding.html. Accessed: 2023-27-03.

[91] Genpei Liang, Xiangyu Zhou, Qingyu Wang, Yutong Du, and Cheng Huang.
2021. Malicious Packages Lurking in User-Friendly Python Package Index. In
2021 IEEE 20th International TrustCom. IEEE, 606–613.

[92] Everist Limaj, Edward Bernroider, and Maria Ivanova. 2020. Facing Legacy
Information System Modernization in Scaling Agility in the Banking Industry:
Preliminary Insights on Strategies and Non-technical Barriers. (2020).

[93] Lu Lin et al. 2023. Generating Software Bill of Material for Vulnerability Man-
agement and License Compliance. (2023).

[94] Robert Alan Martin. 2020. Visibility & control: addressing supply chain chal-
lenges to trustworthy software-enabled things. In SSS’20. IEEE, 1–4.

[95] Jeffrey G. Miller and Linda G. Sprague. 1975. Behind the Growth in Materials Re-
quirements Planning. https://hbr.org/1975/09/behind-the-growth-in-materials-
requirements-planning. Harvard Business Review (1975).

[96] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasser-
man, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru.
2019. Model cards for model reporting. In Proceedings of the conference on
fairness, accountability, and transparency. 220–229.

[97] NIST. 2021. CVE-2021-44228. https://nvd.nist.gov/vuln/detail/CVE-2021-44228.
[98] NTIA. 2019. Framing Software Component Transparency: Establishing a Com-

mon Software Bill of Material (SBOM). https://tinyurl.com/ya978te4.
[99] NTIA. 2019. Roles and Benefits for SBOM Across the Supply Chain. https://ntia.

gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf.
[100] NTIA. 2021. SBOM at a Glance. https://tinyurl.com/txyvbhfu.
[101] NTIA. 2021. SBOM Myths vs. Facts. https://tinyurl.com/57rvensd
[102] NTIA. 2021. SBOM Tool Classification Taxonomy. https://ntia.gov/files/ntia/

publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf.
[103] NTIA. 2021. Sharing and Exchanging SBOMs. https://www.ntia.gov/files/ntia/

publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf.
[104] NTIA. 2021. Software Bill of Materials Elements and Considerations. https:

//ntia.gov/sites/default/files/publications/uscc_-_2021.06.17_0.pdf.

[105] NTIA. 2021. Survey of Existing SBOM Formats and Standards. https://www.
ntia.gov/files/ntia/publications/sbom_formats_survey-version-2021.pdf

[106] Phil Odence. 2023. Why you should use SPDX for security. https://www.linux.
com/featured/why-you-should-use-spdx-for-security/.

[107] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020. Backstab-
ber’s knife collection: A review of open source software supply chain attacks.
In DIMVA’20: 17th International Conference, Lisbon, Portugal, June 24–26, 2020,
Proceedings 17. Springer, 23–43.

[108] OpenAI. 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt.
[109] OpenSSF. 2022. Securing Critical Projects Workgroup: List of Projects Identified

as ’Critical’. https://tinyurl.com/sxpeasey.
[110] Sean Peisert, Bruce Schneier, Hamed Okhravi, FabioMassacci, Terry Benzel, Carl

Landwehr, Mohammad Mannan, Jelena Mirkovic, Atul Prakash, and James Bret
Michael. 2021. Perspectives on the SolarWinds incident. IEEE Security & Privacy
19, 2 (2021), 7–13.

[111] Shari Lawrence Pfleeger and Barbara A. Kitchenham. 2001. Principles of sur-
vey research: part 1: turning lemons into lemonade. ACM SIGSOFT Software
Engineering Notes 26, 6 (2001), 16–18.

[112] Martin Pratoussy. 2022. Estab of a new workflow to manage software vulns.
https://cds.cern.ch/record/2826626/files/Report-PRATOUSSY_Martin.pdf.

[113] Alec Radford, JongWook Kim, Tao Xu, Greg Brockman, ChristineMcLeavey, and
Ilya Sutskever. 2022. Robust speech recognition via large-scale weak supervision.
arXiv preprint arXiv:2212.04356 (2022).

[114] Rezilion. 2022. Dynamic SBOM: A Comprehensive Guide. https://www.rezilion.
com/blog/dynamic-sbom-a-comprehensive-guide/.

[115] Dirk Riehle and Nikolay Harutyunyan. 2019. Open-source license compliance in
software supply chains. In Towards Engineering Free/Libre Open Source Software
(FLOSS) Ecosystems for Impact and Sustainability: Communications of NII Shonan
Meetings. Springer, 83–95.

[116] Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli. 2020. Software
provenance tracking at the scale of public source code. Empirical Software
Engineering 25 (2020), 2930–2959.

[117] PS Rusk. 1990. The role of the bill of material in manufacturing systems. Engi-
neering Costs and Production Economics 19, 1-3 (1990), 205–211.

[118] Ryan Naraine. 2022. Big Tech Vendors Object to US Gov SBOM Mandate. https:
//www.securityweek.com/big-tech-vendors-object-us-gov-sbom-mandate/.

[119] Adriana Sejfia and Max Schäfer. 2022. Practical Automated Detection of Mali-
cious npm Packages. arXiv preprint arXiv:2202.13953 (2022).

[120] Neil Sheppard. 2023. SBOMs (Software Bill of Materials): Why Do They Matter?
https://www.leanix.net/en/blog/sboms-matter

[121] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld
Media.

[122] Nathan Wintersgill Oscar Chaparro Massimilano Di Penta Daniel M German
Denys Poshyvanyk Stalnaker, Trevor. 2023. Online replication package. https:
//github.com/TStalnaker44/boms_away_study.

[123] Xin Tan, Kai Gao, Minghui Zhou, and Li Zhang. 2022. An exploratory study of
deep learning supply chain. In Proceedings of the 44th International Conference
on Software Engineering. 86–98.

[124] Wei Tang, Zhengzi Xu, Chengwei Liu, Jiahui Wu, Shouguo Yang, Yi Li, Ping Luo,
and Yang Liu. 2022. Towards Understanding Third-party Library Dependency
in C/C++ Ecosystem. In in ASE’22. 1–12.

[125] Ann R. Thryft. [n. d.]. The Challenges of Securing the Open Source Supply
Chain. https://tinyurl.com/yvsfdxd9

[126] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.
Adding sparkle to social coding: an empirical study of repository badges in the
npm ecosystem. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel
Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM,
511–522. https://doi.org/10.1145/3180155.3180209

[127] Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares-
Vásquez, Daniel German, and Denys Poshyvanyk. 2017. License usage and
changes: a large-scale study on GitHub. Emp. Soft. Eng. 22 (2017), 1537–1577.

[128] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano
Di Penta, Daniel German, and Denys Poshyvanyk. 2015. License usage and
changes: a large-scale study of Java projects on GitHub. In 2015 IEEE 23rd
International Conference on Program Comprehension. IEEE, 218–228.

[129] Boming Xia, Tingting Bi, Zhenchang Xing, Qinghua Lu, and Liming Zhu. 2023.
An Empirical Study on Software Bill of Materials: Where We Stand and the
Road Ahead. arXiv preprint arXiv:2301.05362 (2023).

[130] Henry Young. [n. d.]. SBOMs: Considerable Progress, But Not Yet Ready for
Codification. https://tinyurl.com/y2xzxs8m.

[131] Nusrat Zahan, Elizabeth Lin, Mahzabin Tamanna, William Enck, and Laurie
Williams. 2023. Software Bills of Materials Are Required. Are We There Yet?
IEEE Security & Privacy 21, 2 (2023), 82–88.

[132] Nusrat Zahan, Laurie Williams, Thomas Zimmermann, Patrice Godefroid, Bren-
dan Murphy, and Chandra Maddila. 2021. What are Weak Links in the npm
Supply Chain? arXiv preprint arXiv:2112.10165 (2021).

https://cds.cern.ch/record/2778929/files/Laman_Jalilova_CERN_Report.pdf
https://www.eetimes.com/quantifying-complexity-the-challenges-of-supply-chain-security/
https://www.eetimes.com/quantifying-complexity-the-challenges-of-supply-chain-security/
https://tinyurl.com/36pe3vvh
https://thenewstack.io/fast-and-furious-doubling-down-on-sbom-drift/
https://thenewstack.io/fast-and-furious-doubling-down-on-sbom-drift/
https://thehackernews.com/2022/11/researchers-uncover-29-malicious-pypi.html
https://thehackernews.com/2022/11/researchers-uncover-29-malicious-pypi.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://thehackernews.com/2022/09/malicious-npm-package-caught-mimicking.html
https://thehackernews.com/2022/09/malicious-npm-package-caught-mimicking.html
https://thehackernews.com/2022/06/multiple-backdoored-python-libraries.html
https://thehackernews.com/2022/06/multiple-backdoored-python-libraries.html
https://thehackernews.com/2022/11/researchers-uncover-pypi-package-hiding.html
https://thehackernews.com/2022/11/researchers-uncover-pypi-package-hiding.html
https://hbr.org/1975/09/behind-the-growth-in-materials-requirements-planning
https://hbr.org/1975/09/behind-the-growth-in-materials-requirements-planning
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://tinyurl.com/ya978te4
https://ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://tinyurl.com/txyvbhfu
https://tinyurl.com/57rvensd
https://ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf
https://ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://ntia.gov/sites/default/files/publications/uscc_-_2021.06.17_0.pdf
https://ntia.gov/sites/default/files/publications/uscc_-_2021.06.17_0.pdf
https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-2021.pdf
https://www.linux.com/featured/why-you-should-use-spdx-for-security/
https://www.linux.com/featured/why-you-should-use-spdx-for-security/
https://openai.com/blog/chatgpt
https://tinyurl.com/sxpeasey
https://cds.cern.ch/record/2826626/files/Report-PRATOUSSY_Martin.pdf
https://www.rezilion.com/blog/dynamic-sbom-a-comprehensive-guide/
https://www.rezilion.com/blog/dynamic-sbom-a-comprehensive-guide/
https://www.securityweek.com/big-tech-vendors-object-us-gov-sbom-mandate/
https://www.securityweek.com/big-tech-vendors-object-us-gov-sbom-mandate/
https://www.leanix.net/en/blog/sboms-matter
https://github.com/TStalnaker44/boms_away_study
https://github.com/TStalnaker44/boms_away_study
https://tinyurl.com/yvsfdxd9
https://doi.org/10.1145/3180155.3180209
https://tinyurl.com/y2xzxs8m

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Study Design
	3.1 Survey Design
	3.2 Participant Identification
	3.3 Survey Response Collection and Analysis
	3.4 Interviews Design and Response Analysis

	4 Study Results
	4.1 RQ1: SBOM Creation and Usage
	4.2 RQ2: SBOM Challenges
	4.3 RQ3: Solutions to SBOM Challenges

	5 Threats to Validity
	6 Conclusion
	References

