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ABSTRACT
We report on the organization and results of the tool competition
of the third International Workshop on Natural Language-based
Software Engineering (NLBSE’24). As in prior editions, we orga-
nized the competition on automated issue report classification, with
focus on small repositories, and on automated code comment clas-
sification, with a larger dataset. In this tool competition edition,
six teams submitted multiple classification models to automatically
classify issue reports and code comments. The submitted models
were fine-tuned and evaluated on a benchmark dataset of 3 thou-
sand issue reports or 82 thousand code comments, respectively.
This paper reports details of the competition, including the rules,
the teams and contestant models, and the ranking of models based
on their average classification performance across issue report and
code comment types.
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1 INTRODUCTION
The first competition was held in 2022 [13, 28], the second the year
after [32, 38] and this one continues the series with the third edition
of the Natural Language-based Software Engineering (NLBSE’24)
tool competition on automated issue report and code comment
classification. Both competitions aimed to bring practitioners and
researchers together into developing more accurate classification
models for automatically identifying the type of given issue report
or code comment.
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We focused on issue report classification for two reasons: (i) it is
an important task for developers in the context of the issue manage-
ment and prioritization process [37], and (ii) extensive research has
been dedicated to addressing this problem using natural language
processing (NLP) and machine learning (ML) techniques [22, 26].
Similarly, several works have shown the importance of source code
comments in software development and maintenance [1, 11, 40].
For example, well-written code comments actively enhance code
readability by documenting code changes. Nonetheless, not all code
comments fit this role. Indeed, code comments are used to accom-
plish different tasks, such as code documentation, license declara-
tion, report work in progress, etc. In other words, code comments
contain various kinds of information that can support developers
in different program comprehension and maintenance tasks [44].
To satisfy different needs, the information is written using a mix
of code and natural language sentences; consequently, researchers
have leveraged various NLP and ML-based techniques to identify
the types of information in these sentences.

Six teams [3, 4, 17, 20, 21, 47] participated in the two competitions.
Each team proposed classification models trained and evaluated on
one of the two datasets we provided [29]. The first dataset contains
3 thousand issue reports extracted from 5 repositories of open-
source projects and each issue is labeled with one type. This dataset
has no overlap with previous competitions. The second dataset is a
subset of dataset from Rani et al. [45] and Pascarella and Bacchelli
[40] that contains the ground truth categories, i.e., information
types, of 14,875 comment sentences from 1,733 class comments of
20 projects written in three programming languages: Java, Pharo,
and Python [45].

The baseline models provided for issue classification were based
on three approaches: SetFit [46], RoBERTa [35] and FastText [27].
FastText is used by Kallis et al.’s Ticket Tagger [30, 31], RoBERTa
is used by Izadi’s CatIss [24, 26], and SetFit is used by Colavito
et al. [10]. The baseline solution provided for code comment classi-
fication, named STACC [2], was based on a set of Sentence Trans-
formers.

Given these datasets and the classification results of the baseline
models, the participants of this year’s competitions were expected
to design their classifiers to outperform the baselines in identifying
the correct type(s) of issue reports or code comments.

https://doi.org/XXXXXXX.XXXXXXX
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2 ISSUE REPORT CLASSIFICATION
In this section, we report the structure and measures for the tool
competition on issue report classification. The competition followed
a similar structure to the previous editions [28, 32]. We received
feedback from last edition’s participants [10, 33] concerning the
dataset that was used.

The main criticism was the presence of noisy labels caused by
the variability in labeling rationale among different projects, which
may lead to inaccurate results [53]. We also received concerns
regarding the cost of fine-tuning state-of-the-art models, as it is not
inclusive to those without access to the necessary infrastructure. An
additional concern is the limited applicability of repository-specific
fine-tuning methods to smaller repositories, as most repositories
only have few issue reports.

We also introduced an additional SetFit [46] baselinemodel based
on last edition’s winner by Colavito et al. [10].

The remainder of this section is organized as follows. We first
describe the dataset, then list the competition rules, then summarize
this year’s submissions, and finally, we present the evaluation and
results of the submissions. We published a GitHub repository1 to
guide and inform potential participants about the competition.

2.1 Benchmark Dataset
We provided a dataset with three thousand issue reports extracted
from five popular open-source projects hosted on GitHub: “React”,
“Tensorflow”, “Visual Studio Code”, “Bitcoin”, and “OpenCV” 2. Sam-
pling issue reports across only five reference repositories should
make the dataset’s labeling rationale more consistent compared
to last year when we sampled across all public repositories. The
reduced dataset size aims to be more inclusive to those without
access to expensive infrastructure.

The issues were extracted using the GitHub API3. We extracted
the most recently closed issues at the time, i.e., October 5th 2023,
that contained any of the labels bug, feature, or question. These
are the most frequently used labels on GitHub [6, 26]. We chose a
balanced label distribution in order to have a comparable dataset
across the five repositories.

We extracted the following data attributes for each issue: the is-
sue title or summary, and the issue body or description. Additionally,
each issue is labeled with one class that indicates its type, namely,
bug, feature, or question. To further reduce possible inconsistencies
in the labeling rationale, we exclude issue reports with multiple
labels. The dataset was given in CSV format without applying any
further pre-processing on the issues.

We partitioned the dataset into a training set and a test set using
a 50/50 split. We therefore have one hundred issue reports per label
and repository, for each of the training and test set (100×3×5×2 =
3,000 issue reports). We published a Jupyter notebook that performs
the above steps in our tool competition’s repository on GitHub.

1Issue report classificatio repository: github.com/nlbse2024/issue-report-classification
2Reference repositories of competition dataset: github.com/facebook/react, tensor-
flow/tensorflow, microsoft/vscode, bitcoin/bitcoin, opencv/opencv
3GitHub API: docs.github.com/en/rest

2.2 Baselines and Competition Rules
We published three classification models as competition baselines.
The first baseline uses SetFit, a framework for few-shot fine-tuning
of Sentence Transformers [46], used by Colavito et al.’s tool [10]
that was submitted in the previous edition of the competition. Our
second baseline uses RoBERTa [35], the backbone Transformer in
the CatIss tool by Izadi [24, 26], submitted in the first edition of the
competition. The third baseline uses FastText [27], a static word
embedding used in the tool Ticket Tagger by Kallis et al. [30–32].

The participants had to train and tune their five classification
models using the training set and evaluate the models using the
test set. The test set was used to determine the official classification
results and the ranking of the contestant models.

The participants were free to select and transform any variables
from the training set. Pre-trained models were permitted, but can
only be fine-tuned on the training set. Any inputs or features used
to create or fine-tune the classifier, had to be derived from the
provided training set. Participants were allowed to pre-process,
sample, apply over/under-sampling, select a subset of the attributes,
perform feature engineering, filter records, split the training set into
a model-tuning validation set. The participants were free to apply
any pre-processing or feature engineering on the test set except
sampling, rebalancing, undersampling or oversampling techniques.

The proposed models were evaluated based on their classifica-
tion performance on the test set. The classifiers had to assign a
single label to an issue: bug, feature, or question. The classification
performance of a model is measured by the weighted-average F1-
score over all three classes. While the F1-score was used for ranking
the models and determining the winner of the competition, we also
asked the participants to report the following metrics: Precision
and Recall for each class [25].

The competition’s GitHub repository contained specific instruc-
tions and rules, including replication package and results of the
baseline models based on SetFit, RoBERTa and FastText. More im-
portantly, the repository contained notebooks aimed to facilitate
participation in the competition as they were ready to be adapted,
used, and executed.

2.3 Submitted Classification Models
Five teams submitted a classifier to participate in the competition.
As listed in Table 1, all of the participants were able to outperform
the SetFit baseline based on the competition’s assessment metric,
i.e., the arithmetic mean of the F1-score over all repos. We provide
an overview of the accepted approaches.

Ebrahim and Joy [17] proposed a RoBERTa-based classifier with
adapters [23, 41, 42]. Their approach consisted of fine-tuning some
extra layers on top of the RoBERTa [35] model and then training
a classification head. An adapter was trained for each repository.
The authors used regular expressions to preprocess the issue text.
They removed new lines, multiple tabs, and spaces, links, error
traces, text between triple quotes, and special characters except for
question marks. Their approach achieved an average F1-score of
0.893.

Gómez-Barrera et al. [20] proposed a classifier based on CFFitST,
a framework inspired by SetFit [52]. Their approach is based on
Sentence Transformers embeddings and cosine similarity distance.

https://github.com/nlbse2024/issue-report-classification
https://github.com/facebook/react
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/microsoft/vscode
https://github.com/bitcoin/bitcoin
https://github.com/opencv/opencv
https://docs.github.com/en/rest?apiVersion=2022-11-28
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Table 1: Issue classification results over the three issue types, averaged across
the five repositories, sorted by average F1-score.

Classification Model Metric Bug Feature Question Average

RoBERTa Adapters
Ebrahim and Joy [17]

Precision 0.897 0.897 0.889 0.895
Recall 0.890 0.902 0.888 0.893
F1-score 0.892 0.899 0.888 0.893

CFFitST
Gómez-Barrera et al. [20]

Precision 0.849 0.853 0.831 0.845
Recall 0.838 0.906 0.764 0.843
F1-score 0.853 0.877 0.789 0.842

RoBERTa
Alam et al. [3]

Precision 0.814 0.853 0.830 0.832
Recall 0.860 0.849 0.787 0.832
F1-score 0.836 0.851 0.808 0.832 *

Flan-T5
Rejithkumar et al. [47]

Precision 0.809 0.858 0.825 0.831
Recall 0.886 0.858 0.748 0.784
F1-score 0.846 0.858 0.784 0.829 *

GPT-3.5 Turbo
Aracena et al. [4]

Precision 0.810 0.868 0.818 0.832
Recall 0.858 0.854 0.774 0.828
F1-score 0.832 0.859 0.732 0.828

SetFit
Kallis and Colavito [10, 29]

Precision 0.846 0.844 0.800 0.830
Recall 0.840 0.870 0.770 0.880
F1-score 0.842 0.855 0.782 0.827

RoBERTa
Kallis and Izadi [24, 29]

Precision 0.808 0.812 0.773 0.798
Recall 0.806 0.808 0.764 0.792
F1-score 0.805 0.805 0.765 0.792

FastText
Kallis et al. [29–31]

Precision 0.765 0.715 0.685 0.722
Recall 0.706 0.770 0.682 0.719
F1-score 0.732 0.739 0.683 0.718

Submissions marked with * have trained a single model over all repositories
and will perform slightly worse than indicated.

They generate training pairs which can be divided in positive and
negative pairs for each class. Positive pairs are composed by two
samples belonging to the same class, while negative pairs consist
of two samples belonging to different classes. The model is trained
to maximize the similarity between positive pairs and minimize the
similarity between negative pairs. The proposed approach consists
in refining a model by training it multiple times. The number of
examples for each class pair can have a fixed or variable size. The
variable chunk size is used in order to add samples for the classes
that performed better in the previous training. They experimented
with removing code blocks from the text and representing the title
and body with two different embeddings, but they did not observe
improvements for the former, and they observed a decrease in
performance for the latter. Their approach achieved an average
F1-score of 0.842.

Alam et al. [3] experimented with different BERT-like models.
RoBERTa-large [35] emerged as the best performing model and
was used for the tool competition submission. A single model was
trained for all repositories. They preprocessed the issues by remov-
ing hyperlinks, special characters and numbers, and converting the
text to lowercase. Their approach achieved an average F1-score of
0.832.

Rejithkumar et al. [47] proposed a Flan-T5-based [9, 43] classi-
fier. They used the VMware/flan-t5-large-alpaca model, which is
further instruction fine-tuned on the Alpaca dataset [51]. A single
model was trained for all repositories. The authors reported that
preprocessing negatively impacted the performance of the model.
For this reason, they did not apply any preprocessing to the text.
Their approach achieved an average F1-score of 0.829.

Aracena et al. [4] proposed a GPT-3.5-Turbo-based [5] classifier.
They used the GPT-3.5-Turbo model, which powers ChatGPT in his
default configuration. The authors experimented with two different
preprocessing approaches. In the first they remove emojis, URLs,
HTML tags, special characters and punctuation, and double quota-
tion marks. The second approach is similar to the first, but URLs and
HTML tags are replaced with a special token, as also done for user
mentions and image links. In this case, also the markdown syntax
is removed. They observed that different preprocessing approaches
have different impact on the performance of the model depending
on the repository. Analyzing the results, they observed that the
model struggles to classify issues belonging to the Question class,
raising concerns about the quality of the labels, as also observed
by Colavito et al. [10] in the previous edition of the competition.
Their approach achieved an average F1-score of 0.828.
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2.4 Classifier Evaluation and Results
Based on the replication package provided by each team, we repli-
cated the results reported in their papers [3, 4, 17, 20, 47]. We exe-
cuted the code using a workstation equipped with a RTX 3090 GPU.
Training and fine-tuning of the SetFit baseline lasted 7 minutes,
and GPU memory usage peaked at 17.4 GB.

In Table 1 we report the classification performance obtained
by the proposed classifiers on the test set. All the proposed ap-
proaches were able to outperform the baselines. In particular, the
approach based on RoBERTa with adapters proposed by Ebrahim
and Joy [17] achieved the best results. The adapters approach not
only performs best, but also more practical on supporting multiple
repository-specific models. That is because the underlying model,
RoBERTa, remains unchanged during the fine-tuning process and
each repository-specific adapter model only adds around 6 MB.

It is also important to note that approaches based on GPT-3.5-
Turbo [4] and Flan-T5 [3], which are much larger models than
RoBERTa, achieved comparable performances to the SetFit baseline.
This evidence is of crucial importance, as it shows that issue report
classification can be performed with much smaller models, which
are also much cheaper to train and serve. In a realistic scenario in
which it is needed to classify issue reports at scale, having a smaller
model that requires less computational resources can be game-
changing. While the use of GPT-3.5-Turbo through API removes
the need for infrastructure to deploy and serve the model, this could
raise concerns about the privacy of the data, as the issue reports
need to be shared with a third party to perform the classification.

The performance achieved by the CFFitST [20] framework shows
that it is possible to surpass the SetFit baseline by sampling the
training set and repeating the training process multiple times using
Sentence Transformer embeddings. Still, the RoBERTa model, and
in general standard BERT-based models, remain a viable option for
issue report classification, as shown by Rejithkumar et al. [47].

Looking at the performances per class, we observe that all the ap-
proaches struggle to classify issues belonging to the Question class,
except for the approach implemented by Ebrahim and Joy [17],
which reports a well-balanced performance across all labels. Fur-
thermore, the proposed approach performs consistently also across
repositories, except for the “Tensorflow” repository, for which it
achieves a slightly worse performance.

Based on the classification results, we rank the five contestant
teams as follows:

a) Ebrahim and Joy [17] take the first place in the competition
with their Adapter RoBERTa-based approach;

b) Gómez-Barrera et al. [20] occupy the second place with their
CFFitST model;

c) Alam et al. [3] are placed third with their RoBERTa-based
apprach;

d) Rejithkumar et al. [47] are ranked fourth with their T5-based
apprach;

e) Aracena et al. [4] are positioned fifth with their GPT-3.5-
Turbo finetuning;

f ) Our baselines [29] occupy positions six, seven, and eight,
with models based on SetFit [10], RoBERTa [24], and Fast-
Text [30, 31], respectively;

3 CODE COMMENT CLASSIFICATION
The code comment classification competition consisted of building
and testing a set of binary classifiers to classify code comment
sentences as belonging to one or more categories. These categories
represent the types of information a sentence conveys in comments
of code classes. Overall, the competition followed a structure similar
to the previous edition [32]. However, compared to the previous
edition, in this competition, we (i) have extended the dataset of
code comments for Java projects and (ii) have changed the baseline.
More in detail, we provided (i) a dataset of code comment sentences
and (ii) baseline classifiers based on the Sentence Transformer
architecture, detailed later in subsections 3.1 and 3.2, respectively.
The competition called for participants that proposed classifiers
with the goal of outperforming the baseline classifiers. We provided
a GitHub repository4 and a Colab notebook5 to guide and inform
potential participants about the competition.

3.1 Benchmark Dataset
The competition included a dataset composed of 14,875 manually
labeled comment sentences in 19 categories. The code comments
are from 1,733 unique classes and belong to 20 open-source projects
written in three different programming languages: Java, Python,
and Pharo. This dataset has been created as a subset of the two
publicly available datasets. The first reflects the same dataset of the
previous edition and is provided by Rani et al. [45], while the sec-
ond extends the latter by adding further code comments classified
by Pascarella and Bacchelli [40]. In merging the two datasets, we
avoided duplicates by including a single instance per file. In other
words, during the merging process, if the filename appeared twice,
we included only the code comments coming from the dataset of
Rani et al. [45].

Regarding the dataset extracted from the work of Rani et al. [45],
It contains class comments of various open-source, popular, and
heterogeneous projects that vary in terms of contributors, size,
and development ecosystem. The Java projects are Apache Spark,
Guava, Guice, Eclipse, Vaadin, and Apache Hadoop. The Python
projects are Pandas, IPython, PyTorch, Mailpile, Request, PipeEnv,
and Django. The Pharo projects are Pillar, Petit, PolyMath, Sea-
side, GToolkit, Roassal, and Moose. Regarding the dataset extracted
from the work of Pascarella and Bacchelli [40]. It aimed to create a
taxonomy of code comments in Java programming language. The
taxonomy emerged from the manual analysis of 2,000 Java files,
highlighting 15,000 blocks of code comments, depicts six top and
16 inner categories. The Java open-source projects coincide with
those analyzed by Rani et al. [45] and include Apache Spark, Guava,
Guice, Eclipse, Vaadin, and Apache Hadoop.

A sample of comments extracted from the aforementioned projects
has been manually analyzed to identify the information that each
comment sentence conveys. Based on the analysis, more than 19
types of information are found in the comment sentences across the
three programming languages. For the competition, we focused on
the most frequent categories, i.e., with 50+ comment sentences per
category, for a total of 19 code comment categories. Specifically, we

4Code Comment Repository: github.com/nlbse2024/code-comment-classification
5Colab notebook: tinyurl.com/d6m37293

https://github.com/nlbse2024/code-comment-classification
http://tinyurl.com/d6m37293
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selected seven Java categories: summary, pointer, deprecation, ratio-
nal, ownership, usage, and expand; five Python categories: summary,
parameters, usage, development notes, and expand; and seven Pharo
categories: key messages, intent, class references, example, key imple-
mentation, responsibilities, and collaborators. The definitions of these
categories can be found in the original paper by Rani et al. [45] and
Pascarella and Bacchelli [40]. The 19 categories are found in 1,049
class-level comments for Java, 340 for Pharo, and 344 for Python,
for a total of 1,733 unique class-level comments.

The applied methodology reflects the same approach of the pre-
vious edition [32]. In particular, we applied various pre-processing
steps to the comments. We split the comments into sentences based
on the NEON tool [15], changed the sentences to lowercase, trans-
formed multiple line endings into one ending, and removed special
characters, e.g.,@#&%., !?\n. These symbols were removed to en-
sure uniformity across languages, as they are used differently in
each language. We also removed periods in numbers or special ab-
breviations, such as “e.g.”, “i.e.”, and numbers to minimize incorrect
comments splitting into sentences.

Each comment sentence can belong to one or more categories, to
a maximum of 5 to 7 categories, depending on the language. Each
category represents the type of information that the sentence is
conveying. While one sentence can belong to multiple categories,
the competition focused on binary classification for each category,
rather than multi-class classification. In other words, participants
were meant to build multiple binary classifiers, each focusing on
one category to determine if a sentence does or does not belong
to such category. Therefore, for each category, we built the sets of
positive and negative sentences used for binary classification, i.e.,
belonging and not belonging to a category, based on the ground-
truth categories of the 14,875 unique comment sentences in our
dataset. The distribution of positive and negative sentences across
categories is reported in Table 2.

We randomly partitioned the comment sentence dataset into
training (80%) and testing (20%) sets, both containing a similar
proportion of positive and negative sentences as the entire set of
sentences for a category. The dataset was provided in CSV files
where the attribute ID represents the unique sentence ID, class
represents the class name referring to the source code file where the
sentence comes from, sentence represents the text of the sentence,
partition denotes the dataset it belongs to, i.e., one for training and
zero for testing, category denotes the ground-truth category the
sentence belongs to. The distribution of these sentences in both
training and test sets is reported in Table 2.

3.2 Baselines and Competition Rules
We trained and tested 19 binary classifiers (one for each category) us-
ing the Sentence Transformer architecture on the provided training
and test sets. The baseline classifiers, coined as STACC and pro-
posed by Al-Kaswan et al. [2] (the winners of the NLBSE‘23 Code
Comment Classification Competition [32]), are lightweight classi-
fiers developed using SetFit, an efficient and prompt-free framework
for few-shot fine-tuning of Sentence Transformers. For fine-tuning,
Al-Kaswan et al. relied on the Optuna backend with SetFit to find
the best hyperparameters. The dataset is pre-processed by append-
ing the code file name to the corresponding comments, separated by

the ’|’ symbol. We make the models available on the HuggingFace
Hub.6 The replication package is available on GitHub.7

The participants were expected to train their classification mod-
els using the provided training dataset and evaluate them on the
testing dataset. However, we restricted the use of any external
sources beyond the class comment sentences and associated source
code of the classes. Note that the dataset provides the mapping of a
class name to its class comment sentences and to its project so that
the participants could identify the source code of the class from
the project and thus can leverage it to fine-tune their models. The
projects’ source code was released in our GitHub repository.

Despite the restriction on external sources, the participants were
permitted to use pre-trained models as long as they were fine-tuned
on the given training set. Also, they were allowed to perform pre-
processing, sampling, over/under-sampling, and feature selection
and engineering on the training dataset, but they were prohibited
from performing the same steps on the testing set except for pre-
processing and feature engineering.

Since the competition focused on binary classification for a given
category, i.e., a sentence does or does not belong to a category, we
evaluated the classification performance of each classifier using
Precision, Recall, and F1-score on the testing set. Although the
participants were expected to report these three metrics, we used
the F1-score to measure the overall performance of the models.
The 19 F1-scores of the proposed classifiers were compared against
the 19 F1-scores achieved by the baseline classifiers to rank the
participants and determine a winner.We only allowed the classifiers
to implement a single model, e.g., BERT or SVM, for all categories,
rather than implementing distinct models for different categories.

To guarantee the usability of the tools we put some lower bounds
on the computational resources used for inference. We measured
the runtime of the models in a free Google Colab T4 instance so that
all participants could measure the runtime on a unified platform.
The participants were allowed to use all the features available on
the instance, including GPU acceleration. Only the time required
to do inference is measured, time needed to load the models and
data is not considered. We provide a testbench with instructions
on how to load the data and models. 8

The winner of the competition was the model with the highest
score as determined by the following formula:

𝑠𝑐𝑜𝑟𝑒 (𝑚) = (𝑎𝑣𝑔. 𝐹1) × 0.75 + (𝑚𝑎𝑥_𝑎𝑣𝑔_𝑟𝑡 −𝑚_𝑎𝑣𝑔_𝑟𝑡
𝑚𝑎𝑥_𝑎𝑣𝑔_𝑟𝑡

) × 0.25

where score(m) represents the score of the model 𝑚, avg. F1
is the average of the F1-scores achieved by the proposed model
across all the 19 categories, max_avg_rt indicates the maximum
average inference runtime (set to 0.005 seconds), and m_avg_rt is
the actual average inference runtime of the proposed classifiers.
The runtime should be measured ten times and should averaged
across all categories and samples. With this formula, we encourage
the participants to maximize the overall classification effectiveness
and minimize the runtime of their models for practical purposes.

6STACC baseline models: https://huggingface.co/collections/AISE-TUDelft/stacc-
65254a9b4d1fadc125a731dc
7Replication package: https://github.com/nlbse2024/code-comment-classification
8Testbench: https://colab.research.google.com/drive/1lvXuzdl_
vSwMTCGIEfqTyQC1nzl22WCy

https://huggingface.co/collections/AISE-TUDelft/stacc-65254a9b4d1fadc125a731dc
https://huggingface.co/collections/AISE-TUDelft/stacc-65254a9b4d1fadc125a731dc
https://github.com/nlbse2024/code-comment-classification
https://colab.research.google.com/drive/1lvXuzdl_vSwMTCGIEfqTyQC1nzl22WCy
https://colab.research.google.com/drive/1lvXuzdl_vSwMTCGIEfqTyQC1nzl22WCy
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Table 2: Distribution of positive/negative comment sentences per category, language, and dataset (training and testing).

Language Categories Training Testing Training + Testing
Positive Negative Total Positive Negative Total Positive Negative Total

Java

Expand 662 7,779 8,441 166 1,948 2,114 828 9,727 10,555
Ownership 438 8,001 8,439 112 2,004 2,116 550 10,005 10,555
Deprecation 143 8,299 8,442 37 2,076 2,113 180 10,375 10,555
Rational 422 8,019 8,441 106 2,008 2,114 528 10,027 10,555
Summary 3,643 4,796 8,439 915 1,201 2,116 4,558 5,997 10,555
Pointer 1,094 7,345 8,439 276 1,840 2,116 1,370 9,185 10,555
Usage 2,374 6,067 8,441 595 1,519 2,114 2,969 7,586 10,555

8,776 50,306 59,082 2,207 12,596 14,803 10,983 62,902 73,885

Pharo

Responsibilities 267 1,139 1,406 69 290 359 336 1,429 1,765
Key messages 242 1,165 1,407 63 295 358 305 1,460 1,765
Key impl. points 184 1,222 1,406 48 311 359 232 1,533 1,765
Collaborators 99 1,307 1,406 28 331 359 127 1,638 1,765
Example 596 812 748 152 205 357 748 1,017 1,765
Class references 60 1,348 1,408 17 340 357 77 1,688 1,765
Intent 173 1,236 1,409 45 311 356 218 1,547 1,765

1,621 8,229 9’850 422 2,083 2’505 2’043 10’312 12,355

Python

Expand 402 1,637 2,039 102 414 516 504 2,051 2,555
Parameters 633 1,404 2,037 161 357 518 794 1,761 2,555
Summary 361 1,678 2,039 93 423 516 454 2,101 2,555
Dev. notes 247 1,792 2,039 65 451 516 312 2,243 2,555
Usage 637 1,401 2,038 163 354 517 800 1,755 2,555

2,280 7,912 10,192 584 1,999 2,583 2,864 9,911 12,775

3.3 Submitted Classification Models
Hai and Bui [21] were the single team that participated in the
competition with their Transformer-based Code Comment Classi-
fier called Dopamin. The team implemented a number of design
decisions for their approach to outperform the baseline classifier,
namely backbone model selection, domain post-training, model
checkpoint selection, and multilevel aggregation.

Dopamin is based on a single backbone model. They performed
model selectionwith CodeBERT [19], RoBERTa [35], andALBERT [34]
as potential backbone models and found that CodeBERT performs
best on a validation set created from 10% of the training set.

Domain post-training consisted of combining the data of all
languages to post-train the backbone model. The category was
concatenated to the comment sentences and the model was trained
to predict whether the comment belongs to the category or not.
The purpose of this strategy was to perform knowledge transfer
from high-resource languages to low-resource languages before
performing individual training of models for each category.

Dopamin, after model post-training, was then trained on the
training set of each category and the best model checkpoint was
selected based on the performance obtained on the validation set.
The best model checkpoint for each category was trained on the
full training set.

The architecture of the backbone model was adapted such that
the output of one upper layer of the BERT model is used as input
to another upper layer, then the output of all upper layers is ag-
gregated by applying the mean operator, and this result is taken
as input to a linear classifier layer that predicts the category of a
comment sentence. The goal was to obtain a more comprehensive
representation of the comment sentence.

3.4 Classifier Evaluation and Results
We followed the instructions provided in the replication package
of the participating team. The submission contained both a GitHub
repository containing the scripts to completely rerun the training
and evaluation scripts as well as a HuggingFace Model Collection
of the trained models. We loaded and tested the provided trained
models and we trained the models from scratch using the provided
scripts. For this submission, we successfully replicated the results
reported in the corresponding paper in both cases.

Table 3 shows the performance of both the baseline (STACC [2])
and the proposed approach by Hai and Bui [21]. Dopamin outper-
forms the baseline’s avg. precision (0.73 vs. 0.69, while achieving a
similar avg. recall (0.74 vs. 0.74), thus leading to an overall higher
avg. F1 score (0.74 vs 0.71). These improvements came mostly from
a subset of 11 categories as Dopamin was not able to outperform the
baseline for 8 categories. Dopamin outperforms the baseline across
programming languages, each having categories that resulted in
both performance improvement and degradation. According to Hai
and Bui, Dopamin works better in categories that require context
and semantics understanding such as Summary, Usage, and Own-
ership. The Python categories Parameters, Summary, and Usage
presented performance improvement compared to the baseline, and
the fact that they are also Java categories indicates the knowledge
transfer from the model post-training step is beneficial for clas-
sification. The authors present an ablation study that tested the
combinations of model pos-training and layer aggregation, obtain-
ing the best results when both strategies are used.

In summary, Dopamin, the model proposed by Hai and Bui [21]
outperforms the baseline model STACC, while achieving a similar
inference runtime performance. These results make Dopamin, and
its team, the winner of the competition.
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Table 3: Results of the code comment classification competition. The models are ranked using the score given in section 3.2.

Participants Classification Model Average
Precision

Average
Recall

Average
F1-score

Outperformed
Categories

Avg. Inference
Runtime (secs.)

Ranking
Score

Al-Kaswan et al. STACC (baseline) [2] 0.69 0.76 0.71 - 0.00215 0.675
Hai and Bui Dopamin [21] 0.73 0.75 0.74 11/19 0.00201 0.703

4 CONCLUSIONS AND FINAL REMARKS
The NLBSE’24 Tool Competition attracted six teams that proposed
a diverse set of classification models to automatically classify issue
reports or code comments.

The five issue report classification contestants were provided
a new dataset sampled from five popular GitHub repositories, re-
sulting in more consistent labeling rationale across issue reports.
Variability in labeling rationale of the dataset was the main item
of critique in previous editions. All submissions utilized models
based on the Transformer architecture, leveraging various infor-
mation sources from the issues. While most of these classifiers
achieved comparable average classification performance, Ebrahim
and Joy [17] have outranked the other contestants by a consid-
erable margin. The choice of Adapters on top of the RoBERTa
model appears to be the main factor for achieving such perfor-
mance. Adapters not only perform best in our benchmark, they also
are parameter-efficient and modular, making them more practical.
The smaller dataset likely attracted more submissions as it lowered
the computational cost of model fine-tuning.

A single team participated in the code comment classification
competition, their approach outperforms the baseline model based
on SetFit [2]. Dopamin [21] is a Transformers-based approach. Hai
and Bui use a multi-level layer aggregation strategy to build their
model on a CodeBERT [18] backbone. Similar to Al-Kaswan et al. [2]
the classname is appended to the comment sentence and provided as
input to the model for pre-training. For post-training all the training
data was combined to facilitate the transfer of knowledge, as Pharo
and Python have far fewer training instances. The combination of
layer aggregation post-training allowed Dopamin to beat STACC
in most categories. Combined with a similar runtime, it allowed
Dopamin to beat the submission score set by STACC.

We expect that future editions of the competition would lead
to more accurate models as well as their application to additional
software engineering tasks that require the analysis and process-
ing of (non)code-related textual artifacts. We also plan to extend
the competition with techniques previously used for user review
analysis [12, 14, 36, 39], categorizing safety-related issues [16], or
fine-grained analysis of bug reports [7, 8, 48–50].
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