
Semiautomatic Reverse Engineering Tool on Oracle
Forms Information Systems

Oscar Javier Chaparro Arenas
Code: 02300403

Universidad Nacional de Colombia
Facultad de Ingenieŕıa

Departamento de Ingenieŕıa de Sistemas e Industrial
Bogotá, D.C.

December 2012

Semiautomatic Reverse Engineering Tool on Oracle
Forms Information Systems

Oscar Javier Chaparro Arenas
Code: 02300403

A thesis submitted in partial fulfillment of the

requirements for the degree of
Master in Engineering - Systems and Computing

Advisor
Jairo Aponte, Ph.D

Research line
Software Engineering

Research group
ColSWE: Software Engineering Research Group

Universidad Nacional de Colombia
Facultad de Ingenieŕıa

Departamento de Ingenieŕıa de Sistemas e Industrial
Bogotá, D.C.

December 2012

3

Title in English

Semiautomatic Reverse Engineering Tool on Oracle Forms Information Systems

T́ıtulo en español

Herramienta de ingenieŕıa inversa semiautomática sobre sistemas de información legados
en Oracle Forms.

Abstract: Legacy information systems are systems that have had a long evolution, longer
than the typical turnaround time of the developers in the company. They are essential to
the business and encode large amounts of essential information related to the business
processes. However, continuous changes in the domain of some systems, the lack of strict
maintenance processes, and the turnaround of developers inevitably leads to gradual loss
of knowledge about the system and its domain, most often corroborated by the fact that
external documentation is rarely updated in synch with the code and other artifacts. SIFI,
a financial legacy information system owned by the software development company IT
Consultores S.A.S., presents such a maintenance issues: high coupling, architecture decay,
no formal documentation and loss of domain and implementation knowledge, making its
evolution very difficult. Within this thesis, a reverse engineering tool for Oracle Forms and
PL/SQL information systems was built, aiming at supporting the maintenance process
on SIFI. The tool is able to extract and visualize structural and behavioral information
about the system, and implements the approach we proposed for automatically extracting
structural business rules from legacy databases. The effectiveness of the tool was assessed
under the understanding and maintenance of SIFI, through a survey. The results show
that tool is very useful, as it improves the productivity of developers to complete their
tasks and the maintenance process of SIFI is now easier for them. In addition, the
implemented business rule extraction approach was assessed though a study with 4 ITC
employees. The results show that the recovery technique is practical, while there is
room for improvement, and it will be used as basis for the recovery of additional knowledge.

Resumen: Los sistemas legados son sistemas que han tenido una larga evolución,
más larga que el tiempo t́ıpico de los desarrolladores en una empresa. Estos sistemas
son esenciales para el negocio y contienen grandes cantidades de información sobre los
procesos de negocio. Sin embargo, los cambios continuos en el dominio de algunos
sistemas, la falta de procesos estrictos de mantenimiento, y los cambios de desarrolladores
conducen de manera inevitable a pérdidas graduales de conocimiento del sistema y su
dominio, lo cual es corroborado por el hecho de que la documentación externa es rara vez
actualizada, de acuerdo con el código y otros artefactos. SIFI, un sistema de información
legado desarrollado y mantenido por la empresa de desarrollo de software IT Consultores
S.A.S, presenta tales problemas de mantenimiento: alto acoplamiento, decaimiento de
la arquitectura, sin documentación formal y con pérdida de conocimiento acerca de su
dominio e implementación, lo cual hace que su evolución sea dif́ıcil. En esta tesis se
construyó una herramienta de ingenieŕıa inversa para sistemas de información en Oracle
Forms y PL/SQL, con el objetivo de apoyar el proceso de mantenimiento de SIFI. La
herramienta es capaz de extraer y visualizar información estructural y comportamental
del sistema, e implementa la técnica que hemos propuesto para extraer automáticamente
reglas de negocio estructurales de bases de datos legado. A través de una encuesta se
evaluó la efectividad de la herramienta considerando el mantenimiento y entendimiento

de SIFI. Los resultados muestran que la herramienta es muy útil porque mejora la
productividad de los desarrolladores en completar sus tareas y ahora el proceso de
mantenimiento de SIFI es menos complicado. Asimismo, la técnica de extracción de
reglas de negocio fue evaluada a través de un estudio con 4 colaboradores de ITC. Los
resultados muestran que la técnica es práctica, habiendo posibilidad de mejora, y será
usada como base para recuperar información adicional.

Keywords: Reverse Engineering, Legacy Information Systems, Business Rule Extrac-
tion, Software Maintenance, Software Understanding

Palabras clave: Ingenieŕıa Inversa, Sistemas de Información Legados, Extracción de
Reglas de Negocio, Mantenimiento de Software, Entendimiento de software

Acceptation Note

Thesis Work

Approved

“Laureate mention”

Jury
Andrian Marcus, Ph.D.

Jury
Massimiliano Di Penta, Ph.D.

Advisor
Jairo Aponte, Ph.D.

Bogotá, 10/12/2012

Dedication

This Thesis is dedicated to my parents, professors, fellows and other people who helped
me in different ways to complete this project.

Acknowledgments

For me, this project was an enriching experience from every perspective. From the
professional point of view I acquired new skills in the development of a project and a
product, from a research standpoint, I was able to address a problem in a systematic and
rigorous way; and from the personal standpoint, this project included a high learning
factor regarding the relationship with fellows, colleagues and other people involved.

First of all, I want to thank my parents for helping me to undertake this master
project and to take me to new and deep horizons in my life. They will be in my heart
forever. I also wish to thank my fellows and professors from the university, including
my advisor and friends from the research group, for their ideas, advices, time and
unconditional support in the development of this thesis. They are the best people I’ve
ever met.

Additionally, my sincere thanks to all the people of ITC, including managers, de-
velopers and functional people. This thesis was to support the company but I think their
help was much more than mine. I would like to give special thanks to those in ITC who
believe applied research as a means of solving practical problems, and for those who have
a vision of creating a better world, from a small dimension such as computing.

I want to thank the National University of Colombia and all its people, for con-
tributing to a better country, through the support to research projects. I am happy to
belong to this university and much more to contribute to the development of computing,
specifically to software engineering, even if it is a minimal contribution. Finally, there too
much work to be done in this field. Every day I will be more thirsty for solving research
and engineering problems.

Thank you all.

Oscar Chaparro

Bogotá, November 2012

Contents

Contents I

List of Tables IV

List of Figures V

1. Introduction 1

1.1 Background and justification . 1

1.2 Problem definition . 3

1.3 Thesis Organization . 4

2. Reverse engineering and Business Rules Extraction 5

2.1 Reverse Engineering concepts and relationships . 6

2.1.1 Reverse Engineering and Software Comprehension 6

2.1.2 Reverse Engineering and Software Maintenance 6

2.1.3 Reverse Engineering concepts . 7

2.2 Techniques in Reverse Engineering . 8

2.2.1 Standard techniques . 8

2.2.2 Specialized techniques . 9

2.2.2.1 Programming plans matching . 10

2.2.2.2 Execution traces analysis . 10

2.2.2.3 Module extraction . 12

2.2.2.4 Text processing . 12

2.3 Business Rules Extraction . 13

2.3.1 Manual BRE . 13

2.3.2 Heuristic BRE . 14

2.3.3 Dynamic BRE . 15

I

CONTENTS II

2.4 Summary . 15

3. Automatic Extraction of Structural Business Rules from Legacy
Databases 16

3.1 Business Rules . 17

3.1.1 Definition of Business Rules . 17

3.1.2 Structure of Business Rules . 17

3.1.3 Types of Business Rules . 18

3.1.4 What are not Business Rules? . 19

3.1.5 The Relation between Business Rules and Software Information Sys-
tems . 20

3.2 Extraction of Structural Business Rules . 21

3.2.1 DB - BR Mappings . 21

3.2.2 BR Format and Schema . 23

3.2.3 BRE Algorithm . 25

3.2.4 PP Module Specific Heuristics . 26

3.3 Summary . 28

4. ReTool: An Oracle Forms Reverse Engineering Tool 29

4.1 Oracle Forms Technology . 30

4.2 ReTool’s Architecture . 31

4.3 ReTool’s Components and features . 32

4.3.1 Extractors and Analyzers . 32

4.3.2 Repository . 34

4.3.3 Visualizers . 38

4.3.4 Utilities . 50

4.4 Further details about ReTool . 52

4.5 Limitations and future enhancements . 53

4.6 Summary . 54

5. Evaluation and Discussion 55

5.1 Evaluation of ReTool . 55

5.1.1 Purpose of the survey . 55

5.1.2 Subjects . 55

5.1.3 Survey description . 56

5.1.4 Results . 56

CONTENTS III

5.1.5 Analysis and Discussion . 61

5.2 Evaluation of the BRE technique . 63

5.2.1 Evaluation . 64

5.3 Summary . 67

6. Conclusions 68

6.1 How does ReTool support the maintenance and understanding of SIFI? . . . 68

6.2 Future Work . 69

6.3 Recommendations about the maintenance of SIFI 70

ReTool Evaluation survey 71

Bibliography 74

List of Tables

3.1 Summary of the heuristics used in the BRE algorithm. 27

5.1 Examples of the extracted BR components from the PP module. 64

5.2 Statistics of the extracted BRs and components from the PP module. 65

5.3 Results of the BR evaluation. 65

5.4 Quantitative information about the misunderstood/incorrect rules. 66

IV

List of Figures

2.1 Reverse Engineering process according to [36]. 7

2.2 Modularization process based on clustering/searching algorithms [38]. 12

2.3 Business rules knowledge through abstraction levels. 13

3.1 Business rules structure. 18

3.2 Element of guidance metamodel [44]. 20

3.3 Relationship between information systems and business rules. 20

3.4 DB - BR component mappings. 24

3.5 Implemented BR database model. 25

4.1 Example of a form module of an Oracle Forms application. 30

4.2 General architecture of an Oracle Forms application [3]. 31

4.3 General architecture of ReTool. 32

4.4 Command-line options of the program DB Analyzer. 33

4.5 Comparison of the structure of the form CUSTOMERS and output of the
Forms Parser. 34

4.6 Comparison of the elements of the item COMMENTS and the generated
XML file by the Forms Parser. 35

4.7 Command-line options of the program Forms Analyzer. 36

4.8 Command-line options of the program Dependencies Analyzer. 36

4.9 Example of the repository metamodel, which represents the database tables
and their relational components, of the target system 37

4.10 Graphical User Interface of ReTool Web. 38

4.11 Graphical elements of a box. 39

4.12 Pop-up dialog displayed for a table column FOND DESCRI. 40

4.13 Icons of every type of object in ReTool Web. 41

4.14 ReTool Web’s login page. 41

V

LIST OF FIGURES VI

4.15 Searching page. 42

4.16 Searching results page. 43

4.17 Object References page. 44

4.18 Table References page. 45

4.19 Form References page. 45

4.20 Table Hierarchy page. 46

4.21 Dependencies Tree page. 47

4.22 Call Sequences page. 47

4.23 Package Information page. 48

4.24 Tables-Form page. 48

4.25 Forms-Table page. 49

4.26 SQL Inserts Generation page. 50

4.27 Reverse Engineering Processes page. 51

5.1 Distribution of the survey respondents by working group. 56

5.2 Distribution of the survey respondents by working time. 57

5.3 Level of feature usage of the tool. 57

5.4 Level of tool usage on development tasks. 58

5.5 Degree of tool support in reducing the time to complete tasks. 59

5.6 Degree of tool support in reducing the effort to complete tasks. 59

5.7 Degree of tool support in increasing the precision to complete tasks and
artifacts. 59

5.8 Rating of some quality attributes of the tool. 60

5.9 Status of the received suggestions from the respondents. 60

5.10 Specific categorization of the non provided suggestions. 61

5.11 Categorization of the non provided suggestions. 61

CHAPTER 1

Introduction

1.1 Background and justification

Software evolution is the changing process of software through time. This process includes
the conception phase, the development and maintenance stages, and the phase-out of the
software project and product. Software evolution is an inevitable process because of the
environmental changes, the new emerging concepts and business rules, and the evolu-
tion of technology regarding hardware, software, programming and software engineering
paradigms [9]. From this perspective and depending on the evolutionary strategies applied
to software [9], every software system will eventually be legacy in the future.

Legacy software systems are those that have had a long evolution. These systems
were developed with outdated technologies and paradigms [27][42] and have a large size
in terms of information processing capacity, functionality provided, program components,
lines of code (LOC) and other size metrics. They are often difficult to modify and have
low integration level with other systems [42]. On the other hand, they are essential for
business [9][27] and encode large amounts of essential information related to the business
processes.

The characteristics mentioned above have implications on the evolution of those soft-
ware systems. Continuous changes in the system’s domain, the lack of strict maintenance
processes, and the turnaround of developers inevitably leads to gradual loss of knowledge
about the system (its structure and behavior) and its domain, most often corroborated
by the fact that external documentation is rarely updated in synch with the code and
other artifacts. Consequently, one of the most important problems in the evolution of
legacy systems is the lack of knowledge about them [27]. The most up to date source of
information for recovering this knowledge is the structure, the behavior and the data of
the information system.

These problems have been addressed by several software reverse engineering techniques
and methods [13][27]; Canfora Harman et al. [13] evidence the work and the success in the
area. Reverse engineering is defined by [14] as the analysis of a system in order to identify
its components, relationships and behavior. The field aims at creating system represen-
tations in other forms or at higher abstraction level independent of the implementation.
The main goal of the field [13][47] is supporting software comprehension/understanding,

1

CHAPTER 1. INTRODUCTION 2

software maintenance and software re-engineering. More specifically [14][47], reverse engi-
neering is employed to reduce software complexity, to generate alternative software views
from different architectural perspectives, to retrieve “hidden” information as a consequence
of system long evolution, to detect side effects or non-planned design branches, to synthe-
size software through the generation of high level abstractions, to facilitate software reuse,
to assess correctness and reliability of software systems, and to locate, trace and evaluate
defects or changes quickly.

Additionally, software reverse engineering is a process that consists of four steps [47]:
data extraction from software artifacts, data processing and analysis, knowledge persis-
tence in a repository and presentation of knowledge. The first step is the acquisition of
raw data from several sources of information of the software system. Subsequently, in the
second step, these data are subjected to cleaning, filtering, transforming and structural,
semantic and behavioral analyses. The resulting information of this analysis is stored in
a repository or a knowledge database; and finally, this information is presented to the
user in a graphical or textual way through different software views. In the first step, the
main source of information is the source code, however, there are other sources that are
complementary to this type of information. Specifically, there are three types [13]: static
sources, such as the source code or the system documentation (in general, any other in-
formation that is not produced by the system execution), dynamic sources, which provide
information resulting from the system execution such as execution traces; and historical
sources or information of the system evolution, such as version control repositories.

Reverse engineering is a process of knowledge extraction, where such knowledge is
useful and necessary for other processes. Indeed, its importance lies in the role it has in
other domains where this method is necessary. Examples include software maintenance
and migration. Software maintenance is costly because of the essential properties of the
software; reverse engineering is required for maintaining legacy systems since they are large
and complex, and difficult to modify. In software migration, reverse engineering is the first
step and is used to extract representations of a system at different levels of abstraction and
independent of the implementation. The second step is re-engineering, in which design
transformations are made, leading to new representations and a new implementation of
the system. Sometimes there are merely programming language transformations.

This thesis describes the application of reverse engineering on SIFI (SIstema Fiduciario
Integrado1), which is an information system implemented in PL/SQL and Oracle Forms
technology, and has a life cycle of over fifteen years. The information system is developed
in Oracle Forms, an outdated (obsolete) technology that has several limitations from the
evolutionary point of view. Oracle Forms is an enterprise application technology that
provides a two-layer distributed client-server architecture [55]. The business logic in this
technology is implemented on both client and server through the PL/SQL language, a
language extension to SQL that provides procedural programming to the Oracle database
technology. This type of two-layer architectures has some advantages over one-layer ones
[55], for example, there is a load distribution among clients, the job of the server is executed
under only one context and the performance of the system is often high because of the
high coupling possibility of the system. However, these advantages have some limitations
from the evolutionary point of view [2][55]:

1In English, Fiduciary/Trust Integrated System

CHAPTER 1. INTRODUCTION 3

1. Scalability issues due to the centralized nature of the server and decentralization
of the clients. A modification in the system often implies a large update in all the
clients.

2. Strong coupling since the business logic can be integrated (mixed) with the view (the
graphical user interface) and data management layers, and therefore, the business
logic is difficult to isolate and change.

3. Strong dependence on the tools’ vendor, which is risky if the vendor stops providing
support. Also, these low-layer architectures have very poor portability.

Furthermore, SIFI has a large complexity and size, and therefore, its maintenance,
understanding and evolution are relatively difficult. SIFI is a financial information system
that manages the data and the operations related to investments funds, financial invest-
ments, trusts, accounting, budget, treasury, accounts payable, billing and commissions
portfolio. The system is maintained by a Colombian software development company (i.e.,
IT Consultores S.A.S. or just ITC) and has been deployed for more than fifteen years,
operating in several trust companies (banking companies). It is currently deployed and
used in nine large Colombian trust companies that represent 60% of this market in the
country. The system is developed using Oracle Forms, has 1.400 form modules, 3.200
database tables, 3.500 stored procedures, 700 database views and around 800 KLOC in
the database.

1.2 Problem definition

SIFI has some maintenance issues that make it difficult to change and evolve. Some of
these are:

• SIFI is implemented in Oracle Forms 6i, an obsolete technology that has several
maintenance restrictions (described briefly above).

• The system has high coupling between structural objects, such as database tables,
and behavioral objects, such as database packages and procedures.

• The architecture of the system has decayed over time, mainly because of a uncon-
trolled maintenance process.

• The system has no formal documentation about technical and business/domain as-
pects of the system. There are no traceability links between artifacts either.

• The knowledge about the system has remained mainly within two groups of people:
the technical group, who knows SIFI’s architecture, and the business group, who
knows the business processes supported by SIFI. The problem is that when people
leave the company, a loss of knowledge about the system and the business occurs.

Then, the problem addressed by this thesis is synthesized in two questions:

• How can we support SIFI’s maintenance and understanding processes?

• How can we extract business information from SIFI, such as business rules?

CHAPTER 1. INTRODUCTION 4

In this sense, a reverse engineering process is required to tackle these problems, in
such a way that structural, behavioral and business information of the system is extracted
from the source code and other sources of information. The resulting information and
knowledge of this process will be oriented to support the evolving tasks on the system.

The main contribution of this thesis is to create a reverse engineering tool for Oracle
Forms and PL/SQL information systems. Specifically, reverse engineering techniques are
implemented for the extraction of system structural and behavioral information, and a
Business Rules Extraction technique is proposed and developed. The effectiveness of
the tool to support the understanding and maintenance of SIFI was confirmed by the
evaluation carried out. Moreover, this work resulted in a list of recommendations about
how the maintenance process on SIFI should be addressed by the company.

The reason for creating a tool is that the company is interested in obtaining all the
possible knowledge from this reverse engineering process, considering the implications of
performing this process and the fact that the company is planning to migrate SIFI to a
web technology.

1.3 Thesis Organization

This document is structured as follows:

• Chapter 2 presents the concepts, methods, and motivation for performing reverse
engineering and business rules extraction.

• Chapter 3 describes the proposed method for extracting business rules from legacy
databases.

• The reverse engineering tool we created is described in detail in Chapter 4.

• Chapter 5 discusses the results of the tool evaluation. In the same way, the evaluation
results of the business rule extraction technique are described thoroughly.

• Finally, this document presents the conclusions, future work and recommendations
about the maintenance process on SIFI in Chapter 6.

CHAPTER 2

Reverse engineering and Business Rules

Extraction

Software Reverse Engineering is a field that consists of techniques, tools and processes
to get knowledge from software systems already built. The main goal of this discipline
is to retrieve information about how a software system is composed and how it behaves
according to the relations of its components [14]. Reverse Engineering aims at creating
representations of software in other forms or in more abstract representations, independent
from the implementation, e.g., visual metaphors or UML diagrams. Techniques in the field
are employed for many purposes [14]: to reduce system complexity, to generate alternative
views of software from several architectural perspectives, to retrieve “hidden” information
as a consequence of a long evolution of systems, to detect side effects or non-planned
design branches [47], to synthesize software, to facilitate reuse of code and components, to
assess the correctness and reliability of systems, and to locate and track defects or changes
faster.

Reverse Engineering (RE) arises as an important area in software engineering, since
it becomes necessary in Software Evolution. Software Evolution is an inevitable process,
basically because most factors related to software (and technology) change [9]: business
factors such as business concepts, paradigms, processes, etc., and technology factors such
as hardware, software, software engineering paradigms, etc. RE is especially important in
regard to legacy systems since they suffer degradation and have a long operational life,
producing a loss of knowledge about how they are built. Generally, the changes in this
kind of software actually happen but are not well-documented. Instead, knowledge about
changes is kept by people, but people are volatile: people leave projects and companies,
and people forget easily. Therefore, knowledge needs to be extracted directly from software
(source code) and its behavior (run-time information), which are both the main sources
of information for RE. In this sense, the general problem is how to extract information or
knowledge from software artifacts.

Reverse Engineering can be considered as a more general field compared to Software
Comprehension, as the first one involves more field actions and not only comprehension of
code (e.g., RE is also used for fault localization), although sometimes the comprehension
process is a secondary result of it. The philosophy about RE is the application of techniques
to know how software works, how it is designed and how this design allows software to

5

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 6

behave the way it does. Consequently, in this process it is perfectly natural that the
comprehension part appears as an indirect consequence or as a motivation.

Since Reverse Engineering is vital for software development processes, this chapter
presents an overview of some techniques in the area. The chapter is organized as follows: in
section 2.1, the needs, benefits and purposes of RE are reviewed, in the context of Software
Understanding and Maintenance. Section 2.2 presents a review of some techniques in the
field.

2.1 Reverse Engineering concepts and relationships

The term Reverse Engineering has been used to refer to methods and tools related to un-
derstanding (or comprehending) and maintaining software systems. RE techniques have
been used to perform systems examination, so in Software Understanding and Mainte-
nance, RE has been a useful medium to support these processes.

2.1.1 Reverse Engineering and Software Comprehension

Software Comprehension is the process performed by an engineer or a developer to un-
derstand how a software system works internally. The understanding process involves the
comprehension of the structure, the behavior and the context of operation of a program.
Along with these attributes, the explanation of problem domain relationships is required
[15]. Understanding is one of the most important problems in Software Evolution; it is said
that between fifty and ninety percent of the effort in maintenance stages is devoted to this
task [40]. Commonly, system documentation is out of date, incorrect or even inexistent,
which increases the difficulty of understanding what the system does, how it works and
why it is coded that way [8].

Several comprehension models and cognitive theories are reviewed by Storey in [49].
It could be said that the main models, or at least the most common, are top-down and
bottom-up. Top-down comprehension strategy is basically the mapping between previous
system/domain knowledge and the code, through formulation, verification and rejection
of hypotheses. In terms of the implementation of a RE tool, this process typically includes
rule matching to detect how code chunks achieve sub-goals within a specific feature or plan
[43]. When performing automatic RE to legacy software, bottom-up approach is commonly
used because top-down approach requires detailed knowledge about the “goals the program
is supposed to achieve” [11]. In bottom-up understanding, software instructions are taken
to infer logic and semantic groups, categories and goals. The automation of this approach
is very complex [11][43] and is not supposed to be solved by a single technique, because
of the semantic gap between code and domain knowledge of a system. Additionally,
developers actually need a variety of functionalities and information that one technique
or implementation may not achieve or provide.

2.1.2 Reverse Engineering and Software Maintenance

Software Maintenance is usually defined as the process made on software after its delivery
to production environment [12]. Common activities in maintenance are correction of de-
fects, performance improvement and software adaptation due to changes in requirements

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 7

or business rules. Software Maintenance is divided into 4 categories [50]: Corrective main-
tenance, Adaptive maintenance, Performance enhancement and Perfective maintenance.

Reverse Engineering comprises the first step in Software Maintenance: the examina-
tion activity. Changes in software are executed later; therefore, RE does not involve the
changing process [12].

2.1.3 Reverse Engineering concepts

Software Reverse Engineering was defined by Chikofsky et al. [14] as the process of
analyzing a system to:

• Identify the system’s components and their inter-relationships, and

• Create representations of the system in another form or at a higher level of abstrac-
tion.

A discussion of this definition is developed in [51]. In this work, authors state that this
definition does not fit to all techniques in the field; for example, program slicing does
not recover system’s components and relationships. This definition does not specify what
kinds of representations are considered and the context in which the process is executed, so
the role of automation and the knowledge acquisition process are not clear. In this sense,
the authors propose a more complete definition: “Reverse Engineering includes every
method aimed at recovering knowledge about an existing software system in support to
the execution of a software engineering task”.

The process of Reverse Engineering is divided into four phases [36]: Context
Parsing, Component Analyzing, Design Recovering and Design Reconstructing. Figure
2.1 shows the whole process.

Figure 2.1. Reverse Engineering process according to [36].

Asif in [4] presents the elements involved in the Reverse Engineering process:

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 8

• Extraction at different levels of abstraction,

• Abstraction for scaling through more abstract representations,

• Presentation for supporting other process such as maintenance, and

• User specification allowing the user to manage the process, the mappings for trans-
formation of representations, and software artifacts.

Khan et al. [47] defines the general process of Reverse Engineering, which consists in four
phases: data extraction from software artifacts, data processing and analysis, knowledge
persistence in a repository, and presentation of knowledge. The authors also present some
benefits and applications of Reverse Engineering. RE is used:

• To ensure system consistency and completeness with specification.

• To support verification and validation phases.

• To assess the correctness and reliability of the system in the development phase,
before it is delivered.

• To trace down software defects.

• To evaluate the impact of a change in the software (for estimating and controlling
the maintenance process).

• To facilitate the understanding by allowing the user to navigate through system in
a graphical way.

• To speed up the Software Maintenance and Understanding. A requirement of a RE
tool is the fast and correct generation of cross-reference information and different
representations of software.

• To measure re-usability through pattern identification.

RE embraces a broad range of techniques, from simple ones, such as call graphs extraction,
to more elaborated ones, such as architecture recovery. The trends go towards more
sophisticated and automatic methods. The next section presents some techniques in the
field.

2.2 Techniques in Reverse Engineering

Methods or techniques (used indistinctly) in Reverse Engineering are automatic solutions
to one or more problems in the field [51]. This section provides a partial revision of
techniques, divided into two categories: standard and specialized techniques.

2.2.1 Standard techniques

Standard techniques include mostly basic descriptive techniques, such as dependency mod-
els or structural diagrams. The objective of standard techniques is to obtain system struc-
ture and dependencies at different levels of abstraction, by applying basic source code

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 9

analysis and Abstract Syntax Tree (AST) 1 processing. According to [47], a RE tool
typically provides the following views:

• Module charts: they present relationships between system components. A module
is a group of software units based on a criterion. Theoretically, modules must have
a well-defined function or purpose.

• Structure charts: in a general sense, they present software objects categorized
and linked by some kind of relationship, generally, method calls. According to [57]2,
these diagrams also show data interfaces between modules. Examples of structure
charts are entity-relationship models and class diagrams. Actually, module charts
are structure charts.

• Call graphs: they describe calls and dependencies between objects at different
levels of granularity. These diagrams are created by analyzing AST from code. The
level of granularity is set (for instance functions, methods, classes or variables) and
then, the AST is traversed to find the usage of objects. Call graphs are important
for change propagation analysis.

• Control-flow diagrams: at low/medium levels of granularity they present the
systems execution flow, in which control structures (e.g., IF or FOR / WHILE)
guide the flow. Another diagram of this type is the Control Structure Diagram
(CSD) [20], in which source code is enriched through several graphical constructs
called “CSD program components/units”, to improve its comprehensibility.

• Data-flow diagrams: they are graphs that show the flow of data (in parameters
and variables) through features, modules, or functional processes [57].

• Global and local data structures, and parameter lists: these allow going to
a fine-grained level of software.

The automatic extraction of these diagrams involves several operational tasks on code
and its AST. For example, in data flow diagrams, the transformation and the storing
of data must be obtained; in this case every parameter needs to be tracked between and
inside methods or functions to know what operations include them and how they are used.
Before this process, modules need to be determined. In addition, some of these diagrams
are the source of information for techniques such as dependencies analysis of code and
data, and the evaluation of the changes impact in code.

2.2.2 Specialized techniques

Other techniques, called specialized techniques in this chapter, include operations on soft-
ware artifacts that are intended not only to describe software but to extract knowledge
from it. Programming plans matching using artificial intelligence techniques [11], exe-
cution traces processing [22][28], module extraction [37][38], natural text processing [42],
pattern extraction [24], and Business rules extraction [41][42], are some examples. Some
of them are described briefly in this section.

1An AST is a tree representation of the syntactic structure of source code. For example, AST View is
an Eclipse plugin for visualizing AST for java programs: http://www.eclipse.org/jdt/ui/astview/.

2See chapter 15 of [57]: Additional Modeling Tools.

http://www.eclipse.org/jdt/ui/astview/

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 10

2.2.2.1 Programming plans matching

One problem in Reverse Engineering is how to find the semantics (the meaning of) of code.
In the automation of this process the analysis of code identifiers and concept extraction
are almost required. However, another approach is making matches between chunks of
code and programming plans stored in a repository [11][43]. A programming plan is
a ”design element in terms of common implementation patterns” [43]. A plan can be
considered as a programming pattern or template, and can be generic or domain-specific.
Some examples of plans are READ-PROCESS-LOOP and READ-EMPLOYEE-INFO-
CALCULATE-SALARY; the former is a generic plan which means “reading input values
and perform some actions to each value” at implementation level. The latter is a specific
domain plan that is a specialization of the first one because at implementation level is
almost the same as the first plan, but has a more semantic stereotype. This means that
the repository has a set of generic and specialized plans organized in a hierarchy. In [43],
the authors state that the recognition of programming plans against information of the
AST of code is better, in terms of searching cost, if the plan library is highly organized,
each plan has indexing and specialization/implication links to other plans3.

However, the matching task is a NP problem, so the process is computationally ex-
pensive [11]. The work presented in [11] addresses this problem by applying artificial
intelligence techniques. The approach is a two-step process. The first step is a Genetic
Algorithm execution to make an initial filtering of the plan library based on “relaxed”
matching between code chunks [10] and programming plans stored in the library (the
repository). The second step uses Fuzzy Logic to perform a deeper matching. The output
of the whole approach is a ranked set of programming plans according to a similarity value
with a chunk of code.

In summary, the objective to be achieved by these works is to find programming
plans similar to a portion of code. Programming plans are stereotypical patterns of code
(generic or domain-specific patterns), therefore it is possible to assign high level concepts
to programs, once the matching process has been performed.

2.2.2.2 Execution traces analysis

As a complement to Static Analysis in RE, processing of run-time information is commonly
used in what is called Dynamic Analysis. Maybe the most common source is the system
execution trace.

Execution traces analysis refers to execution trace processing to find patterns in traces
that have a specific function. The advantage of traces is that they show the portions of
software that are being executed in a specific execution scenario. In this way, the search
space is smaller than the one in static analysis because the executed portions of code are
the only ones considered.

Two problems are detected in dynamic processing: first, knowledge of the system
is required to perform this analysis, and second, this dynamic analysis produces huge
amounts of information (long traces). The former problem refers to the fact that it is
not possible to capture the (infinite) entire execution domain of a system. If there is no
knowledge about how the system works, using and executing all its functionalities is not

3According to Quilici [11], a plan consists of inputs, components, constraints, indexes and implications.

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 11

possible. If it is not necessary to know about the entire system, and the knowledge about
the use of specific functionality actually exists, this would not be a problem. The latter
problem depends on how the software is built at low level, how the code is instrumented4

and how much information the user needs. Other problems related to dynamic analysis
are low performance, high storage requirement and cognitive load in humans [15].

Object-oriented software has been the most common object of study in traces analysis.
For example, in [22], the problem of identifying clusters of classes is addressed based
on a technique that reduces the “noise” in execution traces through the detection of
what the authors call “temporally omnipresent elements”, which represent execution units
(groups of statements) distributed in the trace. In this sense, noise represents information
that is not specific to a behavior of interest. For this, samples of a trace are taken and
the distribution of each element along the samples is calculated through a measure of
temporal occurrence. To cluster elements, dynamic correlation is used. Two elements are
dynamically correlated if they appear in the same samples, so the measure of correlation
is based on the number of samples in which they occur. The clustering part takes all
elements whose correlation is higher than a fixed threshold, thus grouping elements in
components.

In summary, the noise of traces is removed and then clustering is applied to the filtered
traces. That work presents an industrial experiment of the approach. The system of
study was a two-tier client-server application: the client was a Visual Basic 6 application
of 240 KLOC and the server was comprised of 90 KLOC of Oracle PL/SQL (Procedural
Language/Structured Query Language) code. The client code was instrumented since
no trace generation environment was found, and in the case of the server, Oracle tracing
functions were used. The system was executed over a use-case, producing a trace of 26.000
calls.

Similarly, the authors in [28] define “utility element” as any element in a program
that is accessed from multiple places within a scope of the program. The objective of the
authors is to remove these utility elements or classes from the analysis. This is achieved
by calculating the proportion of classes that call each other (fan-in analysis) iteratively
by reducing the analysis scope or by applying the technique on a set of packages. The
utility-hood metric, U , of the class C is defined as

U = |IN | /(|S| − 1) (2.1)

where S is a set of classes considered in the analysis and IN is a subset of classes
that use C. Besides this metric, the standard score (z-score) was considered to determine
possible utility classes: classes with large and positive z-score values are possible utilities.
Once the filtering is performed, the depiction of components is done by a tool that gener-
ates Use Case Maps 5. In this latter step, calls between classes and conditions of execution
(control-flow statements) are considered.

As it is noticed, the main challenge in execution trace analysis is how to reduce and
process the trace, so the final result is a good abstraction of what a system does under a
specific execution scenario. The main problems to be addressed are the definition of the
information that the traces should have, the metrics and procedures that should be used

4Code instrumentation refers to the use of software tools or additional portions of code in the system,
through which execution traces and behavior information of the system are gathered.

5For more information about this type of models refer to www.usecasemaps.org

www.usecasemaps.org

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 12

for filtering, and the way to analyze and represent the reduced traces so that they can
express knowledge about the system.

Other dynamic analysis works employ web mining [58], association rules and clustering
[35][34][45], and reduction techniques [16]6.

2.2.2.3 Module extraction

Hill Climbing and Simulated Annealing are used to form clusters of components based on
fan-in/out analysis. The approach starts by building a Module Dependency Graph, then
random partitions (clusters) of the graph are formed as the initial clustering configuration,
and later the partitions are rearranged iteratively by changing one component from one
cluster to another. The objective is to find the optimal configuration based on the concepts
of low coupling and high cohesion, which is achieved by considering fan-in/out information.
This was accomplished by maximizing the objective function, which the authors called
Modularization Quality (MQ). The general process is shown in Figure 2.2.

Figure 2.2. Modularization process based on clustering/searching algorithms [38].

2.2.2.4 Text processing

Text processing refers to the processing of source code as text. This implies the processing
of morphological, syntactic, semantic and lexical elements of code. Text processing takes
advantage of identifiers and how statements are organized to extract semantic information
of artifacts: classes, methods, packages, etc. The requirement is that code is well written,
i.e., the identifiers express semantic information of the business, and follow some general
parameters about how they are defined.

In [42], the key-phrase extraction algorithm KEA7 is used to translate business rules
into specific domain business terms, from documentation. For this, they connect docu-

6For more information about dynamic analysis techniques see [15].
7For more information about the KEA algorithm see http://www.nzdl.org/Kea (November, 2012)

http://www.nzdl.org/Kea

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 13

ments to business rules. The key point is that documents contain technical description of
variables, so it is possible to establish a direct mapping between rules and documents.

2.3 Business Rules Extraction

Business Rules Extraction (BRE) is a reverse engineering process for recovering Business
Rules (BR) from software information systems (Figure 2.3). In general, BR are constraints
that define the structure of a business (i.e., structural business rules) and guide the way
a business operates (i.e., operative business rules) [44][52]. BRE is important in software
knowledge acquisition because:

• It is a means for software re-documentation [1] and functionality-code tracing [7].

• It builds BR-Code mappings that can support the understanding of the system [48].

• It supports the validation process for checking that the system fulfills its specification
[7], i.e., that all the business rules are actually implemented [23].

• It is used in software re-engineering and migration [23].

In this section, the Business Rule Extraction related work is reviewed. This revision is the
research background of the proposed approach for extracting structural BRs, described in
the next chapter.

Figure 2.3. Business rules knowledge through abstraction levels.

We overview the BRE work in three categories: manual, heuristic, and dynamic. The
former refers to conduct manual examination of source code for extracting BR, and the
others about performing automatic extraction of rules. Heuristic techniques have focused
on static processing of source code, while dynamic techniques emphasize the processing of
dynamic artifacts, such as, execution traces. In general, automatic BRE has only focused
on the examination of source code and on the identification of language structures or
program sequences that could lead to business rules.

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 14

2.3.1 Manual BRE

Earls et al. [23] present a method for manual BRE on legacy code. The authors mention
two BRE approaches: program-centric and data-centric. The method they propose is
program-centric and focuses on locating and classifying error-processing sections in source
code and the conditions that lead to those sections. The most important conclusion of this
work is that manual BRE requires too much time, especially in large information systems,
but is more accurate compared with existing and proposed automatic tools and methods.

In [54] the authors present an analysis on the impact of human factors in the BRE of
legacy systems and survey additional related work to manual BRE.

2.3.2 Heuristic BRE

Heuristic BRE consists on automatic extraction techniques that take advantage of some
common elements of the source code that could compose BRs. Elements considered in
heuristic BRE are, for example, identifier names, exception raising/handling statements,
and control flow structures. One method generally used in heuristic BRE is program
slicing [56].

The work presented in [30] and [54] focus on identifying business/domain variables
and the application of generalized program slicing for those variables. There are some
important facts to consider from these works. First, the input and output variables are
important because they belong to data flow interfaces in programs; second, control state-
ments are essential for BRE since they guide the program’s execution flow; and third, the
BR representation defines mostly the BR components.

Shekar et al. [46] focus on enterprise knowledge discovery from legacy systems. The au-
thors consider more “semantic” source code elements for performing knowledge discovery.
Examples of the elements are: output messages, semantic relationships between variables
and table columns, variable usages, assignment and control statements, and variables used
in database queries.

In [7], the authors suggest to use error messages, program comments, functions, and
control flow structures. The authors present three steps to extract BRs, based on SBVR
standard: extraction of business vocabulary, creation of rules using vocabulary, and “ac-
tivity interleaving”.

The authors in [41] perform BRE on COBOL legacy systems. They focus on simple
COBOL statements that carry business meaning, such as, calculations and branching
statements. In addition, they use the identifiers and conditions to extract the meaning
and context of BR. The format used for BRs is [conditions] [actions], in which actions are
completed if conditions are satisfied.

In [48], the following four program elements that compose business rules are proposed:
results, arguments, assignments, and conditions. Using program slicing, the authors track
all the assignments of data results from calculations and capture the conditions that trigger
the assignments. In this work, meaningful names of variables is mandatory.

The authors in [53] propose the use of information-flow relations between input/output
variables, statements and expressions to identify domain variables. The approach they
propose is mostly useful on procedural code.

CHAPTER 2. REVERSE ENGINEERING AND BUSINESS RULES EXTRACTION 15

While all these techniques relate to our BRE approach, in as much as they are static,
automated techniques, none of them has the same input and output format as our imple-
mentation, hence we could not use any of them in our work.

2.3.3 Dynamic BRE

The work in [19] and [31] are examples of dynamic BRE. They present process mining
approaches, which are intended to recover decision rules and control flow of systems from
logs and execution traces. According to the authors, the main advantage of analyzing dy-
namic artifacts is that it is possible to detect participants, responsibilities, and concurrent
activities in processes [31]. However, logs and other sources of information should comply
with certain characteristics that make possible to perform process mining.

2.4 Summary

In this chapter we focused on the theoretical background and related work concerning re-
verse engineering and business rules extraction. In the first instance, the RE concepts were
covered, including its definition, its process, and its relationship of software maintenance
and understanding. Later the chapter presents a partial revision of standard and spe-
cialized RE techniques. Some of the standard techniques are implemented in the created
reverse engineering tool we created. Chapter exposes the details about this. Finally, the
BRE related work is reviewed as the research background for the proposed BRE technique,
which is defined and described in detail in the next Chapter.

CHAPTER 3

Automatic Extraction of Structural Business

Rules from Legacy Databases

As described before, ITC has no formal current technical and domain documentation in
SIFI, including of the BRs involved in SIFI’s business processes. The knowledge about the
system has remained mainly within two groups of people: the technical group, who knows
SIFI’s architecture, and the business group, who knows the business processes supported
by SIFI. The problem is that when people leave the company, a loss of knowledge about
the system and the business occurs. To mitigate this problem the company has started a
reverse engineering process in which BRE is one of the most relevant steps. This Chapter
reports the first steps of this process: an approach for extracting structural BRs from
legacy databases.

In order to define the BRE approach, we performed a revision of the BR concepts,
their characteristics and categorization, based on the Semantics of Business Vocabulary
and Business Rules (SBVR) standard [5][26]. Then, we analyzed the structural database
(DB) components of SIFI and the BR concepts to define a mapping among them, using
basic heuristics. Finally, we defined a BR format, following the SBVR methodology for
the extraction of rules. Our technique extracted 870 BRs from the SIFI databases. Four
employees of ITC analyzed 300 of the rules and found that 29% of recovered rules are
correct structural business rules, 36% correspond to implementation rules, and 35% are
incomplete or incorrect rules. We further analyzed with the four evaluators the incom-
plete/incorrect rules to identify ways to improve them. The recovery technique proves to
be practical, while there is room for improvement, and it will be used as basis for the
recovery of additional knowledge.

The chapter presents first background information on BRs, followed by the definition of
our approach for BRE. The evaluation process and the results are presented and discussed
in Chapter 5.

16

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES17

3.1 Business Rules

Business rule is a common term in business and software design. Intuitively, we consider
BR as what the business and software does or operates. Although this conception is not
wrong, it is quite inaccurate.

3.1.1 Definition of Business Rules

A rule is an explicit regulation or principle that governs the conduct or procedures within
a particular area of activity, defining what is allowed. A business rule is a rule under
business jurisdiction, that is, a rule that is enacted, revised and discontinued by the
business [26][44]. For example, the “law” of gravity can affect a particular business, but
it is not a business rule because the business cannot govern it; instead, the business may
create rules for adaptation or compliance.

Business rules guide the behavior or action of a particular business and serve as crite-
rion for making decisions, as they are used for judging or evaluating a behavior or action.
They shape the business (i.e., the business structure) and constraint processes (i.e., the
behavior of the business), to get the best for the business as a whole [29][44]. This means
that business rules must be defined and managed in an appropriate way to guide the
business to an optimal state.

3.1.2 Structure of Business Rules

OMG’s Semantics of Business Vocabulary and Business Rules (SBVR) standard [5][26]
defines the key concepts of BRs:

• Business vocabulary: is the common vocabulary of a business, built on concepts,
terms, and fact types.

• Business rules: they are statements/sentences based on fact types that guide the
structure or operation of a business.

• Semantic formulation: is a way of structuring the meaning of rules through several
logical formulations [26], e.g., logical operators (and, or, if-then, etc.), quantification
states (each, at least, at most, etc.), and modal formulations (It is obligatory or It is
necessary).

• Notation: is the language used to write and express BRs. The SBVR standard
uses three reference notations, namely: SBVR Structured English, RuleSpeak, and
Object-Role Modeling.

Business rules are composed of a structured business vocabulary [44], which provides them
with meaning and consistency. Structured business vocabulary comprises the following
elements [29][44]:

• Noun concepts: they are represented by terms of the business. They are elemental,
often countable and non-procedural. For instance, Currency, Country, Customer,
Operational Cost, etc.

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES18

• Instances: they are “examples” of noun concepts. Instances are always from the
real world, not in a model. For example, Euro, United States, etc.

• Fact types: they are connections of concepts made by verbs or verb phrases. They
give structure to the business vocabulary, recognize known facts and organize knowl-
edge about results of processes. Common shapes or classes of fact types are cate-
gorizations (e.g., Current Account is a category of Bank Account), properties (e.g.,
Bank Account has Balance), compositions (e.g., Bank is composed of Customers and
Funds) and classifications (e.g., Euro is classified as Currency). Fact types also can
be categorized by arity, which is the number of noun concepts in the fact type.

The structured business vocabulary can be represented in many forms. Ontologies or
UML class diagrams are examples of such forms; they can be used for representing and
structuring the vocabulary and the knowledge about a business domain.

Through semantic formulations, business rules add a sense of obligation or necessity
and remove degrees of freedom to the structured business vocabulary [44] (see Figure
3.1). For example, for the fact type Bank Account has Account ID, a business rule could
be A Bank Account must have only one Account ID. In this case, the business rule has
quantifiers (A, only one) and an operative modal keyword (must) that restricts the fact
type. Another form to express the same business rule is: It is necessary that a Bank
Account has exactly one Account ID. In this case, the rule has the structural prefix modal
keyword it is necessary that and the quantifiers a and exactly one.

Figure 3.1. Business rules structure.

Although business rules can be expressed in several forms, it is required to follow
only one specific notation, such as SBVR Structured English or RuleSpeak. Even so,
and regardless the way business rules are expressed, they must be declarative and non-
procedural, i.e., they must define the case/state of knowledge without describing when,
where, or how the case/state is achieved [29][39][44].

3.1.3 Types of Business Rules

There are two types of business rules [5][6][44]:

• Behavioral or operative rules: they govern the behavior or business operations
in a suitable and optimal fashion and, therefore, they are important for modeling

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES19

business processes. These rules always carry the sense of obligation or prohibition,
can be violated directly [44], and not all are automatable. Examples of this kind or
rules are the following:

– Not automatable: “A Customer Service Operator must contact a Customer at
least every month”.

– Automatable: “A Loan below $1000 must be accepted without a Credit Check”.

• Definitional or structural rules: they structure and organize basic business
knowledge. They carry the sense of necessity or impossibility and cannot be vi-
olated directly. Unlike behavioral rules, not all definitional rules are business rules
(e.g., law of gravity or rules of math); however, all of them are automatable. When
evaluating structural rules, usually there are two possibilities: classifications (class
membership) and computations (results). Some examples are:

– Classification: “A Customer is always a Premium Customer if the Customer
has a Balance of more than $1,000,000”.

– Computation: “The Total Balance of a Bank Account is always computed as
the Sum of Transaction Values”.

3.1.4 What are not Business Rules?

Business rules, business policies, and advices are elements of guidance (guidelines) (see
Figure 3.2). Then, what is the difference between them? why are all of them not considered
as business rules? First of all, business rules must be practicable elements of guidance.
Although business policies are guidelines, they are not practicable, so they are not business
rules [44]. For example, the sentence “Compliance to the Customer is our Priority” is not
a BR. Instead, business policies are reduced to practical guidelines, i.e., to business rules
or advices. Advices and business rules are practicable guidelines because they are built
upon fact types, but advices do not remove any degree of freedom from fact types [44]. In
other words, they do not set any obligation or prohibition on business conduct, and any
necessity or impossibility for knowledge about business operations [44]. The following is
an example of an advice: “A Customer Loan may be handled by a Personal Assistant”.

In the same way, the following elements are not business rules:

• Events: they express actions performed by an actor in a specific moment in time. A
business rule can be analyzed to find events where it needs to be evaluated.

• CRUD1 operations: they are events that always result in data rather than a business
rule.

Exceptions are not BRs per se, but violations to rules. However, they are used to formulate
and organize logical and coherent BRs. In a business rule context there should not be
exceptions; instead, well stated business rules.

1Create, Retrieve, Update and Delete.

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES20

Figure 3.2. Element of guidance metamodel [44].

3.1.5 The Relation between Business Rules and Software Information
Systems

Business rules capture the decision logic needed for activities in business processes and pro-
duce multiple events in processes [44]. Typically, software systems model and implement
business process, so we can say that business logic and rules are in source code (see Figure
3.3), at least implicitly. For example, the system messages, when an operative exception
has occurred, have implicit BRs, if they provide the users with guiding messages.

Figure 3.3. Relationship between information systems and business rules.

Business rules are key components within the structure of business processes and soft-
ware models [6][44]. They evaluate facts in a process and can control the basis for changes
in the flows of processes in which decisions appear. At business level, business rules enable
the business to make consistent operative decisions, to coordinate processes, and to apply
specialized know-how in the context of some product/service [44]. At software level, busi-
ness rules guide flows in procedures and constraints the facts allowed. In any case, if a
business rule changes, the business processes and the software modules associated to that

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES21

rule need to be changed [23], in order to restore the compliance with the business rules
[7].

3.2 Extraction of Structural Business Rules

Business rules rely on fact types and, in turn, fact types on business vocabulary. For the
automatic extraction of structural BRs from database components we followed the same
reasoning. First, we extracted business concepts; then, we created fact types by relating
the concepts through verb phrases and; finally, we generated sentences and business rules
by adding quantifiers, modal and logical keywords to fact types. In this process, we tried
to map every structural database component, including tables, columns, constraints and
comments, to the business rules structures, i.e., concepts, verb phrases, fact types and
rules. We defined a set of heuristics for BRE, which is used in an algorithm, and also a
business rule DB model, which represents the format of the extracted rules.

For defining and refining the mappings and heuristics, we analyzed the database of
SIFI. Because of the large size of the system, we decided to start the work on the Pro-
gramming and Payment (PP) module, which is one of the largest modules of the system
and it is used by almost all of the other SIFI modules. The module handles common tasks
in many processes of a trust company: trust tax payments, contracts and invoice pay-
ments, investment discharges, and in general, payments to trust suppliers. We analyzed
the portions of the SIFI database that correspond to the PP module.

3.2.1 DB - BR Mappings

We identified a set of database components to extract BRs from, and defined DB-BR
mappings using basic heuristics (see Fig. 3.4). For this, we analyzed the DB core of the
PP module, composed of 25 tables and considered standard DB elements, so that the
heuristics would work for other systems. The following structural database components
were considered2:

Tables: they often model noun concepts from the business domain. A table represents
a unique concept, which is extracted from its comments and/or its name. For instance,
the table called FD TMOVI stores the movements of trust payments, so the concept of
the table is Trust Payment Movement. Nevertheless, there are tables that only relate
two or more tables (many-to-many relationships), resulting in those that represent verb
phrases, instead of concepts. For example, the table called FD TMVCR represents the
relationship Rejection Cause per Trust Payment Movement. This table only relates the
tables FD TCSRZ (Movement Rejection Cause) and FD TMOVI, thus representing a
relationship. In this case, the table expresses the has relationship and the fact type Trust
Payment Movement has Rejection Cause.

Table columns (attributes): they often model noun concepts and fact types. A
table column also has a unique concept, and its relationship with the table that belong
to, represent a fact type. The comments of columns are used for extracting concepts and
verb phrases. Initially, the fact types that can be created with column concepts are those
of class property. For example, the column MOVI ESTADO, which belongs to the table

2All the examples in this and the next sections are from the PP module. The original data is in Spanish
and we translate here some of the examples.

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES22

FD TMOVI, has the concept State (i.e., Estado in Spanish), so the property fact type
extracted from the column and the table is Trust Payment Movement has State.

Foreign keys/constraints: these constraints represent relationships between table
concepts, i.e., fact types. The verb phrases of these relationships are extracted from the
comments of the tables/columns that the constraints reference. For example, the table
FD TMOVI has a foreign key that references the table called FD TOPER (which has the
concept Trust Movement Operation); therefore, the fact type that represents the foreign
key is Trust Payment Movement generates Trust Movement Operation. In this case, the
verb generates is extracted from the comments of the columns involved in the constraint.

Primary and unique keys/constraints: these constraints are used only to ensure
uniqueness and identification of data. Therefore they do not map to any concept of BR.

Check constraints: they are conditions that always should be satisfied when adding
and updating data in tables. This means they cannot be violated and, therefore, they
often encode structural BR. We found three types of check constraints in the PP module:
non null constraints, check list constraints, and others.
Non null constraints verify that columns always have non null values. A non null constraint
operates only on one column of a table. For example, the table FD TMOVI has a con-
straint that checks that column MOVI ESTADO has non null values (MOVI ESTADO
IS NOT NULL). A BR that can be created, from the constraint, is A Trust Payment
Movement always has a State, which relies on the fact type Trust Payment Movement
has State (created from the concepts of the table and column, and their relationship).
Check list constraints verify that column values always are in a finite list of values. We
found three possibilities regarding the meaning of values: values meaning classes of con-
cepts, states of concepts, or operative parameters. The meaning of the values is automati-
cally determined using the comments of the columns involved in the constraint. For this,
it is expected that the meaning of each constraint value is explicitly defined in the com-
ments.
Regarding the classes of concepts, we used the heuristic that classes are often repre-
sented by nouns. In this case, the nouns corresponding to each value are used to create
categorization fact types. For example, the table called GE TFORMULA (Formula of
Movement Concept) has a column called FORM CLASE (Formula Class) and a check
list constraint with the code

FORM CLASE IN (’CD’ , ’SD ’)

The value ’CD’ corresponds to the concept Discount Formula and the value ’SD’ to the
concept Non-discount Formula. Both concepts are extracted from the nouns in the com-
ments and represent categories of the column concept. Then, the created categorization
fact types are: Discount Formula is a category of Formula Class, and Non-discount
Formula is a category of Formula Class.
Regarding the values that encode states of concepts, the heuristic used was: words
corresponding to each value are verbs in past participle or, in some cases, adjectives. For
instance, the column MOVI ESTADO (table FD TMOVI) is used in the check constraint’s
code

MOVI ESTADO IN (’A ’ , ’ I ’ , ’T ’ , ’P ’ , ’X ’)

where ’A’ is authorized, ’I’ is inserted, and ’X’ is canceled, etc. For this type of check
list constraints, the values are used to build unary fact types, such as: Trust Payment

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES23

Movement is authorized or Trust Payment Movement is canceled .
Regarding values that mean operative parameters, we found that in the PP module
they are used for guiding the operations and processes in the system. In other words, they
do not represent structural knowledge. For example, the column FORM IMP MUNIC
(table GE TFORMULA), with the concept City Tax, is used in the check constraint’s
code

FORM IMP MUNIC IN (’S ’ , ’N ’)

where there are two values: ’S’ (Yes) and ’N’ (No). The column comment indicates an
operative condition that means if the formula should or should not consider City Taxes.
Other check constraints are those that involve any other logical conditions that always
should be satisfied. For example, the column called MOVI VLRMOV (table FD TMOVI),
which is the Movement Value, is used in the check constraint’s code

MOVI VLRMOV >= 0

which means that the value cannot be negative.

Table/column comments: comments are descriptions in natural language about
tables and columns in the database. They are used to extract noun concepts and fact
types related to all the other DB components. When comments are not available in the
database, concepts and fact types must be manually assigned or extracted from other
sources, such as labels in the presentation layer of the information system.
In the case of SIFI, we were able to automatically identify the concepts of tables and
columns from their comments (in most cases), using a Part-Of-Speech (POS) tagger - we
used the TreeTagger3, which works for Spanish. By analyzing the DB comments of the PP
module, we also realized that comments often contain more than one noun or composed
nouns; thus, based on some informal tests we made about the completeness of the concept
regarding the number of nouns, we decided to join up to three nouns to create a concept.
Additionally, for creating fact types, on each column comment we expect to find verbs that
associate concepts. When the column comments only contain nouns, the extracted verb is
the one used for property fact types, i.e., the verb has. When the comments contain verbs,
they are identified with the POS tagger and used to create fact types. For example, for
the fact type Trust Payment Movement generates Trust Movement Operation, the verb
generates is extracted from the comment of the column MOVI OPER (table FD TMOVI).
Finally, the POS tagger was used to identify nouns, verbs in past participle and adjectives,
for establishing the meaning of values in check list constraints.

3.2.2 BR Format and Schema

Based on SBVR Structured English and RuleSpeak, we defined a BR format, which was
implemented in a database schema. The schema represents the basis for the development of
an automated General Rulebook System (GRBS) [44], that allows to store and track all the
knowledge around the BRs, including concepts, fact types, rules, and their relationships.
The general goal of a GRBS is to provide means for the smart governance and a corporate
memory though traceability [44]. Our schema has the same long term goal.

The schema we defined is composed of eight database tables (see Fig. 3.5). Seven
of them model the BR concepts and the other one, the bs t object concept table, models

3TreeTagger can be found at http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES24

Figure 3.4. DB - BR component mappings.

the links between the DB components and noun concepts. As a result, the BR schema
not only models and formats BRs but also provides support for tracking the relationships
between DB and BR components.

According to the schema, concepts and verbs are terms used to compose fact types. In
turn, fact types are complemented with quantifiers and keywords to compose sentences;
and finally, the combination of sentences and keywords, compose BRs. Examples of quan-
tifiers are the following: every, at least, maximum, exactly, more than one, and between.
Keywords are logical (if, only if, and, or, etc.), operative (must, can) or structural (always,
never).

A sentence is composed of two quantifiers, one per fact type concept, and a keyword.
For instance, the sentence A Trust Payment Movement always has a State has the quanti-
fier “a” for both concepts and the structural keyword “always”. In turn, a BR is a sentence
or a composition of two sentences joined together with another keyword. For example, a
BR composed of two sentences is: A Trust Payment Movement only is authorized if the
Movement has no Rejection Causes.

There are two important design elements of the schema: a fact type can be composed
by one or two concepts, having unary and binary fact types only; and in the same way, a
business rule is exclusively composed of one or two sentences. These design decisions were
based on the BR reduction principle expressed in [44]. The principle aims at producing
easily-understood and granular rules that can be independently managed, re-used, and
modified.

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES25

Figure 3.5. Implemented BR database model.

3.2.3 BRE Algorithm

The BRE algorithm has two parts: (1) extraction and processing of concepts and fact
types; and (2) creation of the business rules. The input of the algorithm is a list of tables
of the target system (in this case SIFI), which are processed one by one, and the output
is a set of persisted concepts, fact types, and rules, following the schema defined above.
From each table, the comments and the structural elements mentioned above are used.

The first part of the algorithm creates the structural vocabulary, necessary for gener-
ating BRs. The following steps are followed in the first part:

• For each table extract the comments. From the comments extract the nouns. Create
the noun concept by using up to the first three nouns encountered in the comment. If
there are no nouns or no comments, then use the table name as noun concept. Insert
the noun concept in the database (unless already exists). The relationship between
the noun concept and the table is inserted (for DB-BR component tracking).

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES26

• For each column that does not correspond to the foreign or primary keys extract the
comments. If the comment contains the word “if ”, then do not process it, else extract
the nouns. Create the noun concept by using up to the first three nouns encountered
in the comment. If there are no nouns or no comments, then use the column name
as noun concept. Insert the noun concept in the database (unless already exists).
The relationship between the noun concept and the column is inserted.

• For each check constraint in a column. Extract the nouns, the past participle verbs,
and the adjectives from the comment of the column.
If the check constraint is a list constraint (the PL/SQL condition of the constraint is
parsed and verified), then extract the values of the list. If these values only include
“Yes/No”, then exclude the constraint, because they do not represent structural
constraints (instead, they are used for guiding procedures).
If the number of nouns is greater than 2 and the number of past participle verbs is
less than 2, then the values represent classes of the column concept, so insert each
value as a new concept and create a category fact type between this new concept
and the column concept. Else, the values represent states of the column concept, so
insert each value as a verb phrase, thus creating unary fact types.

• Obtain the foreign keys for each table and its parent tables. For each foreign key,
obtain the columns of the table involved in the foreign key. Identify the verbs
from the comments of the columns. If there are no verbs then use the verb phrase
“has/belongs to” as the verb for the fact type created between the table concept and
the concepts of its parent tables. Else concatenate the verbs as the verb phrase of
the fact type.
Repeat the procedure with the children tables.

The second part of the algorithm generates the BRs:

• For each table, its parents and its children tables, do the following: for each column
that only have a non null constraints obtain the fact types related with the column
(see above). For each fact type, create and insert the sentence and the business rule
by adding the keywords “each”, “always”, and/or “one” to the fact type (follow-
ing the schema defined). For example, for the fact type Deposit has Transaction
Value, the keywords are placed always in this way: Every Deposit always has one
Transaction Value.

The summary of the heuristics used in the algorithm is presented in Table 3.1.

3.2.4 PP Module Specific Heuristics

The above algorithm evolved in several iterations, where the results were investigated man-
ually by the developer of the algorithm (not an expert in the domain, yet knowledgeable)
and new heuristics were introduced based on these results. Most of these heuristics were
introduced to make the approach more conservative. Despite that these heuristics could
affect the generalization of the approach, we find them useful for increasing the precision.

For example, three conditions were necessary to detect and avoid columns that repre-
sent operative conditions and non-structural rules: (1) the presence of parametric values
in the check list constraints; (2) the presence of the word “if” in the column comments;

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES27

Table 3.1. Summary of the heuristics used in the BRE algorithm.

Concepts are created from the first three nouns in the
comments of tables/columns.

Concepts are created with the name of the table/column if
it was not possible to identify the nouns in the comments.

Unary fact types are created from check list constraints
which values encode state of concepts, if the column

comments contain more past participle verbs than nouns.

Category fact types are created from check list constraints
which values encode classes of concepts, if the column

comments contain more nouns than past participle verbs.

Property fact types created from columns that do not
belong to FKs or PKs, with the verb “has”.

Property fact types are created with all the verbs extracted
from the comments of the columns that belong to FKs.

Property fact types are created with the verb phrase
“has/belong to” from the columns involved in FK, if it was

not possible to identify the verbs in the comments.

Business rules created are from property fact types of
columns involved in non null constraints (those having the

verb “has”), by adding the keywords “each”, “always”,
and “one”.

and (3) the acceptance of null values in the columns. This allowed us to filter out extracted
BRs from 1,010 to 870.

Another heuristic addresses the presence of the word “which” in the column comments.
We noticed that columns having this word represent elements of business operations. In
other words, they must be used to extract operative BRs (non-structural BRs). The same
case happened with columns that had values meaning states; generally, they represent
completed actions and, therefore, they can be used to create operative BR. In any case,
those concepts and fact types were extracted, and we expect to use them for proposing a
method for extracting operative rules as future work.

Apart from that, we found some problems related with the design of SIFI. An issue
is that some categories between concepts that were detected manually from foreign keys,
could not be extracted automatically. For example, the table called FD TFIDE, which
represents the concept Trust, has a foreign key to the table GE TCIAS, which represents
the concept Company. This foreign key represents a category of Company, resulting in the
categorization fact type Trust is a category of Company. We did not find an automatic
way for extracting these kind of fact types. Apart from that, we found other cases in which
tables have the unique role of relating tables (many-to-many relationships), resulting in
composition fact types. At this stage we did not extract those fact types.

Another fact we noticed was that some presumed nullable columns may not be nullable
in reality. In this case, we assumed the constraints that check the column values are in
higher layers of the information system, i.e., in presentation or application logic layers.
Extracting BR relevant information from those layers is subject of future work.

CHAPTER 3. AUTOMATIC EXTRACTIONOF STRUCTURAL BUSINESS RULES FROM LEGACYDATABASES28

3.3 Summary

In this Chapter we presented the BRE approach for legacy databases. We performed a
revision of the BR concepts based on the SBVR standard, defined DB-BR component
mappings, heuristics, and a business rule format, concluding with the design of a BRE
algorithm, which was implemented in the reverse engineering tool, described in detail in
the next Chapter.

CHAPTER 4

ReTool: An Oracle Forms Reverse Engineering

Tool

ReTool is a static Reverse Engineering tool for Oracle Forms information systems. The
general purposes of the tool are basically two:

• To synthesize all the technical and domain knowledge around the target systems1,
and

• To support the maintenance and understanding processes in Oracle Forms systems.

ReTool also has a specific purpose, which consists on applying these general purposes to
SIFI, the main information system that ITC develops and maintains, in order to tackle
the maintenance issues of the system.

The general features of the tool are:

• Extraction, analysis and persistence of the structure and dependencies of forms and
database objects.

• Simple and advanced searching of objects.

• Graphical browsing of dependencies between objects: object calls, queries and table
references, and sequences of calls.

• Visualization of the structure and components of objects (forms, tables, packages,
etc.)

• Source code visualization of executable PL/SQL objects.

• Data extraction for the target system database, through the generation of SQL
INSERT statements.

• Data export of the processed information to Excel files.

1The target system is the software system subjected to reverse engineering (e.g., SIFI).

29

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 30

The development of the tool was led by the author of this thesis, iteratively and
incrementally, receiving the feedback of the ITC’s developers. The final product is a
modular and useful tool, which effectively has supported them in their tasks since earlier
versions of the tool.

This chapter describes ReTool in detail and is organized as follows: section 4.1 describes
the Oracle Forms Technology (version 6i), emphasizing on the problems of this technology
from the maintenance point of view, sections 4.2 and 4.3 present the tool in detail, including
its architecture, its components and features. Some technical and design aspects of the
tool are described in Section 4.4. Finally, the limitations and some general improvements
to the tool are covered in Section 4.5.

4.1 Oracle Forms Technology

Oracle Forms version 6i is an enterprise application technology that provides a two-layer
distributed client-server architecture [55]. The user interaction with the system is achieved
through several form modules and the input and processed data is stored in an Oracle
Database. Basically, a form module has several visual components (Figure 4.1 shows an
example of a form module): input text fields, checkboxes, buttons, radio buttons, titles,
labels and so on.

Figure 4.1. Example of a form module of an Oracle Forms application.

Each visual element has execution units that are triggered when events occur, for
example, when the user passes the mouse over an element. These execution units are
called triggers (or form triggers) and their behavior is analogous to the database triggers,
those that are executed when there is an insert, update or delete on a database table.
Figure 4.2 presents the general architecture of Oracle Forms. An Oracle Forms application
is composed of one or more forms (form modules), which are the graphical user interface
of the application. Each form module contains one or more data blocks (or just blocks),
and each one includes one or more items. Blocks are created to perform CRUD operations
on data sources, often tables, while items are used to represent the columns of sources

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 31

(tables). Items and blocks have events that are handled by triggers which communicate
with other execution objects: program units in the form, procedures in libraries, and
packages and procedures of the database. Please refer to [3], for more information on the
elements that compose a form module.

Figure 4.2. General architecture of an Oracle Forms application [3].

The business logic in Oracle Forms technology is implemented on both client and server
through the PL/SQL language. This type of two-layer architectures has some advantages
over one-layer ones [55], for example, there is a load distribution among clients, the job of
the server is executed under only one context and the performance of the system is often
high because of the high coupling possibility of the system. However, these advantages
have some limitations from the evolutionary point of view [2][55]:

1. Scalability issues due to the centralized nature of the server and decentralization
of the clients. A modification in the system often implies a large update in all the
clients.

2. Strong coupling since the business logic can be integrated (mixed) with the view (the
graphical user interface) and data management layers, and therefore, the business
logic is difficult to isolate and change.

3. Strong dependence on the tools’ vendor, which is risky if the vendor stops providing
support. Also, these low-layer architectures have very poor portability.

Oracle Forms version 6i has been de-supported by Oracle since 2005. New versions of
this technology include Web deployment, JEE and Web services integration2.

4.2 ReTool’s Architecture

ReTool is organized in several macro components that are common in a reverse engineer-
ing tool [32]: extractors, analyzers, a repository and visualizers (Figure 4.3). The sources

2Source: http://www.orafaq.com/wiki/Oracle_Forms

http://www.orafaq.com/wiki/Oracle_Forms

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 32

of information of the tool are the form modules and the database objects of the target
system. First, the sources are processed by the extractors (Forms Parser, Forms and DB
Analyzers), then, their output data is stored in the repository (Metadata database), later,
the analyzers process and synthesize the extracted data into information in the reposi-
tory (Forms and DB Analyzers), and finally, this information is displayed in a visualizer
(Information Displayer and Web Visualizer). The previous is the general process that a
developer should follow to reverse engineer an Oracle Forms system with ReTool.

Figure 4.3. General architecture of ReTool.

4.3 ReTool’s Components and features

This section describes each component of ReTool regarding its inputs/outputs, features
and quality attributes, and the way it should be used.

4.3.1 Extractors and Analyzers

ReTool has three extractors and analyzers:

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 33

DB Analyzer: this java command-line program processes the target system database,
extracting all its structural objects, including tables, views, constraints, indexes and se-
quences, and executable objects such as PL/SQL executable packages, procedures, func-
tions and triggers. This component also processes the calls between executable objects,
at procedure level and also, the queries and tables that are referenced in them. All this
information is stored in the ReTool repository. Figure 4.4 shows the command-line options
of this program.

Figure 4.4. Command-line options of the program DB Analyzer.

Forms Parser: written in C/C++, this command-line program processes the Oracle
Form Source Code files (FMB files) of the form modules of the target system. It extracts
the structure of a form and creates a hierarchical structure of folders and files with the
properties of every element of a form, including data blocks, items, canvases, program
units, triggers, alerts, list of values (LOVs), record groups and windows. Figure 4.5
shows, on the right, the structure of the form CUSTOMERS (visualized by the Oracle
Form Builder, an Oracle development tool) and, on the left, the folder-files hierarchy that
the Forms Parser creates when executed. Each element of the form has a XML file with
all the properties of the element. Figure 4.6 shows an example of a generated XML file of
the item COMMENTS. The parsing process from FMB files is possible using the Oracle
Forms API [18].

Both analyzers, the DB and Forms Analyzers, use ANTLR Parser Generator v3 to
parse and create the AST of procedures, functions and packages. A PL/SQL grammar
was created based on the contribution by Patrick Higging3.

Forms Analyzer: written in Java, this command-line program processes all the fold-
ers and files generated by the Forms Parser. This program processes all the extracted
components of a form, the calls of executable objects (program units and form triggers)

3http://www.antlr.org/grammar/1279318813752/PLSQL.g

http://www.antlr.org/grammar/1279318813752/PLSQL.g

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 34

(a) Structure of the form. (b) Folder-files hierarchy generated by the
Forms Parser.

Figure 4.5. Comparison of the structure of the form CUSTOMERS and output of the Forms
Parser.

and the queries and tables referenced by these objects. In the same way, the program is
able to extract the referenced tables and views in data blocks of a form. Figure 4.7 shows
the command-line options of the program.

Dependencies Analyzer: written in Java, this command-line program processes all
the calls among the executable objects and the tables referenced by those objects, to
build a dependencies tree. In this way, it is possible to know all the paths (sequences
of calls/dependencies) among objects and ’directly or indirectly’ all the tables that are
referenced by a form and its components. The complete hierarchy of tables are also
processed by this program and stored in the repository. Figure 4.8 shows the command-
line options of the program.

4.3.2 Repository

The ReTool’s repository is a metadata database, designed for the Oracle RDBMS, that
stores every Oracle Forms/Database object and each of their attributes, for example, their
name, the target system they belongs to, the source code in the cases of executable objects,

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 35

(a) Properties of the element. (b) Generated XML file with information of the element.

Figure 4.6. Comparison of the elements of the item COMMENTS and the generated XML file
by the Forms Parser.

the description or comment and their properties, in the case of Oracle Forms objects. The
dependencies between objects are also stored in this database. The repository is divided
in four parts:

• One portion stores the target system database objects and the dependencies between
these objects. All these repository objects of this portion has the prefix “db ”, as
seen in Figure 4.9.

• Other portion includes the tables and objects related with target system forms. All
these objects have the prefix “mm ”.

• The tables and objects related with the parsing processes on the target system
compose other repository portion. All these objects have the prefix “pr ”.

• Finally, the rest includes the tables and objects related with the Business Process
Extraction approach detailed in Chapter 3. All these objects have the prefix “bs ”.

The database also has constraints that ensure the consistency and integrity of data and
indexes that speed up the information retrieval of the visualizers. In addition, there are
several database views that are useful for the visualizers as they condense and summarize
information. Since it is expensive to build complete sequences of calls between two objects,
as the amount of data could be very large, ReTool’s repository implements Materialized
views [25] with indexes that speed up the queries. The dependencies tree generated by
the Dependencies Analyzer is stored in two special tables and the materialized views are
created referencing those tables. There are also tables and materialized views for the
complete table hierarchy. The drawback with the materialized views approach is that
they require to be refreshed in order to include new data in the repository. But the main
advantages of the approach are the speeding of information retrieval and the possibility
to know all the sequences of calls between objects.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 36

Figure 4.7. Command-line options of the program Forms Analyzer.

Figure 4.8. Command-line options of the program Dependencies Analyzer.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 37

Figure 4.9. Example of the repository metamodel, which represents the database tables and their
relational components, of the target system

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 38

4.3.3 Visualizers

The visualizers in ReTool display the information stored in the repository. There are two
independent visualizers:

Information Displayer: written in Java, this command-line program receives a text
string and the output is the information of the structure of the forms that contain the
input text in their names. The program has several arguments that display or omit certain
information; for example, there is an option for hiding the tables that program units and
data blocks reference.

Web Visualizer: written in Java, this web application is the main visualizer and
maybe the most important component of ReTool. Referred here as ReTool Web, it displays
almost all the information stored in the repository under a uniform scheme of visualization.
Most of the web pages of ReTool Web look like the one shown in Figure 4.10, in which
there are several boxes that contain information, each box displaying the result of a fixed
or dynamic query to the repository.

Figure 4.10. Graphical User Interface of ReTool Web.

As shown in Figure 4.11, a box of a web page is composed of some elements:

• A toolbar which contains, from left to right, a blue icon, the title of the box, the
number of displayed objects versus the total of objects of the box and the graphical
element [+].

– The blue icon, if the mouse passes over it, displays a pop-up dialog box with
some options that apply for the entire box. For example, in Figure 4.11, there

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 39

is a button in the pop-up box that exports all the data of the box to an Excel
file (bottom-left corner image).

– The element [+] increases the size of the box to a fixed value, if the user
requires to visualize more data in the box. The graphical element [-] allows
to restore the box size.

• The content of the box include zero or more objects of the target system. Each
one has an icon on the left, depending on the object type, its name, its description
(under the name), and an icon on the right with several options that can be done
on the object. The information presented in a box is retrieved in an on-demand and
a paginated way. Each time the user scrolls down the box, the next page of the
information is retrieved.

When the user clicks on the toolbar of a box, the content of the box is collapsed. If it
is clicked again, then the box returns to its default size.

Figure 4.11. Graphical elements of a box.

Each option for the pop-up dialog of an object (bottom-right corner Figure 4.11) has
a letter with a specific behavior on the object, if clicked:

• I: for all types of objects (forms, tables, packages, etc.), this option displays a pop-up
box with specific information of the current object. For example, for table columns
(Figure 4.12), the information displayed (from top to bottom) is the internal ID of
the object, the object’s name, its type, the type of data of the column, if it is nullable
or not, and the table that it belongs to.

• R: for executable objects (except packages), tables and forms, this option redirects
the user to the web page where the dependencies tree of the current object is being
displayed.

• In: for tables, this option redirects the user to the page that generates the SQL
INSERT scripts of the data stored in the target system database, based on a query
on the current table.

• J: for tables, this option redirects the user to the table hierarchy page of the current
table.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 40

• T: for forms, this option redirects the user to the page where the tables referenced
by the current form are being displayed.

• F: for tables, this option redirects the user to the page where the forms that reference
the current table are being displayed.

• P: for all the components of a form, including data blocks, items, program units,
and so on, this option displays the properties of the current component. This option
is only displayed in the web page of the current form’s structure.

• C: this option displays the source code of an executable object.

• IO: this option applies for executable objects (except packages), tables and forms.
It adds the current object to the session, as a source or target object for the call
sequences feature.

Figure 4.12. Pop-up dialog displayed for a table column FOND DESCRI.

The icons of the objects, according to the type of object, are shown in figure 4.13. The
first three icons are the most used in the application, since the executable objects, forms
and tables are the main and common objects in a Oracle Forms application (at least in
SIFI). In the next paragraphs, every web page of ReTool Web is deeply described.

The first web page of ReTool Web is the login page (Figure 4.14). ReTool Web has
a common authentication mechanism, in which a username and a password should be
provided to access the application and the information it provides. Currently, there is
only one user of the application: retool; more users will be provided and different access
permissions to the application pages. Additionally, the login page has a selector of the
target system in which the user is interested.

When the user has logged in, the searching page, shown in Figure 4.15, is presented to
the user. All the pages of the visualizer have a header and body; the header has a target
system selector and a menu bar with the following elements:

• The home and log out buttons.

• The menus and options for navigating to every page of the application.

• A simple searching input for quick searching. This allows the user to perform a
simple search (on the objects name) in any page of the application.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 41

Figure 4.13. Icons of every type of object in ReTool Web.

Figure 4.14. ReTool Web’s login page.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 42

In the center of the searching page, there is a searching input with the search and
previous results buttons; on the right side of the page, there is a searching/filtering panel
with several options such as, searching in the source code, in the comments of tables, or
in the selected types of objects. Also, it is possible to search for objects that belong to
other objects; for example, it is possible to search for columns of a set of tables by their
names, or items that belong to a form specified by the user.

Figure 4.15. Searching page.

When the user performs a search, by entering a text string and pressing the searching
button or the enter key, the results are shown as in Figure 4.16, where each type of object
is located in a box. On the top-left of the results page, there is a button that takes the
user to the searching form for performing another search.

When the user clicks on the name of an executable object, in the results page or any
other page, the application redirects the user to the Object References page, show in
Figure 4.17. This page has a special distribution:

• In the center of the page the Object Of Interest (OFI) is located.

• On the left column of the page, the boxes show the forms that reference the OFI
and the tables that the OFI retrieves data from. In other words, the left column
and the objects located there express some kind of “input” to the OFI.

• On the right column of the page, the tables that the OFI inserts, updates or deletes
are shown. In this case, the column expresses some kind of “output” or result from
the OFI.

• In the box above the OFI, the executable objects that call the OFI are displayed.

• Finally, the box below the OFI shows the executable objects that are called by the
OFI.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 43

Figure 4.16. Searching results page.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 44

In this page, if the user clicks another executable object, the boxes are updated with the
information of the new current OFI.

Figure 4.17. Object References page.

When the user clicks on the name of a table, the application redirects the user to the
Table References page shown in Figure 4.18, which is very similar to the Object References
page. The Table Of Interest (TOI) is located in the center, the top-left box shows the
executable objects that perform any CRUD operation on the table, and the bottom-left
box displays the table constraints. On the right, the table’s columns and triggers are
shown, while the box above the TOI contains the parent tables of the TOI and the box
below the children tables 4.

Now, when a form is clicked, the application redirects the user to the Form References
page (Figure 4.19). The structure of the Form Of Interest (FOI) is shown on the left box.
When the user expands a node of the tree, the objects are displayed in the table and also
in the top-center box. The DB executable objects that the form references directly or
indirectly are displayed on the bottom-center box. Finally, the properties of the current
form object are shown in the right box. The current form object could be any object of
the FOI, for example a specific data block or item that belongs to the FOI. For this, the
users have to click the “proper” link of the object on the structure tree, or the P button
of the object in the top-center box.

The Table Hierarchy page (Figure 4.20) presents the tree of all children tables of the
TOI in the left box, and the tree of all the TOI’s parent tables in the right box. To access

4A parent of a table is another table that has an integrity constraint (a foreign key) to the former one.
The children table depends on the parent regarding the data it contains.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 45

Figure 4.18. Table References page.

Figure 4.19. Form References page.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 46

this page, the users need to click the J option of a table, in the pop-up dialog, as explained
above.

Figure 4.20. Table Hierarchy page.

One of the most important pages in ReTool Web is the Dependencies Tree page (Figure
4.21). Given a form, executable object or table, the direct or indirect forward dependencies
are shown in the left box, and the reverse dependencies in the right box. In this way, it
is possible to know sequences of calls and references between objects. For example, it is
possible to navigate the references of a form and the references of those references until
the referenced tables. The navigation in the opposite direction is also possible.

ReTool Web is also able to retrieve and display the sequences of calls between a source
object and a target object (Figure 4.22). For this, in every page of the application, the
user can select the source and target objects (only forms, executable objects or tables)
with the IO option in the pop-up dialog of the objects. The selected objects are shown
in the top-left corner of every page and they can be changed for other objects. When the
source and target are already selected, the application enables the button that redirects
to the Call Sequences page, above the source/target dialog. In this page, the source and
the target are located in opposite directions, on the left and on the right, respectively. In
the middle, all the sequences between them are displayed. Each sequence is in a frame in
the middle box.

The application can also display information about a package (Figure 4.23). The
Package Information page has three boxes: the left box displays the forms that reference
the package, the middle box the executable objects (procedures and functions) that belong
to the package, and the right box the tables that are referenced by the package. This page
can be accessed by clicking a package.

The Tables-Form page (Figure 4.24) displays the tables that a form retrieves data (top-
left box), updates (bottom-left box), inserts (top-right box), and deletes from(bottom-right
box). The box below the FOI displays the tables that are data sources of the FOI’s data
blocks. This page is accessed by clicking the T option of a form in its pop-up dialog.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 47

Figure 4.21. Dependencies Tree page.

Figure 4.22. Call Sequences page.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 48

Figure 4.23. Package Information page.

Figure 4.24. Tables-Form page.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 49

In the same way, the Forms-Table page (Figure 4.25) displays the forms that insert
(top-left box), delete (bottom-left box), retrieve data from (top-right box), and update
(bottom-right box) the TOI. The box below the TOI displays the forms containing data
blocks with the TOI as data source. This page is accessed by clicking the F option of a
table in its pop-up dialog.

Figure 4.25. Forms-Table page.

In addition, ReTool is able to generate SQL INSERT statements of the data stored in
the target system database (Figure 4.26). The SQL Inserts Generation page presents the
TOI’s columns on the left to the user, each one with an input box, and the user, after
entering a searching value on one column, presses one of the three buttons (above the
columns) for retrieving the data related with the TOI:

• If the user presses the left button, “parent inserts”, the application retrieves the
data of the TOI and all its parent tables, the parents of its parents, and so on, and
generates a script with the SQL INSERT statements of all the data, preserving the
integrity order in which the statements should be executed. In this way, it is possible
to use the generated script to create the data in an empty database.

• If the user presses the middle button “all inserts”, the application retrieves the data
of the TOI, its parent and children tables. The application considers the cases when
one child table has one or more parent tables different than the current table, so it is
possible to retrieve the entire database (all the data). Thus, this feature should be
used carefully, because retrieving all the data could take too much time and could
also increase the load of the target database.

• If the users press the right button “all + triggers”, then the application does the
same as the middle button, but at the beginning of the script, the statements that
disable the triggers of the tables involved are placed and at the end of the script, the
triggers are enabled again with the proper statements. This prevents some errors
when the SQL INSERTs are executed.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 50

This feature is useful when a developer wants to copy data from one database to another
for performing testing in an isolated way. This page can be accessed by clicking the In
option of a table in its pop-up dialog.

Figure 4.26. SQL Inserts Generation page.

Finally, ReTool Web provides a web page that shows the information of the reverse
engineering/parsing processes performed on the target system (Figure 4.27). On the left
side of the page, all the processes are shown in decreasing order in time, the first process
that appears is the last process performed on the system. On the right side, the general and
the detailed information of the current selected process (by the user) is shown. The general
information displayed includes the process state (in progress, successfully finished, and
finished with errors), the type of processing (DB, Forms, Dependencies), the date and time
when it started, the ending date-time, the spent time and the number of errors/warnings.
The detailed information includes, for every type of object, the current number of objects
processed versus the total number of objects to process, the progress of the processing, its
state and the number of errors/warnings. This page is accessed only in the Administration
menu in the menu bar.

In short, ReTool Web is a simple and versatile visualizer, which includes several pages
that describe the structure of objects such as forms, tables and packages. One of the main
general features of the tool is the object dependencies processing of executable objects,
forms and tables, which can be browsed in several ways: in general, different web pages
present this information, and in particular, the Dependencies Tree and the Call Sequences
pages allow to explore all the direct and indirect dependencies of objects.

4.3.4 Utilities

Additional to the core components, ReTool has several command-line programs that com-
plete the component portfolio of the tool:

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 51

Figure 4.27. Reverse Engineering Processes page.

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 52

• Business Rules Analyzer: performs the extraction of concepts, fact types, and
business rules of the target system. This program is the implementation of the BRE
approach presented in Chapter 3.

• Forms Comparator: compares two forms (generally two versions of the same
form) using the folder-files hierarchies generated by the Forms Parser, and displays
the differences between them regarding data blocks and items. Specifically, this
program displays if the items where added, removed or visibly changed (for example,
if their visibility was changed to hidden).

• Form Tables Displayer: this program displays the tables that a list of forms
reference to, including the CRUD operation on them.

• Lines Counter: counts the total number of LOC of all executable objects of a
target system.

• Paths Displayer: displays the dependency tree of a list of executable objects. This
program does not require refreshing the materialized views.

4.4 Further details about ReTool

ReTool supports the processing of multiple target systems. The extractors, analyzers and
visualizers have several options to change from one system to another. In the case of
the DB, Forms and Dependencies Analyzers the command-line argument -dbs is used for
selecting the system, while in ReTool Web, the selector in the login page and the header
of every page changes the current system. In addition, the tool supports incremental
processing of objects, which means that the tool is able to process the selected type of
objects instead of processing all types (all the objects). In the same way, it is possible to
process and update specific objects of the target system. For example, the analyzers allow
to process Table X, Y and Z of a determined target system, through the command-line
arguments of the programs.

All the extractors and analyzers are multi-threading, which reduces the processing
time of the systems. For an information system as SIFI, the average processing time
of the database is about 30 minutes, for the forms is 3 hours, and for the dependencies
tree 2.5 hours. In total, the average processing time for SIFI is 6 hours. The time for
refreshing the materialized views is about 1-2 hours, depending on the amount of data in
the repository and the server load. Apart from this, the analyzers stores data about the
processing, including the state, the type of processing, the date and time when it started,
the ending date-time, the spent time and the number of errors/warnings. In this way, it is
possible to know, for every type of object, the current number of objects processed versus
the total number of objects to process, the progress of the processing, its state and the
number of errors/warnings. By the way, ReTool is able to process the objects of the target
system regardless an error in specific objects; in other words, the tool is fault-tolerant.

Finally, ReTool is designed and implemented in C/C++, Java, several web technologies
such as HTML, XML, XSP and JavaScript and with ITC specific technologies. The
ReTool’s repository is designed for the Oracle 10g RDBMS, and ReTool Web is supported
for Apache Tomcat 7.0.22 or later. The main operating system supported for ReTool is
Windows XP or later, but it can also work for Linux and other operating systems that

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 53

run the Oracle JVM. The unique running restriction is that the Forms Parser only works
in a Windows machine with Oracle Forms 6i installed.

4.5 Limitations and future enhancements

The ReTool’s features and benefits has been described previously. However, ReTool have
some limitations that will be addressed in the future. The following are some limitations
and enhancements to be done to analyzers and extractors:

• Currently, ReTool detects wrong procedure/function calls when parsing the source
code. For example, the usage of cursors with parameters are taken as function
calls. Although, the false positives are validated and not stored in the repository,
the performance could be improved and the amount of process warnings could be
reduced.

• The target system processing time is high, mainly when refreshing the materialized
views. We need to consider other alternatives for these views.

• Oracle Reports5 is the complement technology of Oracle Forms. SIFI has many
reports implemented on this technology but ReTool does not support it. In the
same way, object libraries are not processed by the tool. We will move forward to
perform reverse engineering on these components.

• In ReTool, the target systems need to be updated periodically in order to keep the
repository with the system last changes. Currently, this updating process is manual:
a user needs to check in the Version Control System (VCS) of the target system to
know the changes performed on the objects and used them as an input to ReTool.
We will develop an automatic way of doing this, through the integration between
ReTool and VCS.

• The ReTool’s command-line tools are not easy to use compared to graphical appli-
cations such as ReTool Web. In some cases, when there are many changes in the
target system and it should be updated in ReTool, the usage of these tools could be
very difficult. Then, we will implement a GUI for the extractors and analyzers.

ReTool Web also needs to be enhanced in some aspects:

• The user may want to customize the visualization of the system; for example, change
the layout of pages or the size of boxes or the objects color. User customization is a
feature for future work.

• Currently, the tool supports a single language: Spanish. We will move forward to
implement Internationalization.

• The tool does not allow the edition of Form and DB objects, including their source
code and properties. We will implement this feature in the tool.

5http://en.wikipedia.org/wiki/Oracle_Reports

http://en.wikipedia.org/wiki/Oracle_Reports

CHAPTER 4. RETOOL: AN ORACLE FORMS REVERSE ENGINEERING TOOL 54

Finally, ReTool should offer, in the future, integration or interoperability with other
systems through exchange formats [32] or any other mechanism, an easy installation,
dynamic analysis to the call sequences feature, as complement to the static analysis, and
a metrics module.

4.6 Summary

ReTool is a reverse engineering tool for supporting the maintenance and understanding
of Oracle Forms information systems. This Chapter described the tool in detail, includ-
ing its architecture, components, features, technical design aspects, limitations and future
improvements. The next Chapter discusses the results of the qualitative evaluation per-
formed with a group of ITC employees.

CHAPTER 5

Evaluation and Discussion

This chapter presents the evaluation of ReTool and the structural Business Rules Extrac-
tion technique.

5.1 Evaluation of ReTool

We performed a qualitative evaluation of ReTool, through a survey, since we were inter-
ested in how the tool has been useful for the people in the company (ITC).

5.1.1 Purpose of the survey

The survey was conducted with the goal of getting feedback from the people that have
used the tool, taking into account some aspects such as:

• The usage of several tool features.

• The everyday tasks that the tool has supported.

• The level of gain in time, effort and precision in the understanding and maintenance
tasks on SIFI.

• The users’ perception about the visual and information quality.

This feedback allowed us to establish how the tool has performed in the maintenance
and understanding of SIFI, and also how the quality of the tool is regarding the usage
from the users. Also, we were able to detect some improvement aspects that constitute
the basis for additional future work.

5.1.2 Subjects

The target people were developers and maintainers of SIFI and SGF1. Forty-two people,
including managers, functional and technical people constituted this group. The people

1SGF (Sistema de Gestión Financiera in Spanish) is another Oracle Forms information system owned
by ITC. The survey also included this system.

55

CHAPTER 5. EVALUATION AND DISCUSSION 56

ranged from junior to senior employees (developers and functional people) and from new
to old employees in the company. However, we selected a subset of all the potential
respondents of the survey, and chose the people that use the tool the most. In total there
were 29 respondents, representing the 69% of the target group.

5.1.3 Survey description

The survey consisted in 11 questions that can be divided into five categories (the complete
questionnaire can be found in the Appendix):

1. Questions to categorize the respondents (2 questions).

2. Questions intended to know the tool usage and the tasks that are supported by the
tool (2 questions).

3. Questions that evaluate the level of improvement in time, effort and precision in the
user tasks (3 questions).

4. Questions that evaluate some quality attributes of the tool (1 question).

5. Questions intended to know some tool improvements that users considered important
to make in the future (3 questions).

5.1.4 Results

The survey was answered by 29 people, 79,3% (23 people) of them corresponds to the
Software Factory Group, the people that perform adaptive and perfective maintenance
on SIFI; 17,2% (5 people) belong to the Support Center Group, the people that perform
corrective maintenance; and 3,4% (1 person) to the Functional Group, which is the group
that know the business domain of SIFI/SGF. The distribution of the respondents is shown
in Figure 5.1.

Figure 5.1. Distribution of the survey respondents by working group.

We also categorize the respondents by their working time in the company (Figure 5.2).
It was found that 44,8% of the people has been working at ITC for more than 2 years,
34,5% have been working between 6 and 12 months, 13,8% between 1 and 2 years, and

CHAPTER 5. EVALUATION AND DISCUSSION 57

the 6,9%, the new people in the company, have been working from less than 6 months.
People with more working time in the company are senior developers, while the rest are
junior (basically, the novices) or between junior and senior developers.

Figure 5.2. Distribution of the survey respondents by working time.

Regarding the usage of the tool general features (Figure 5.3), we found that the feature
most used is the DB/Forms object searching with 96,6% of usage; in other words, 96,6% of
the respondents use this feature. The browsing of object dependencies is used in a 93,1%,
the visualization of the objects structure in a 65,5%, the source code visualization in a
41,4%, the extraction of data from a database in a 20,7%, and finally, the information
export to Excel files is the least used, with a usage of 3,4%.

Figure 5.3. Level of feature usage of the tool.

Figure 5.4 shows the tasks in which the tool has been used and the degree of usage of
the tool in each task. The tool has been mostly used in the measurement of changes impact
with 86,2% of the respondents who use the tool for supporting this task. The technical
understanding of the system (SIFI/SGF) is next with 62,1% of support. Bug detection is

CHAPTER 5. EVALUATION AND DISCUSSION 58

supported in a 37,9%, followed by bug fixing and planning of maintenance tasks, both with
a 34,5% of support. The detection of useless database/Oracle forms objects is next with
the 27,6%. The detection of inconsistencies between the design and the implementation is
another task for which ReTool has been useful with 17,2%, and finally, the least supported
task is the functional understanding of the system with a 6,9%.

Figure 5.4. Level of tool usage on development tasks.

People were also asked about their effectiveness for completing the tasks and artifacts
by using the tool, in terms of time (Figure 5.5), effort (Figure 5.6), and precision (Figure
5.7). Only one person could not answer the questions related with this criterion, because
he started to use the tool when he started to maintain SIFI, so he did not have comparison
criteria.

We found that 14,3% of the respondents said that the degree of tool support in reducing
the time to complete tasks is Very much, and 71,4% said that this support is Much. In
contrast, 14,3% said that there was little tool support, and nobody said (0%) that the tool
was useless at all. Regarding the level of tool support in reducing the effort for completing
tasks, 10,7% and 75% of the respondents said that this support has been Very much and
Much, respectively; and 14,4% of them said that the tool was little useful in this aspect.
Again, no one perceives ReTool as a useless tool. Finally, regarding the precision of tasks
and artifacts, 10,7% of the people rated the tool support as Very much, 64,3% as Much,
25% as Little, and 0% as Nothing.

We also asked the people to rate some quality attributes of the tool in a 1-4 scale,
having 1 as the worst score and 4 as the best one. Figure 5.8 shows the results, having the
best scored attribute: “Ways of searching the information” with a score of 3.45, and the
worst, but well, scored attributes: “Completeness about the displayed information” and
“Level of detail about the displayed information” with a score of 3. Among them are, in
decreasing order, “Speed in the information displaying” with 3.29, “Intuitive information
visualization” with 3.28, “Ways of browsing the DB/Forms objects” with 3.24, “Ways of
visualize the information” with 3.21, and “Tool usability” with 3.07.

Finally, the survey respondents gave us several comments and suggestions about im-
provements of the tool regarding the information it provides or could provide, and the
way of visualizing such information. We received 39 suggestions that were classified into
several categories. However, some suggestions were not considered in this categorization

CHAPTER 5. EVALUATION AND DISCUSSION 59

Figure 5.5. Degree of tool support in reducing the time to complete tasks.

Figure 5.6. Degree of tool support in reducing the effort to complete tasks.

Figure 5.7. Degree of tool support in increasing the precision to complete tasks and artifacts.

CHAPTER 5. EVALUATION AND DISCUSSION 60

Figure 5.8. Rating of some quality attributes of the tool.

(Figure 5.9) because they were beyond the scope of the tool (1 suggestion) so they were
Not accepted, some of them were not clear so we did Not understand them (3 suggestions),
and some of them contained comments about features and attributes that were already
Provided by the tool (7 suggestions). In this way, we classified 28 suggestions in the
following categories (Figure 5.10):

1. Eleven of them (39,3%) were about improvements in the tool usability,

2. Nine (32,1%) about the requirement for additional information that the tool should
provide,

3. Three (10,7%) about providing more semantic information,

4. Two (7,1%) about additional filters,

5. and there was one suggestion about code instrumentation, one about improving the
speed of searching and one about improving the searching feature (3,6% each).

Figure 5.9. Status of the received suggestions from the respondents.

CHAPTER 5. EVALUATION AND DISCUSSION 61

Figure 5.10. Specific categorization of the non provided suggestions.

The Usability and Filtering categories correspond to “Visualization suggestions”, Ad-
ditional and Semantic Info. categories to “Information suggestions”, and the others to
“Feature suggestions”. In this way, we received 13 “Information suggestions”, 13 “Visu-
alization suggestions” and 2 “Feature Suggestions” (Figure 5.11).

Figure 5.11. Categorization of the non provided suggestions.

5.1.5 Analysis and Discussion

Most of the tool users are technical, i.e., developers and maintainers. There are few
functional people using the tool, and we asked only one functional employee to answer
the survey. We think this tool is intended mainly for technical people because all the
information that tool displays is about technical aspects of the target systems. However, we
found that people want more semantic and functional information, which was manifested in
some suggestions. This can also be reflected on the low tool usage for the task “Functional
understating of the system” (Figure 5.4). In any case, junior and senior developers use
the tool as well as new and old employees2.

2By the way, all senior developers have a long working time in the company, while the junior ones a
short time.

CHAPTER 5. EVALUATION AND DISCUSSION 62

Regarding the usage of the tool’s general features (Figure 5.3), the most important fea-
tures have a high level of usage as expected: “Object Searching”, “Dependencies Browsing”
and “Structure visualization”. However, we expected more usage of “Source code visual-
ization”. In the suggestions, we received an improvement request about this feature, and
we think the main reason for this low usage is that the code cannot be edited in the tool,
and the visualization is limited to highlighting and line numbering. On the other hand, we
expected low usage of Extraction of data from a DB because it is a very specific feature
and is not necessary for all the people in the company. The usage of Data export to Excel
files is also low because it is a new feature, so most of the people have not used it yet. In
general, there is a high level of usage of the tool.

The tasks that the tool supported the most were “Measurement of the changes impact”
and “Technical understanding of the system” (Figure 5.4). This was expected because of
the large size and the high coupling of SIFI and SGF, and the fact that there is no doc-
umentation about the systems architecture and domain, so these tasks are very common
in the company. As stated before, the “Functional Understanding of the system” is the
less supported but required task; the rest of the tasks have been supported by the tool in
some cases.

Regarding the effectiveness of tasks, people perceive ReTool as a very useful tool for
supporting their tasks (Figures 5.5, 5.6 and 5.7): 85,7% assigned a positive usefulness
in time and effort reduction versus 14,3% of negative usefulness, and 75% of positive
usefulness for increased precision versus 25% of negative precision. One of the reasons
for the negative perception of usefulness is the usage level of the tool by some people.
The tool usage varies because some people have roles in the development group that only
require the tool in specific scenarios, and in some cases, there are people that have started
using the tool.

In general, the perceived tool quality attributes by the users is high. The tool has
several ways of searching the information, the speed of the information displaying is high,
the information visualization is intuitive, it has several ways of visualizing and browsing
the system objects, the tool is easy to use, it presents enough detail about the information,
and the completeness about the information is high. However, the users suggested several
specific improvements about some attributes and features:

• The tool should allow manual or automatic semantic clustering of objects, and ex-
traction of high level processes.

• In several cases, the granularity should be more specific. ReTool granularity is at
procedure level.

• The tool should calculate quality metrics of the target systems.

• The tool should include processing and displaying of additional DB and Forms ob-
jects, such as sequences or pop-up menus.

• The information visualization should be more integrated and synchronized, and also
more specific through filters.

• The tool should be more intuitive regarding the searching and filtering feature.

Other suggestions were more specific regarding the target system. For example, one user
said: ”The tool should display the version number of the objects”. In SIFI/SGF, each

CHAPTER 5. EVALUATION AND DISCUSSION 63

object has a number that corresponds to the version, but this specific implementation
decision on these systems. ReTool could work for other Oracle Forms systems different
from SIFI and SGF.

In conclusion, ReTool seems to be very useful in the understanding and maintenance
of Oracle Forms applications. It improves the productivity of developers to complete their
tasks through several functionalities such as object searching, visualization and browsing
of object dependencies and structure, visualization of source code, data exporting from a
database to INSERT scripts, and export of the displayed information to Excel files. The
tool has been used in the company for more than one year and it has been successful.
On the other hand, the tool needs to be improved in order to cover some aspects and
requirements that the developers and the functional people request.

5.2 Evaluation of the BRE technique

ReTool implemented the algorithm and DB-BR mappings and heuristics, presented in
Chapter 3, and it is able to extract:

• Concepts from tables and columns, using the comments in the DB.

• Verbs and binary property fact types from the table/column comments and concepts,
and from the tables hierarchy (foreign keys).

• Categorization and unary fact types from check list constraints.

• Structural BR from the extracted fact types, using the non null constraints.

The input of the tool is a list of DB tables and the output is a set of extracted and
stored concepts, verbs, fact types, sentences and business rules. The tool processed the
DB components of the input tables and the tables related to them through the foreign
keys (parent and children tables) and created the output in about 6 minutes of execution
time. Table 5.1 presents some examples of the resulting components. All the extracted
BRs and components can be downloaded from http://www.itc.com.co/WCRE12/3.

Table 5.2 summarizes the results of the BRE tool in the PP module. The 25 core
tables of the module were the input to the tool, resulting in 155 processed tables and
3,447 columns, for a total of 3,602 processed objects. The number of extracted concepts
from tables and columns was 2,508, of which 2,142 correspond to general concepts, i.e.,
concepts of tables and columns, and 366 correspond to categorical concepts, i.e., concepts
extracted from columns involved in check list constraints, which values represent classes
of concepts. In addition, the tool was able to extract 413 verb phrases and a total of 4,005
fact types using the extracted concepts, verbs, and table constraints. 488 unary fact types
were extracted (from check list constraints, whose values represent states of concepts), and
also 366 categorization fact types. The number of extracted binary fact types is 3,517;
114 of those were extracted from foreign keys having verbs in the column comments, and
177 are with no verbs in comments. At the end, 870 sentences and structural BRs were
generated using non null constraints and the extracted fact model. 22% of fact types were
used to create the structural BRs.

3The dataset is available only in Spanish.

http://www.itc.com.co/WCRE12/

CHAPTER 5. EVALUATION AND DISCUSSION 64

Table 5.1. Examples of the extracted BR components from the PP module.

BR component Examples

Concept
Trust Payment Movement,

Operation Check

Unary Fact Type
Treasury Movement Type is

tax-exempt

Binary Fact Type
Expenditure per Contribution

generates Treasury
Movement

Property Fact Type
Credit Note has Specific

Voucher Type

Categorization Fact Type
Fixed Investment

Depreciation is a category of
Investment Depreciation

Structural Business Rule
Every Deposit always has a

Transaction Value

5.2.1 Evaluation

Once we refined the algorithm and obtained these results, we conducted a study with four
of the ITC employees to evaluate the precision of the results, i.e., we wanted to identify
the false positives. At this stage, we cannot assess the recall of the tool, as we do not
know exactly how many BRs are encoded in the system and in the database, hence we
cannot estimate how many we are missing. Since this work is in an industrial context,
usability is critical. Hence, we wanted to make sure that the precision is not too low and
the future users will not have to investigate too many false positives, as that would prove
to be a deterrent in using this tool. This is why we introduced some of the conservative
heuristics described in Chapter 3. After discussing with the maintainers and managers of
the system, we decided that the lowest acceptable precision would be around 20-25%. In
other words, the people interested in the knowledge acquisition were not willing to look
at more than 3-4 wrong rules in order to get a good one (in average).

We selected a subset of the rules extracted by the tool, and asked four employees of the
company to analyze them. The four subjects know well the functionality of the software
system, the module where the business rules were extracted from, and have extensive
experience in the fiduciary business. The objects of the study were 300 rules randomly
selected from the set of 870 rules extracted by the tool (34%).

Specifically, each expert told us if the rules extracted actually embody business knowl-
edge or just system implementation details, or if they do not make sense and why. Since
all the employees have high level of knowledge of the system and the fiduciary business,
each rule was evaluated by only one human expert. Given the limited time resources, we
decided to ensure higher coverage of the results, rather than ensure redundancy to avoid
evaluation mistakes. Thus, each subject judged 75 rules by answering some questions
about them. Given a business rule R, the following questions were asked to each subject:

• Does the rule R make sense?

CHAPTER 5. EVALUATION AND DISCUSSION 65

Table 5.2. Statistics of the extracted BRs and components from the PP module.

Statistic Value

of processed objects
(tables/columns)

3,602

of processed tables 155

of processed columns 3,447

of concepts 2,508

of general concepts
(tables/columns)

2,142

of categorical concepts 366

of verbs 413

of fact types (FT) 4,005

of unary FT 488

of binary FT 3,517

of property FT 3,151

of categorization FT 366

of FT from FK (verbs) 114

of FT from FK (no verbs) 177

of sentences 870

structural BR 870

% of BR from # of FT 22

• If yes, is R a rule of the fiduciary business (domain rule) or a rule of the software
system (implementation rule)?

• If not, please specify what you do not understand about the business rule R.

Of the 300 extracted rules, 195 (65%) of the rules in the sample were deemed correct by the
subjects, while 105 (35%) were considered incorrect (see Table 5.4a). Within the correct
rules, 87 (29%) were judged as business rules, and 108 (36%) as implementation rules (see
Table 5.4b). Overall, the subject were satisfied with the precision of the tool. In average,
one in three rules was a good business rule and one more was a correct implementation
rule, which the subjects also deemed useful (although our focus was strictly on the BRs).
We focused our attention on the false positives (i.e., the 105 rules deemed incorrect).

Table 5.3. Results of the BR evaluation.

Total Correct Rules 195 (65%)

Total Incorrect
Rules

105 (35%)

(a) Number of correct and incorrect rules.

Correct Business Rules 87 (29%)

Correct Implementation
Rules

108 (36%)

(b) Number of correct business and implementation
rules.

As mentioned, we asked the subject to point out (where possible) or speculate what is
wrong with the rules. Table 5.4 summarizes the obtained information. 57 of these rules
were incorrect because their concepts missed some terms essential for their understanding,
or had unnecessary terms that make them difficult to understand. We also found that 7
rules made no sense because the same concept was repeated twice in the rules. In addition,

CHAPTER 5. EVALUATION AND DISCUSSION 66

44 rules contained unclear concepts. We found that this lack of clarity comes from the
comments of tables and columns, from where these ill-defined concepts were extracted by
the tool. Among these incorrect rules, we found that 17 rules contain operative concepts
that should be used for operative rules instead of structural business rules. In these cases,
although the concepts were understood, the rules were incorrect because the keywords that
restricted the fact types are wrong. 2 of the incorrect rules correspond to real business
rules (if fixed) and 13 to implementation rules (if fixed). An incorrect rule may be classified
in several categories of Table 5.4.

Table 5.4. Quantitative information about the misunderstood/incorrect rules.

Rules Num.

Miss/add Terms 57 (54%)

No-sense Rules 7 (7%)

Wrong Comments 44 (42%)

Operative Concepts 17 (16%)

Implementation Rules 13 (12%)

Business Rules 2 (2%)

In summary, we detected three elements that negatively affect the precision of the BRE
approach:

1. Poor quality in some table/column comments for the extraction of verbs, concepts,
categorization, and unary fact types. In the case of categorization and unary fact types,
the existence of table/column comments is mandatory. If comments do not exist in the
DB, the mapping of all BR would be manual or would be extracted from other sources
of information. We found comments with no natural language, such as, “—” or “****”;
comments that specify examples of the concepts instead of the concepts; comments with
incomplete descriptions that miss important terms describing the concepts; comments
with unnecessary and confusing information; comments with erroneous descriptions of the
tables and columns; and comments with spelling errors. Our tool could be also used to
point out places where the comments need to be updated.

2. The precision of the POS tagger, which leads to missing or wrong detected nouns
and verbs in comments. In the same way, this leads to incomplete extraction of concepts,
verbs and fact types. We plan to try out other POS taggers in the future. In some cases,
the POS tagger was misled due to misspellings. We plan to run a spell checker to clean the
comments in the future. A more complex natural language processing of the comments
may be also needed.

3. Decayed architecture of the PP module as a result of the long evolution of the
system. This is reflected in the number of nullable columns and the presence of parametric
and characteristic columns4 in the same table. In some cases, this leads to the extraction
of false structural BRs. In a few cases the tool creates non sense rules where a concept
is associated with itself, such as the rule: “Every Deposit always has a Deposit”. This
happens with columns having a non null constraint and a primary key constraint. We
will modify our algorithm to exclude these cases. Additionally, columns having a non
null constraint and a check list constraint that verify ’S’ (Yes) and ’N’ (No) values were
not excluded. As explained in section 3.2.1, they are used for guiding the operations

4Characteristic columns are those representing basic information of the table’s entity.

CHAPTER 5. EVALUATION AND DISCUSSION 67

and processes in the system, instead of structuring and organizing knowledge about the
business.

5.3 Summary

A survey was conducted with a group of ITC employees to know how the ReTool has
been useful for them. The results show that tool is very useful in the understanding and
maintenance of SIFI and SGF, as it improves the productivity of developers to complete
their tasks and the maintenance process of the systems now is easier. On the other,
the proposed BRE approach was assessed. We conducted a study with four of the ITC
employees to evaluate the precision of the results, i.e., the correct BRs, extracted by the
tool. We found that 29% of recovered rules are correct structural business rules, 36%
correspond to implementation rules, and 35% are incomplete or incorrect rules. The
results show that the recovery technique is practical, while there is room for improvement,
and it will be used as basis for the recovery of additional knowledge.

6

Conclusions

This thesis presents an Oracle Forms reverse engineering tool, called ReTool. The tool
aims at supporting the understanding and the maintenance of legacy information sys-
tems, by providing automatic processing, searching and visualization of the system object
dependencies and structure. Moreover, the tool provides several features and attributes
that make it a versatile and useful tool. The evaluation shows the potential of the tool
regarding the successful use case in the industry. The tool was applied to SIFI, a large
and complex financial legacy system, in which the tool supported several maintenance and
understanding problems of the system, that developers address every day.

Furthermore, we presented an approach for automatically extracting structural busi-
ness rules from legacy databases and its application on a specific legacy system. Specifi-
cally, we performed a revision of the BR concepts based on the SBVR standard, proposed
an approach that considers DB-BR component mappings to extract structural BRs from
databases, applied the approach in an industrial legacy information system, and performed
a preliminary assessment of the extracted components and rules. The results showed that
29% of the extracted rules are correct business rules and 36% are correct implementation
rules. The tool was deemed useful and usable by the evaluators. The evaluation study
revealed some of the causes for the false positives, which we plan to address in future
work (at least in part). While some aspects of our BRE algorithm are generic, most of
the heuristics it uses are specific to the systems we worked on. The generalization of
our solution is beyond the scope of this work, yet we believe that our experience can be
adapted to other existing systems.

6.1 How does ReTool support the maintenance and under-
standing of SIFI?

ReTool implements several variants of reverse engineering standard techniques (see Sec-
tion 2.2.1). ReTool creates structure trees and calls/dependencies graphs that are modeled
by the ReTool’s repository metamodel. The visualization of this information is achieved
through a web application, in which there are boxes that contain different information
that result of specific queries, useful for the developers in their daily tasks. The boxes
layout in several pages organize and present the information to the user, in an on-demand
and scalable way. The object searching feature allows the user to perform quick searches
and also advanced searching. This feature also allows the user to locate objects of interest,
and obtain related information with specific objects or concepts. The page navigation and

68

CHAPTER 6. CONCLUSIONS 69

browsing of object dependencies and structure, allows the user to inquire about depen-
dencies and change effects on objects and also to understand how the target system works
technically. Additionally, the distributed character of the visualizer encourages the users
to test and use it, as it needs to be installed only in one machine.

Regarding the specific problems of SIFI, ReTool provides several ways to support its
maintenance and understanding from developers perspective. All these advantages are
evidenced by the ReTool evaluation in Chapter 5:

• ReTool processes the dependencies of objects automatically in SIFI. Before ReTool,
this job was manual and tedious, because the users had limited tools for this: the
text searching option of development environments and tools such as the Oracle
Form Builder 1.

• ReTool allows the search of Forms and DB objects faster than other tools (for ex-
ample, the Oracle Form Builder or PL/SQL Developer2) and in an integrated way.
This means that users only need one tool for searching objects. Before ReTool, users
needed at least two tools for searching: one for Oracle Forms and one for the Oracle
Database.

• ReTool presents the information about SIFI in an organized, condensed and graphical
way. This allows the users to have different focus points, regarding the information
they need, to get synthesized information, to perform a structured maintenance/un-
derstanding process and to obtain a visual representation of the software system.
The information visualization of SIFI is very important as it addresses the invisibil-
ity and complexity of the system [21][33].

• The BRE approach, implemented in ReTool, is a starting point for re-documenting
the business rules that implement SIFI.

The cost of all the ReTool advantages is the installation/configuration of its compo-
nents and the processing time of the target system.

6.2 Future Work

As future work we will continue developing ReTool, regarding all the future enhancements
that were presented in Section 4.5.

Additionally, we plan to implement and refine all the proposed DB-BR mappings. The
refinement will include:

• The analysis of temporary tables and check constraints with any type of conditions.

• The detection of roles in fact types [44], verb phrases from tables that only relate
other tables (many-to-many relationship), and concept synonyms.

• The extension of the BR format/scheme, in order to represent several type of rules
in other forms, e.g., decision tables as a way for representing parallel business rules
[44].

1See http://www.oracle.com/technetwork/documentation/6i-forms-084462.html and [17] to get in-
formation about this tool

2http://www.allroundautomations.com/plsqldev.html

http://www.oracle.com/technetwork/documentation/6i-forms-084462.html
http://www.allroundautomations.com/plsqldev.html

CHAPTER 6. CONCLUSIONS 70

We also plan to perform a formal qualitative/quantitative evaluation of the approach
in terms of precision and recall, and finally, we will move forward to the extraction of
operative business rules.

6.3 Recommendations about the maintenance of SIFI

This thesis concludes by proposing some recommendations about how the maintenance
process on SIFI should be addressed by the company, based on the experience of the
author and the application of reverse engineering on it using ReTool:

• We encourage the company to perform perfective maintenance on SIFI, in an auto-
matic way if possible. Of course, this is not an easy task, but, at least, it should
be applied to those Oracle Forms/Database objects that are critical due to their
coupling.

• There should be a detailed strategy for this, including specific procedures and aspects
such as software metrics and manual or automatic testing, that assures an effective
refactoring. Reverse engineering and software maintenance tools such as Retool, are
designed for making this task easier.

• In this sense, the adoption of useful maintenance tools is essential. Tools for concept
location, impact analysis, automatic testing, metrics, and so on, need to be included
in the SIFI maintenance process. We know that there are few tools for Oracle
Forms applications, but it is possible to build them. ReTool is one example and one
important step for trying to improve the process on this technology.

• We also suggest the company to define and adopt development and maintenance
standards about SIFI in its specific context. Detailed procedures, methodologies,
roles, best practices and tools should be clearly defined and enacted.

APPENDIX

ReTool Evaluation survey

ReTool is an application that supports the process of understanding and maintenance
of SIFI/SGF. This survey aims to evaluate the usefulness of the tool, from the use and
perception of people working in ITC. The results will improve the tool, in order to support
even more the understanding and maintenance activities in SIFI/SGF. Please answer the
following questions.

1. What is your working group in ITC?

m Functional Group (Investments Funds, Financial Investments, etc.)

m Technical Group of Investments Funds

m Technical Group of Financial Investments

m Financial Technical Group

m Technical Group of Trusts

m Transversal Technical Group

m Web Technical Group

m Support Center Group

m Other:

2. How long ago do you work in ITC?

m Less than 6 months

m Between 6 months and 1 year

m Between 1 and 2 years

m Over 2 years

3. What ReTool features have you used?

r Forms and DB Object Searching

r Object Dependencies Browsing

r Data extraction from the target database, through the generation of INSERT
statements

71

RETOOL EVALUATION SURVEY 72

r Object (forms, tables, packages, etc.) Structure Visualization

r Source code Visualization

r Others:

–

–

4. In your daily work in ITC, the tool has helped you to (check all that apply):

r Understand how SIFI/SGF works technically

r Understand how SIFI/SGF works functionally

r Detect SIFI/SGF defects

r Fix SIFI/SGF defects

r Detect implemented vs. designed inconsistencies

r Detect useless or unused objects, or objects that should be removed

r Measure the impact of changes of SIFI/SGF

r Plan maintenance activities in SIFI/SGF

r Others:

–

–

5. What is the degree of tool support in reducing the time to complete your tasks?
Choose one of the following options.

m Very much

m Much

m Little

m Nothing

6. What is the degree of tool support in reducing the effort to complete your tasks?
Choose one of the following options.

m Very much

m Much

m Little

m Nothing

7. What is the degree of tool support in enhancing the precision to complete your tasks
and artifacts? Choose one of the following options.

m Very much

m Much

m Little

m Nothing

8. Rate the following attributes of the tool from 1 to 4, being 4 the highest score and
1 the lowest

RETOOL EVALUATION SURVEY 73

• Intuitive information visualization

• Tool Usability

• Ways of visualize the information

• Ways of searching the information

• Ways of browsing the DB/Forms objects

• Level of detail about the displayed information

• Completeness about the displayed information

• Speed in the information displaying

9. What improvements do you think should be done to the tool, regarding the displayed
information?

10. What improvements do you think should be done to the tool, regarding the way the
information is displayed?

11. Write down the features, modules or pages of the tool in which you require person-
alized training.

Bibliography

[1] S. Ali, B. Soh, and J. Lai, Rule extraction methodology by using XML for business
rules documentation, Industrial Informatics, 2005. INDIN ’05. 2005 3rd IEEE Inter-
national Conference on, August 2005, pp. 357 – 361.

[2] P. Álvarez and J. A. Bañares, Sistemas de Información Distribuidos, conceptos y
estándares de arquitecturas orientadas a servicios Web., 2006.

[3] L. Andrade, J. Gouveia, M. Antunes, M. El-Ramly, and G. Koutsoukos, Forms2Net -
Migrating Oracle Forms to microsoft .NET, Generative and Transformational Tech-
niques in Software Engineering (R. Lämmel, J. Saraiva, and J. Visser, eds.), Lecture
Notes in Computer Science, vol. 4143, Springer Berlin Heidelberg, 2006, pp. 261–277.

[4] N. Asif, Software reverse engineering process: Factors, elements and features, Inter-
national Journal of Library and Information Science 2 (2010), no. 7, 124–136.

[5] I.S. Bajwa, B. Bordbar, and M. Lee, SBVR vs OCL: A comparative analysis of stan-
dards, Multitopic Conference (INMIC), 2011 IEEE 14th International, IEEE, Decem-
ber 2011, pp. 261 –266.

[6] I.S. Bajwa, M. Lee, and Bordbar B., SBVR Business Rules Generation from Natural
Language Specification, AAAI 2011 Spring Symposium, March 2011, pp. 2–8.

[7] I. Baxter and S. Hendryx, A Standards-Based Approach to Extracting Business Rules,
OMG’s Architecture Driven Modernization Workshop, 2005.

[8] I.D. Baxter and M. Mehlich, Reverse engineering is reverse forward engineering,
Reverse Engineering, 1997. Proceedings of the Fourth Working Conference on, IEEE,
1997, pp. 104–113.

[9] K.H. Bennett and V.T. Rajlich, Software maintenance and evolution: a roadmap,
ICSE ’00: Proceedings of the Conference on The Future of Software Engineering,
ACM, 2000, pp. 73–87.

[10] I. Burnstein and K. Roberson, Automated chunking to support program comprehen-
sion, Program Comprehension, 1997. IWPC ’97. Proceedings., Fifth Iternational
Workshop on, IEEE, 1997, pp. 40–49.

[11] I. Burnstein, R. Saner, and Y. Limpiyakorn, Using an artificial intelligence approach
to build an automated program understanding/fault localization tool, Tools with Arti-
ficial Intelligence, 1999. Proceedings. 11th IEEE International Conference on, IEEE,
1999, pp. 69 –76.

74

BIBLIOGRAPHY 75

[12] G. Canfora and A. Cimitile, Software Maintenance, vol. 2, ch. 2, pp. 15–20, World
Scientific Pub. Co, 2002.

[13] G. Canfora and M. Di Penta, New Frontiers of Reverse Engineering, FOSE ’07: 2007
Future of Software Engineering, IEEE Computer Society, 2007, pp. 326–341.

[14] E. Chikofsky and J. Cross II, Reverse Engineering and Design Recovery: A Taxon-
omy, Software, IEEE 7 (1990), no. 1, 13–17.

[15] B. Cornelissen, Evaluating Dynamic Analysis Techniques for Program comprehension,
Ph.D. thesis, Delft University of Technology, 2009.

[16] B. Cornelissen, L. Moonen, and A. Zaidman, An Assessment Methodology for Trace
Reduction Techniques, Proceedings of the 24th International Conference on Software
Maintenance, IEEE Computer Society, September 2008, pp. 107–116.

[17] Oracle Corporation, Oracle Forms Developer, Form Builder Reference, Volume 1,
Tech. report, A73074-01, 2000.

[18] , Using the Oracle Forms Application Programming Interface (API), Tech.
report, EIT-DE-WP-56, 2000.

[19] R. Crerie, F. Baião, and F. Santoro, Identificacao de regras de negocio utilizando
mineracao de processos, Companion Proceedings of the XIV Brazilian Symposium on
Multimedia and the Web, ACM, 2008, pp. 241–246.

[20] J.H. Cross, T.D. Hendrix, and S. Maghsoodloo, The control structure diagram: An
overview and initial evaluation, Empirical Software Engineering 3 (1998), no. 2, 131–
158.

[21] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour, and Evolution
of Software, Springer, 2007.

[22] P. Dugerdil, Using trace sampling techniques to identify dynamic clusters of classes,
Proceedings of the 2007 conference of the center for advanced studies on Collaborative
research, ACM, 2007, pp. 306–314.

[23] A.B. Earls, S.M. Embury, and N.H. Turner, A method for the manual extraction of
business rules from legacy source code, BT Technology Journal 20 (2002), 127–145.

[24] H. Gall, R. Klösch, and R Mittermeir, Abstract Pattern-Driven Reverse Engineering,
Development and Evolution of Software Architectures for Product Families, Second
International ESPRIT ARES Workshop, 1995, pp. 334–341.

[25] S. Ghandeharizadeh and J. Yap, Materialized Views and Key-Value Pairs in a cache
Augmented SQL System: Similarities and Differences, Tech. report, USC Database
Laboratory, 2002.

[26] Object Management Group, Semantics of Business Vocabulary and Business Rules
(SBVR), v1.0, 2008.

[27] J.L. Hainaut, A. Cleve, J. Henrard, and J.M. Hick, Migration of Legacy Information
Systems, Software Evolution, Springer Berlin Heidelberg, 2008, pp. 105–138.

BIBLIOGRAPHY 76

[28] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge, Recovering Behavioral De-
sign Models from Execution Traces, Software Maintenance and Reengineering, 2005.
CSMR 2005. Ninth European Conference on, IEEE, 2005, pp. 112 – 121.

[29] D. Hay and K. Healy, Defining Business Rules - What Are They Really?, July 2000.

[30] H. Huang, W.T. Tsai, S. Bhattacharya, X.P. Chen, Y. Wang, and J. Sun, Business
rule extraction from legacy code, Computer Software and Applications Conference,
1996. COMPSAC ’96., Proceedings of 20th International, August 1996, pp. 162 –167.

[31] A.C. Kalsing, G.S. do Nascimento, C. Iochpe, and L.H. Thom, An Incremental
Process Mining Approach to Extract Knowledge from Legacy Systems, Enterprise
Distributed Object Computing Conference (EDOC), 2010 14th IEEE International,
IEEE, October 2010, pp. 79 –88.

[32] H. M. Kienle and H. A. Müller, The Tools Perspective on Software Reverse Engi-
neering: Requirements, construction, and Evaluation, Advances in Computers (M.V.
Zelkowitz, ed.), Advances in Computers, vol. 79, Elsevier, 2010, pp. 189 – 290.

[33] R. Koschke, Software visualization in software maintenance, reverse engineering, and
re-engineering: a research survey, Journal of Software Maintenance and Evolution:
Research and Practice 15 (2003), no. 2, 87–109.

[34] D. Lo, Mining specifications in diversified formats from execution traces, Software
Maintenance, 2008. ICSM 2008. IEEE International Conference on, IEE, 2008,
pp. 420–423.

[35] D. Lo, S.C. Khoo, and C. Liu, Mining past-time temporal rules from execution traces,
Proceedings of the 2008 international workshop on dynamic analysis, ACM, 2008,
pp. 50–56.

[36] C. Lu, W. Chu, C. Chang, Y. Chung, X. Liu, and Yang H., Reverse Engineering, vol.
Vol. 2, ch. 18, pp. 447–466, World Scientific Pub. Co, 2002.

[37] S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner, Bunch: a clustering tool for
the recovery and maintenance of software system structures, Software Maintenance,
1999. (ICSM ’99) Proceedings. IEEE International Conference on, IEEE, 1999, pp. 50
–59.

[38] B.S. Mitchell and S. Mancoridis, On the automatic modularization of software systems
using the Bunch tool, Software Engineering, IEEE Transactions on 32 (2006), no. 3,
193 – 208.

[39] T. Morgan, Business Rules and Information Systems: Aligning IT with Business
Goals, Addison-Wesley Professional, 2002.

[40] H.A. Müller, S.R. Tilley, and K. Wong, Understanding software systems using reverse
engineering technology perspectives from the Rigi project, Proceedings of the 1993
conference of the Centre for Advanced Studies on Collaborative research: software
engineering - Volume 1, 1993, pp. 217–226.

[41] E. Putrycz and A. Kark, Recovering Business Rules from Legacy Source code for
System Modernization, Advances in Rule Interchange and Applications (A. Paschke
and Y. Biletskiy, eds.), Lecture Notes in Computer Science, vol. 4824, Springer Berlin
/ Heidelberg, 2007, pp. 107–118.

BIBLIOGRAPHY 77

[42] , Connecting Legacy code, Business Rules and Documentation, Rule Repre-
sentation, Interchange and Reasoning on the Web (N. Bassiliades, G. Governatori,
and A. Paschke, eds.), Lecture Notes in Computer Science, vol. 5321, Springer Berlin
/ Heidelberg, 2008, pp. 17–30.

[43] A. Quilici, A memory-based approach to recognizing programming plans, Commun.
ACM 37 (1994), 84–93.

[44] R.G. Ross, Business Rule Concepts: Getting to the Point of Knowledge, third ed.,
Business Rule Solutions Inc, 2009.

[45] H. Safyallah and K. Sartipi, Dynamic Analysis of Software Systems using Execution
Pattern Mining, Program Comprehension, 2006. ICPC 2006. 14th IEEE International
Conference on, 2006, pp. 84–88.

[46] S. Shekar, J. Hammer, M. Schmalz, and O. Topsakal, Knowledge Extraction in the
SEEK Project Part II: Extracting Meaning from Legacy Application code through
Pattern Matching, Tech. report, University of Florida, 2003.

[47] T. Skramstad and M.K. Khan, Assessment of reverse engineering tools: A MECCA
approach, Assessment of Quality Software Development Tools, 1992., Proceedings of
the Second Symposium on, IEEE, May 1992, pp. 120 –126.

[48] H.M. Sneed and K. Erdos, Extracting business rules from source code, Program Com-
prehension, 1996, Proceedings., Fourth Workshop on, March 1996, pp. 240 –247.

[49] M.A. Storey, Theories, tools and research methods in program comprehension: past,
present and future, Software Quality Journal 14 (2006), no. 3, 187–208.

[50] E. Burton Swanson, The dimensions of maintenance, Proceedings of the 2nd inter-
national conference on Software engineering, IEEE Computer Society Press, 1976,
pp. 492–497.

[51] P. Tonella, M. Torchiano, B. Du Bois, and T. Systä, Empirical studies in reverse
engineering: state of the art and future trends, Empirical Software Engineering 12
(2007), no. 5, 551–571.

[52] W. M. Ulrich, Knowledge Mining: Business Rule Extraction & Reuse, System Trans-
formation Portal, February 2009.

[53] X. Wang, J. Sun, X. Yang, Z. He, and S. Maddineni, Application of information-flow
relations algorithm on extracting business rules from legacy code, Intelligent Control
and Automation, 2004. WCICA 2004. Fifth World Congress on, vol. 4, IEEE, 2004,
pp. 3055 – 3058.

[54] X. Wang, J. Sun, X. Yang, Z. He, and S Maddineni, Business rules extraction from
large legacy systems, Software Maintenance and Reengineering, 2004. CSMR 2004.
Proceedings. Eighth European Conference on, March 2004, pp. 249 – 258.

[55] I. Warren and J. Ransom, Renaissance: a method to support software system evolu-
tion, Computer Software and Applications Conference, 2002. COMPSAC 2002. Pro-
ceedings. 26th Annual International, IEEE, 2002, pp. 415–420.

[56] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, A brief survey of program slicing,
ACM SIGSOFT Software Engineering Notes 30 (2005), no. 2, 1–36.

BIBLIOGRAPHY 78

[57] E. Yourdon, Structured Analysis Wiki, http://yourdon.com/strucanalysis, February
2011.

[58] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens, Applying Webmining Tech-
niques to Execution Traces to Support the Program comprehension Process, Software
Maintenance and Reengineering, 2005. CSMR 2005. Ninth European Conference on,
IEEE, 2005, pp. 134–142.

	Contents
	List of Tables
	List of Figures
	Introduction
	Background and justification
	Problem definition
	Thesis Organization

	Reverse engineering and Business Rules Extraction
	Reverse Engineering concepts and relationships
	Reverse Engineering and Software Comprehension
	Reverse Engineering and Software Maintenance
	Reverse Engineering concepts

	Techniques in Reverse Engineering
	Standard techniques
	Specialized techniques
	Programming plans matching
	Execution traces analysis
	Module extraction
	Text processing

	Business Rules Extraction
	Manual BRE
	Heuristic BRE
	Dynamic BRE

	Summary

	Automatic Extraction of Structural Business Rules from Legacy Databases
	Business Rules
	Definition of Business Rules
	Structure of Business Rules
	Types of Business Rules
	What are not Business Rules?
	The Relation between Business Rules and Software Information Systems

	Extraction of Structural Business Rules
	DB - BR Mappings
	BR Format and Schema
	BRE Algorithm
	PP Module Specific Heuristics

	Summary

	ReTool: An Oracle Forms Reverse Engineering Tool
	Oracle Forms Technology
	ReTool's Architecture
	ReTool's Components and features
	Extractors and Analyzers
	Repository
	Visualizers
	Utilities

	Further details about ReTool
	Limitations and future enhancements
	Summary

	Evaluation and Discussion
	Evaluation of ReTool
	Purpose of the survey
	Subjects
	Survey description
	Results
	Analysis and Discussion

	Evaluation of the BRE technique
	Evaluation

	Summary

	Conclusions
	How does ReTool support the maintenance and understanding of SIFI?
	Future Work
	Recommendations about the maintenance of SIFI

	ReTool Evaluation survey
	Bibliography

