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Abstract

Bug report management is a costly software maintenance process

comprised of several challenging tasks. Given the UI-driven nature

of mobile apps, bugs typically manifest through the UI, hence the

identification of buggy UI screens and UI components (Buggy UI

Localization) is important to localizing the buggy behavior and

eventually fixing it. However, this task is challenging as developers

must reason about bug descriptions (which are often low-quality),

and the visual or code-based representations of UI screens.

This paper is the first to investigate the feasibility of automating

the task of Buggy UI Localization through a comprehensive study

that evaluates the capabilities of one textual and two multi-modal

deep learning (DL) techniques and one textual unsupervised tech-

nique. We evaluate such techniques at two levels of granularity,

Buggy UI Screen and UI Component localization. Our results illus-

trate the individual strengths of models that make use of different

representations, wherein models that incorporate visual informa-

tion perform better for UI screen localization, and models that

operate on textual screen information perform better for UI compo-

nent localization – highlighting the need for a localization approach

that blends the benefits of both types of techniques. Furthermore,

we study whether Buggy UI Localization can improve traditional

buggy code localization, and find that incorporating localized buggy

UIs leads to improvements of 9%-12% in Hits@10.
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1 Introduction

Bug report management is an essential, yet costly process for soft-

ware projects, in particular for mobile apps [88]. It demands high

developer effort [15, 22, 35, 72, 87, 88] due in part to the potential for

large volumes of reported bugs and the varying quality of submitted

bug reports. These reports are the central artifact in bug manage-

ment [28, 35, 87, 88], as they directly impact downstream tasks

such as bug triaging, reproduction, localization, program repair,

and even regression testing. Bug reports typically describe defects

found during software development and usage, and are expected to

include, at minimum, the app’s observed (incorrect) behavior (OB,

the expected behavior (EB), and the steps to reproduce the bug

(S2Rs) [21, 28, 50, 68, 69, 87].

Given the UI-centric nature of mobile apps, a large majority of

reported bugs for these apps manifest through the UI [45]. There-

fore, an important first step toward understanding, diagnosing, and

resolving underlying bugs in the code is localizing the buggy behav-

ior to both a UI screen and UI components [58]. As such, a critical

bug report management task for mobile apps is the identification of

UI screens and UI components (e.g., buttons or text fields) that cause

or display the reported incorrect behavior of the app (i.e., the OB), a

task that we term Buggy UI Localization. This task is essential but

can be difficult for developers, especially when many incoming bug

reports need to be addressed and fail to include important details

or graphical information (e.g., buggy app screenshots [34]). Despite

the growing body of work on automating bug report management

tasks [88], prior work has not yet explored how to assist developers

in Buggy UI Localization.

In this paper, we present the first empirical study that investi-

gates the feasibility of automatically localizing bug descriptions to

UI screens and UI components of mobile apps. Similar to traditional

buggy code localization [14, 25–27, 40, 46, 76], we formulate Buggy

UI Localization as a retrieval task, in which a bug description (i.e.,

the OB) is used as query input to a retrieval engine that searches

the space of UI screens and UI components of an app and recom-

mends a ranked list of candidates that most likely correspond to

the bug description. Specifically, the study focuses on two retrieval

tasks for a given bug description: screen localization (SL), which
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involves retrieving potentially buggy UI screens from the app, and

component localization (CL), which aims to retrieve the relevant

buggy UI components from a given buggy UI screen.

The study investigates how the textual and visual information

from UI screens and UI components can be leveraged for Buggy

UI Localization, and hence, explores the effectiveness of unsuper-

vised textual techniques and pre-trained textual and multi-modal

deep learning (DL) techniques. Specifically, we examine one unsu-

pervised text-based model (Lucene [42]) and three DL models: a

supervised text-based model (SentenceBert or SBert [67]), and

two supervised vision-language learning models (Clip [65] and

Blip [52]), under a zero-shot setting to explore their capabilities for

Buggy UI Localization. To evaluate the effectiveness of the mod-

els in real-world scenarios, we created a manually curated dataset

of 228 OB descriptions from 87 real bug reports. The dataset also

includes associated buggy UI screens and UI components that we

manually labeled from a UI corpus created by employing GUI app

exploration techniques [59], for 39 Android mobile apps.

The results of our study indicate that no single technique uni-

versally performs best for the two localization tasks (screen and

component localization). The best-performing approaches suggest

the correct buggy UI screens (Blip) and UI components (SBert)

in the top-3 recommendations for 52% and 60% of the bug descrip-

tions, respectively. We also found the models tend to perform better

for higher-quality bug descriptions and easier-to-retrieve cases as

judged by humans. The results show the feasibility and effectiveness

of using existing DL models for Buggy UI Localization.

To illustrate the practical usefulness of automated Buggy UI Lo-

calization, we conducted a second empirical study that investigated

how identified buggy UI screens from the best-performing screen

localization model can improve traditional buggy code localization

approaches. We adapted the approach proposed by Mahmud et

al. [58] to filter or boost code files retrieved via existing buggy

code localization approaches using retrieved UI screen informa-

tion by screen localization. We designed an end-to-end, automated

approach comprising two major steps: (1) Buggy UI Localiza-

tion, which receives a bug description and the app UI screens and

automatically identifies buggy UI screens, and (2) Buggy Code

Localization, which (i) computes the textual similarity between

the bug report and the app code files to retrieve potentially buggy

files, and (ii) boosts the rankings of retrieved code files related to

identified buggy UI screens in step (1). Using two buggy code local-

ization tools applied to 79 bug reports we found that incorporating

information from the automatically identified Buggy UI screens can

lead to a 9% to 12% improvement in Hits@10, compared to baseline

techniques that do not use UI data.

In summary, we make the following contributions:

(1) We are the first to address the problem of Buggy UI Local-

ization by investigating how different information sources

(textual UI metadata and app screenshots) and four existing

textual and multimodal models can be leveraged for Buggy

UI Localization. Our results suggest that the models perform

differently depending on the retrieval task. These findings can

inform the design of future domain-specific models.

(2) We illustrate a practical application of buggy UI screen local-

ization on Buggy Code Localization. The application of our

screen localization approach to Mahmud et al.’s approach [58]

Title: Can no longer enter text in SSID Filter TextView

Description: Cannot enter any text in the SSID Filter field.

Steps:

1. Click on Filter icon.

2. Click/tap on SSID Filter text field.

3. Keyboard does not pop up.

Expected Behaviour:

Should display keyboard and allow you to enter SSID filter text.

Figure 1: Bug report #191 from the WiFi Analyzer app [10]

illustrates that it can both automate and improve upon existing

buggy code localization techniques.

(3) We provide a novel, publicly available benchmark (data, in-

frastructure, results, and documentation) for Buggy UI Local-

ization, which facilitates replication and experimentation [12].

The benchmark provides a new, manually-curated dataset with

buggy UI screens and UI components, textual and visual re-

trieval corpora, and bug descriptions for each bug report.

2 Background, Problem, & Motivation

2.1 Bug Descriptions & App UI Elements

In this paper, a bug description is the observed or incorrect app

behavior (OB) textually described in a sentence of a bug report. We

focus on descriptions of bugs that manifest visually on the device

screen. Figure 1 shows a real bug report for WiFi Analyzer [10],

an app for monitoring the strength and channels of surrounding

WiFi networks [9]. The bug/OB descriptions in the bug report are

underlined in Figure 1 and describe a bug in which the app fails to

show the keyboard to enter the WiFi’s SSID.

App UI screens implement one or more app features and rep-

resent the canvas upon which UI components (a.k.a. widgets) are

drawn. UI components are elements rendered on a UI screen (e.g.,

buttons, text fields, or checkboxes) that allow end-users to interact

with the application. A screen is composed of a hierarchy of UI

components and containers (a.k.a. layouts) that group UI compo-

nents together [7]. Figure 2 shows examples of UI screens (2b) and

their components (2c) for the WiFi Analyzer app. In this paper, a

UI screen is represented as a screenshot and its corresponding UI

hierarchy of components/containers described in metadata. Each UI

component is represented by a set of attributes, including the com-

ponent type (e.g., TextView or Button [7]), its label or text shown

on the screen, an ID, a description, and various visual properties

such as the component’s visibility and size. Buggy UI Screens and

UI Components display unexpected, incorrect behavior of an app.

2.2 Problem and Motivating Example

We envision a system that suggests to the developer a ranked list

of UI screens (i.e., app screenshots) that display or is related to the

buggy app behavior reported by a bug description in a bug report

(see Figure 2b). The developer would then inspect the suggested

UI screens in the ranked list (in a top-down fashion) and select

one or more screens that s/he deems display the reported bug. The

system would then identify (and highlight) the UI components in
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Figure 2: Example of the UI screen/component localization process for an OB/bug description of the WifiAnalyzer app [10].

the selected buggy UI screens that are most related to the reported

bug (see Figure 2c). The suggestions of this system can help de-

velopers not only automatically localize buggy UI screens and UI

components [13, 23, 62, 80, 87], but also understand the reported

bug, and assist them in other bug management activities (e.g., bug

reproduction). Additionally, this system can be useful for various

bug report management tasks, as it can provide information to

existing automated techniques that aim to reproduce bugs [83, 84],

generate test cases [37], assess the quality of bug reports [24, 70, 71],

and perform buggy code localization [58].

While bug reports provide the steps to reproduce the bug (S2Rs)

and the expected app behavior (EB), which can be used to iden-

tify the buggy UI screens and UI components, we focus on OB

descriptions for at least two reasons [28]: (1) they convey the faults

observed by the user, and (2) they are often written using different

wordings (even for a single bug type—see fig. 1). The S2Rs and EB in

bug reports do not necessarily describe a bug and they are often de-

scribed using a more limited language compared to that of OBs [28].

We formulate automated buggy UI localization as two retrieval

tasks (see Figure 2): screen and component localization. In screen

localization (SL), a bug/OB description (i.e., the query) is the input

to a retrieval engine that searches the space of (automatically iden-

tified) UI screens (see Figure 2a) of a given app and retrieves a list of

UI screens ranked by their similarity to the bug description, which

indicates the likelihood of a UI screen to show or be affected by the

bug described by the query. Figure 2b illustrates the screen localiza-

tion process for one OB description from the bug report shown in

fig. 1. The highlighted UI screen with the green border (see Screen

(iii) of Figure 2b) is the buggy screen (initially unknown to the devel-

oper). The two best approaches we studied (Blip & SBert) are able

to retrieve the buggy screen as their first suggestion. In component

localization (CL), the retrieval engine searches the space of (auto-

matically identified) UI components (see Figure 2a) of a given buggy

UI screen and retrieves a list of UI components ranked by a similar-

ity score that indicates the likelihood of the components to show or

be affected by the bug. Figure 2c illustrates the component localiza-

tion process for the buggy UI screen of the bug description. The UI

components in orange are the ones that the bug description refers

to, hence they are expected to be ranked higher by the component

retrieval engine. The two best-performing approaches we studied

(SBert & Blip), rank the buggy components in the first position(s).

Screen and component localization are impacted by the amount

of information that a OB description contains (i.e., query quality)

and the difficulty in retrieving buggy UI screens/UI components

(i.e., retrieval difficulty). If the bug description is poorly written

or does not provide enough information about the bug (which is not

uncommon in bug reports [24, 71]), then a retrieval engine (or even

a human) would have a hard time identifying the buggy UI screens

and UI components (if not familiar enough with the app). This prob-

lem is exacerbated by the fact that the same bug can be described in

a variety of ways [28] – e.g., see the underlined sentences in fig. 1.

Even if the OB is clear and informative, identifying the buggy UI

screens/UI components can be challenging when numerous similar

UI screens/UI components exist in the app. As an example, consider

the last OB/bug description from the Wifi Analyzer app shown in

fig. 1: “Keyboard does not pop up". The best approach for screen lo-

calization, Blip, retrieved the true buggy screen at the 21st position

and true buggy component at the 16th position. Component local-

ization’s best approach, SBert, retrieved the true buggy screen at

the 6th position and the true buggy components at the 12th position.

This illustrates the difficulty of buggy UI localization, hence in our

study, we assess the performance of various approaches considering

bug descriptions of different quality and retrieval difficulty levels.

3 Automating Buggy UI Localization

This study aims to investigate different methods for automatically

locating buggy UI screens and UI components based on bug/OB

descriptions and measure their effectiveness for this problem. To

that end, we investigate existing retrieval approaches that leverage

textual and/or visual information from the bug descriptions and UI

screens and components, to perform screen and component localiza-

tion. With this in mind, we address three research questions (RQs):

RQ1: How effective are retrieval approaches at locating buggy UI

screens (SL) from bug descriptions?

RQ2: How effective are retrieval approaches at locating buggy UI

components (CL) from bug descriptions?
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RQ3: How effective are retrieval approaches for different query

quality and retrieval difficulty levels?

To answer the RQs, we selected four (un)supervised approaches

of various kinds (section 3.1). Then, we constructed a real-world

dataset for evaluating the effectiveness of the approaches (sec-

tion 3.2). We executed the approaches (section 3.3) and measured

their performance with standard retrieval metrics (section 3.4). This

section provides details about these steps, while sections 3.5 and 3.6

present and discuss the obtained results.

3.1 Retrieval Approaches

We investigated three deep learning (DL)-based approaches and

one baseline unsupervised approach, which support text-to-text or

text-to-image retrieval for the two Buggy UI Localization tasks.

SentenceBert (or SBert) [67] is a neural text-based lan-

guage model, which augments the traditional Bertmodel [33] with

siamese and triplet networks. It can establish semantic similarity

for a pair of textual descriptions by generating embeddings. SBert

can be utilized for both screen and component localization using

the textual bug descriptions, UI screens, and UI components.

Clip [65] is a neural multi-modal vision/language model that

can learn semantic embeddings from text and images via a con-

trastive architecture. Given a text-image pair, it can determine the

similarity between them. Hence,Clip can be utilized for both screen

and component localization using textual information from the bug

description and visual information from UI screen/components.

Blip [52] excels in vision-language understanding and gener-

ation tasks, and uses a multi-modal encoder-decoder component

(MED) and a dataset bootstrapping method, i.e., captioning-filtering

(CapFilt). We used a Blip version optimized for text-image retrieval

tasks, which only implements contrastive and matching losses. Blip

can be utilized the same way Clip is used for buggy UI localization.

Finally, we selected Lucene [42] as a baseline technique for text

retrieval. Lucene is a classical unsupervised approach that com-

bines the vector space model (VSM), based on the TF-IDF represen-

tation, and the boolean text retrieval model, to compute the (cosine)

similarity between a query and a document. Lucene can be uti-

lized for both screen and component localization using the textual

information in bug descriptions, UI screens, and UI components.

While Clip and Blip have been pre-trained with general-purpose

data, they have performed well under zero-shot settings [52, 65, 67]

for tasks such as semantic similarity computation, object detec-

tion, image captioning, and text-image retrieval, under distinct

domains. These models have also been fine-tuned for downstream

tasks [18, 31, 66, 81], enhancing their capabilities. This study inves-

tigates the capabilities of these models for Buggy UI Localization.

The lack of a large, high-quality dataset specifically created for

Buggy UI Localization prevents us from fine-tuning Clip and Blip.

While the RICO dataset [8] would be a good dataset candidate for

our task, it does not provide bug descriptions, and the mobile app

screenshots included in RICO do not show any buggy behavior.

As such, creating this dataset with real-life bug descriptions and

buggy UI screens of mobile apps would demand an enormous effort

that is beyond the scope of our work. A potential solution to create

this dataset, which we leave for our future work, is creating syn-

thetic bug descriptions using templates for different bug types and

wordings, based on automatically modified RICO screenshots that

show various buggy behaviors (e.g., incorrect app output, crashes,

non-crashing errors, cosmetic issues, and navigation misbehavior).

Besides the three DL models, we considered models specifically

designed for mobile app UI understanding tasks, including UIB-

ert [17], VuT [57], and Screen2Vec [53]. However, UIBert and

VuT’s source code and pre-trained models are not available and

Screen2Vec would require a significant adaptation effort for our

task as the model is only designed for generating UI screen embed-

dings from screen text and UI hierarchies; extra modules would be

required to adapt this model for Buggy UI Localization. We should

note, though, that we experimented with it as a zero-shot encoder

to represent UIs and with an SBert model for representing bug

descriptions, computing the cosine similarity on both embeddings

to establish similarity. Unfortunately, this led to poor performance

for both screen and component localization tasks, hence we decided

to not report their performance in this paper.

Large languagemodels (LLMs), e.g., ChatGPT [63] and Llama [73],

can be used for text-based Buggy UI Localization. However, study-

ing their capabilities for this task likely warrants a separate study be-

cause it requires careful control of several factors to make for a fair

comparisonwith non-LLMs, including addressing non-deterministic

responses, possible data leakages, selection of bug reports, token

limits, and prompting strategies. Studying the capabilities of LLMs

for the task of Buggy UI Localization is part of our future work.

3.2 Dataset Construction

We built a dataset of real-life bug descriptions and relevant buggy UI

screens and UI components to assess the effectiveness of the models

in a realistic setting. The dataset construction process included:

(1) identifying bug/OB descriptions in a set of bug reports – these

descriptions represent the queries used for retrieval.

(2) building theUI screen corpus and the UI component corpus

used for retrieval. These corpora are constructed for the app

corresponding to each bug report.

(3) identifying the (ground truth) buggy UI screens and UI

components in the corresponding corpus, and assigning a

quality and retrieval difficulty level to each query.

3.2.1 Bug Report Selection. Since one of our goals, later detailed

in this paper (see section 4), is to assess the usefulness of Buggy

UI Localization models for Buggy Code Localization, we followed

a pragmatic approach to select the bug reports for this study. We

started with the 80 bug reports of the buggy code localization

dataset provided by Mahmud et al. [58] so that we could reuse the

data for this study and the buggy code localization study reported

in section 4. Mahmud et al.’s dataset was created based on the An-

droR2 dataset [44, 75], which consists of 180 manually reproduced

bug reports for popular open-source Android applications hosted

on GitHub. Of the 180 bug reports, Mahmud et al. discarded 100

reports because they: (1) described bugs that were no longer re-

producible, (2) included bug fixes in non-Java code files only, (3)

were no longer publicly available, or (4) included ambiguous code

changes or commit IDs. This resulted in 80 bug reports.

When collecting ground truth data for Buggy UI Localization

(see section 3.2.4), we discarded one bug report (from the GnuCash

app [1]) from the 80 bug reports of Mahmud et al.’s dataset because
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we were unable to reproduce the reported bug, thus leaving 79

reports. To expand the set of bugs usable for this study, we selected

14 extra bug reports from the 100 discarded ones whose bug fixes

were in XML resource files as opposed to Java code and discarded

six reports because we obtained errors trying to collect the retrieval

corpus for those reports (see section 3.2.3). This resulted in eight

extra bug reports, for a total of 87 reports. Although Mahmoud

et al. [58] could not use these 8 bug reports, they are usable for

the buggy UI localization task since they are reproducible and we

collected (ground truth) UI data for the corresponding applications.

From the 87 bug reports (1 to 8 per app), 32 describe an output

problem, 23 report an app crash, 23 describe a UI cosmetic issue,

and 9 report a navigation problem. The bug reports correspond to

39 Android apps (e.g., GnuCash [4], Mozilla Focus [2], K-9 Mail [6],

WiFi Analyzer [10], Images to PDF [5]) of different domains (e.g.,

finance tracking, web browsing, emailing, WiFi network diagnosis,

and image conversion) and UI layouts.

3.2.2 Bug Description Identification. To identify bug/OB descrip-

tions in the 87 bug reports, two authors inspected and annotated

the 1807 sentences in the reports’ title and description. Based on the

definition of OB and the criteria to annotate OB sentences defined

by Chaparro et al. [28], one author labeled each bug report sentence

as either an OB or non-OB. Here, the OB sentences describe the

buggy app behavior (e.g., the underlined sentences in Figure 1).

The second author then verified the annotations made by the first

author, indicating agreement or disagreement. Out of the 1807 sen-

tences across all bug reports, the authors reached agreement on the

labels for 1774 sentences (≈98% agreement, 0.91 Cohen’s kappa [3]).

The authors solved disagreements via discussion and consensus.

Reasons for disagreement included mostly mistakes and misinter-

pretations (e.g., when sentences described root causes in the code,

rather than UI faults). Finally, 228 sentences were identified as

bug/OB descriptions for the 87 bug reports (2 or 3 OBs per bug

report on average), which serve as queries for the UI screen and

component localization tasks.

3.2.3 Retrieval Corpus Collection. To build the retrieval corpus

for each bug description, we require the set of UI screens and UI

components of the apps, including the buggy UI screens and UI

components. To collect these data, we employed a semi-automatic

app execution approach that consisted of: (1) a record-and-replay

methodology (used in prior studies [32, 71]), and (2) an automated

app exploration methodology (used by Chaparro et al. [24]). Both

methodologies reduce the manual effort of collecting UI (meta)data.

The goal of the record-and-replaymethodologywas to collect

the buggy UI screens for each bug report and the screens navigated

while reproducing the bugs, including screenshots and related meta-

data. Two authors manually reproduced the reported bugs by ex-

ecuting the reproduction steps found in the bug report on a Pixel 2

Android emulator. While reproducing the bugs, the authors used

the AVT tool [32, 71] to collect UI-event traces and a video show-

ing the user interactions with the app and the bug itself [59, 60].

These traces were replayed on the emulator via the TraceReplayer

tool [58] to automatically collect app screenshots, UI hierarchies,

and metadata for the exercised app UI screens.

The goal of the automated app exploration was to collect as

many UI screens as possible for building the corpus. We executed

a version of the CrashScope tool [60] that implements multiple

exploration strategies to interact with the UI components of app

screens comprehensively, trying to exercise as many app screens

as possible. In the process, CrashScope collects app screenshots

and XML-based UI hierarchies/metadata for the exercised app UI

screens, in the same manner as TraceReplayer.

Since these twomethodologies can generate duplicate UI screens,

we employed the approach by Chaparro et al. [24] to produce a

unique set of UI screens for each of the 87 bug reports. This approach

parses the UI hierarchies of the collected UI screens for an app and

establishes the uniqueness between two screens: if they have the

same hierarchical structure, based on component types, sizes, and

parent-children relationships, they are considered the same screen

and one of the two is used. This implies that two UI screens with

the same structure but different textual information are considered

the same UI screen. To create the UI component corpus for a given

(buggy) UI screen, we parsed the UI hierarchy of the screen and

identified the visible leaf components, which are typically the ones

shown to the user on the mobile device. However, we discarded

layouts and other containers, thus focusing on labels, buttons, text

fields, and other UI components that users typically interact with.

This procedure resulted in UI screen corpora containing ≈26 UI

screens per bug report on average, which are used for screen lo-

calization. The UI component corpora contain ≈17 UI components

per (buggy) UI screen on average, which is used for component

localization. A potential limitation of our corpus collection process,

based on dynamic app exploration, is the possibility of missing UI

screens for an app, which may affect models’ performance. How-

ever, we evaluate every approach using the same collected retrieval

corpus for each bug report, ensuring a fair evaluation. We discuss

the (dis)advantages of a static analysis-based approach for corpus

collection over dynamic analysis approaches in Section 6.

3.2.4 Ground Truth Construction. We used a rigorous data annota-

tion procedure to identify the buggy UI screens for each bug report,

and the buggy UI components for each buggy screen.

During multiple annotation sessions, four paper authors (a.k.a.

annotators) first read and understood the reported bugs, watching

(if needed) the bug reproduction video collected during the corpus

collection step. Then, the annotators inspected the app screens from

the corpus to identify the buggy screens shown in the video and

marked them as such in a spreadsheet. The annotators identified

and marked the buggy UI components in the same spreadsheet.

Each bug report was assigned to two annotators, making sure the

annotators had an even number of bug reports to annotate. For each

bug report, the first annotator identified the buggy UI screen and UI

components and then the second annotator validated whether the

identified screens and components were indeed buggy. Both anno-

tators followed the procedure described above, marking potential

disagreements in a shared spreadsheet. At the end of each annota-

tion session, the annotators discussed disagreements (mostly due to

misinterpretation of the bugs), and reached a consensus to produce

the final ground truth set of buggy UI screens and UI components.

Besides identifying the buggy UI screens and UI components,

the annotators rated the quality of the bug/OB descriptions based

on the amount of information they provided to understand the bug.

Since Buggy UI Localization is performed using individual bug/OB
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Table 1: Screen and component localization statistics

Statistic Screen loc. Component loc.

# of retrieval tasks/queries 228 254

# of hard-to-retrieve tasks 111 130

# of easy-to-retrieve tasks 117 124

Avg. # of buggy UI screens/comp. 2.06 (2) 1.86 (1)

Avg. of corpus size 25.97 (22) 17.11 (14)

Average (median) values per query/retrieval task

descriptions, the annotators judged the quality of each OB in a

bug report independently. The detailed understanding of each bug

report and the identified buggy UI screens and components assisted

the annotators in assessing OB quality. The annotators agreed on

a quality rating based on a 1-5 discrete scale. A rating of 1 means

the bug description does not contain useful information to under-

stand the problem. Conversely, a rating of 5 means the description

contains complete information to understand the bug. A rating

between 1 and 5 indicates that there is missing information in the

OB that hinders bug comprehension. Additionally, the annotators

marked each bug description as easy or hard to localize, based on

the difficulty they encountered in identifying the buggy UI screens

and UI components. A common reason why bug descriptions were

judged as hard to retrieve was that multiple UI screens (and UI com-

ponents) were similar, yet only one or a few were displaying the

reported bug. During the reconciliation sessions, disagreements

were discussed and solved to produce the final query quality and

retrieval difficulty category for each bug description.

3.2.5 Summary of the Collected Retrieval Data. For screen localiza-

tion (SL), each OB description (i.e., the query) represents a unique

UI screen retrieval task. Hence, our dataset contains 228 queries in

total, with 2.1 buggy UI screens per query as ground truth and 26

UI screens in the corpus on average (see table 1).

For component localization (CL), each OB description can have

multiple ground truth buggy UI screens, hence each combination

of OB description and UI screen represents a single retrieval task.

Based on this, we created 254 queries (or retrieval tasks), with 1.9

buggy UI components per buggy UI screen as ground truth, and 17

components in the corpus on average.

In summary, we collected: OB descriptions (i.e., the queries), the

retrieval corpora of UI screens and UI components for each query

(including app UI screenshots and cropped component images, and

their UI hierarchy with associated metadata: component text, ID,

etc.), and ground truth buggy UI screens and UI components.

3.3 Execution of the Retrieval Approaches

Each retrieval approach processes the query and retrieval corpus

differently. Some approaches rely solely on textual information,

while others utilize both textual and visual information.

Clip and Blip leverage textual and visual information from the

query and UI screens and components. The query for screen and

component localization (SL & CL) is the text of a OB description.

For SL, the corpus is all the screenshots of the application for which

the bug is reported, while for CL, the corpus is all the cropped

UI component images of a buggy UI screen. The models receive

a text-image pair and produce a score indicating how similar the

bug/OB description and each UI screen and UI component are.

Lucene and SBert leverage only the textual information from

the query and UI screens and UI components. The query is the

OB descriptions. As for the corpus, we extracted and concatenated

the text found in UI component metadata (i.e., the component ID,

label, and type) to create textual documents for retrieval. For CL,

each document is represented by the extracted document for a

component. For SL, we concatenated the textual documents of the

components in a given screen to form the textual document of a

screen. Lucene and SBert compute a score that represents how

similar the bug description and each textual document are. Only for

Lucene, we applied standard textual pre-processing on the queries

and documents (lemmatization, stop word removal, etc.).

The computed similarity scores yield a ranked list of UI screens

and components. Higher-ranked screens and components in these

lists are more likely to manifest or be associated with the bug.

3.4 Evaluation Metrics

We used standard retrieval metrics, widely used in prior studies [14,

32, 40, 51], to measure the effectiveness of the studied models:

• Mean Reciprocal Rank (MRR): it gives a measure of the aver-

age ranking of the first buggy UI screen/component in the candi-

date list given by amodel. It is calculated as:𝑀𝑅𝑅 =
1

𝑁

∑𝑁
𝑖=1

1

𝑟𝑎𝑛𝑘𝑖
,

for 𝑁 queries (𝑟𝑎𝑛𝑘𝑖 is the rank of the first buggy UI screen/com-

ponent for query 𝑖).

• Mean Average Precision (MAP): it gives a measure of the

average ranking of all the buggy UI screens/components for a

query. It is computed as: 𝑀𝐴𝑃 =
1

𝑁

∑𝑁
𝑖=1

1

𝐵𝑈

∑𝐵𝑈
𝑏=1

𝑃𝑖 (𝑟𝑎𝑛𝑘𝑏 ),

where 𝐵𝑈 is the set buggy UI screens/components for query 𝑖 ,

𝑟𝑎𝑛𝑘𝑏 is the rank of the buggy UI screen/component 𝑏, and

𝑃𝑖 (𝑘) =
𝑏𝑢𝑔𝑔𝑦_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑘
is the number of buggy UI screens/com-

ponents in the top-𝑘 candidates.

• Hits@K (H@K): it is the percentage of queries for which a

buggy UI screen/component is retrieved in the top-K candidates.

All metrics give a normalized score in [0, 1]—the higher the score,

the higher the retrieval performance of the models. We executed

the models and the baseline approach on the constructed query sets

for screen and component localization and computed/compared

the metrics between these approaches.

3.5 Results

We present and discuss the effectiveness of the results of the ap-

proaches for both screen (SL) and component localization (CL). We

focus our discussion on MRR since the other metrics show similar

trends to theMRR results for all the models. Our replication package

contains the results of all the experiments we conducted [12].

3.5.1 RQ1: Screen Localization (SL) Results. Table 2 shows the

screen localization performance of the approaches for 228 queries.

The results reveal that Blip performs the highest (0.457 MRR), out-

performing the second best SBert (0.415 MRR) and the third best

Lucene (0.411 MRR) with a relative improvement of 10.1% and

11.31% respectively. While Lucene outperforms Clip (0.381 MRR)

by 7.87%, it fails to retrieve buggy screens in 18 cases (i.e., 7.89% -

not shown in the table). However, Lucene achieves a competitive

H@1 to Blip (0.285). In terms of H@K, Blip outperforms the remain-

ing models by a considerable margin. For example, it outperforms
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Table 2: Screen localization (SL) results

Approach MRR MAP H@1 H@2 H@3 H@4 H@5

Blip 0.457 0.443 0.285 0.447 0.518 0.592 0.671

SBert 0.415 0.385 0.259 0.390 0.456 0.526 0.557

Lucene 0.411 0.384 0.285 0.386 0.465 0.522 0.575

Clip 0.381 0.348 0.206 0.338 0.465 0.526 0.592

Table 3: Component localization (CL) results

Approach MRR MAP H@1 H@2 H@3 H@4 H@5

SBert 0.517 0.504 0.339 0.512 0.598 0.701 0.744

Blip 0.424 0.405 0.244 0.417 0.500 0.567 0.614

Clip 0.413 0.399 0.244 0.386 0.472 0.567 0.618

Lucene 0.398 0.355 0.311 0.441 0.480 0.504 0.512

the models with a maximum relative improvement of 20.47% H@5

(compared to SBert). The models other than Blip achieve a similar

H@5 (Clip: 0.592, Lucene: 0.575, and SBert: 0.557).

The results show that Blip is the most effective model for screen

localization by a significant margin. This indicates that its rich

representations, learned from images and text from other domains,

can be transferred to the Buggy UI Localization problem. Also, the

results imply that both sources of information (UI pixels and text)

are beneficial for screen localization. Interestingly, SBert performs

second and outperforms Clip with a relative improvement of 8.9%

MRR. These results stem from the higher H@1-2 results achieved by

SBert. This is interesting and somewhat unexpected as SBert only

utilizes textual information (making it potentially less expensive

to execute), while Clip uses both visual and textual information.

Lucene is possibly the least expensive approach, and performs

comparably to SBert, yet it fails to retrieve buggy UI screens in

7.8% of the cases. In line with the original Blip evaluation [52],

Blip outperforms Clip, which can be explained by the models’

architecture. Blip is a model particularly designed for textual-image

matching that includes a matching loss for aligning text phrases

and images, learning joint representations of both sources via a

contrastive loss. In contrast, Clip aims to learn representations

of both textual phrases and images in the same embedding space

without performing any matching.

The results also indicate that there is still room for improvement,

as the best model (Blip) can suggest the buggy UI screens in the

top-1 to top-3 recommendations in about 29% to 52% of the cases

(see the H@1-3 results in table 2). A more sophisticated model is

required to perform screen retrieval more effectively. Such a model

should leverage both the visual information of a screen image and

the textual information from the UI metadata of that screen.

3.5.2 RQ2: Component Localization (CL) Results. Table 3 shows

the component localization results of all the approaches for 254

retrieval tasks. Note that although the number of OBs is 228, some

OBs may have a different component corpus for retrieval, one for

each buggy screen in the ground truth (i.e., one OB/bug description

may correspond to multiple buggy UI screens).

The results reveal that all supervised approaches perform higher

(0.413+MRR) than the baseline (Lucene), which achieves 0.398MRR.

SBert is the most effective of all approaches (0.517 MRR), signif-

icantly outperforming Blip, Clip, and Lucene by 21.86%, 25.24%,

and 29.7%, respectively. The superiority of SBert is consistently

observed across all the metrics and it can suggest the buggy UI com-

ponents in the top-1 to top-3 results in about 34% to 60% of the cases.

As in screen localization, Blip slightly outperformsClip, yet both

models achieve similar performance for H@1, 4, and 5. Although

Lucene (0.398 MRR) achieves similar performance to Clip’s (0.413

MRR) and Blip’s (0.424 MRR) and higher H@1, 2, it fails to retrieve

buggy UI components in 66 of 254 tasks (25.98%).

Several observations can be derived from these results. First, the

superiority of the supervised models compared to Lucene suggests

that DL models are better for component localization. Second, there

is still room for improving component localization: while the per-

formance of the best model is not low, the performance is not very

high either, which means that specialized models for component

localization are needed. Third, the textual information present in

the UI components of the screens seems to be highly effective in per-

forming localization, as indicated by SBert results. Fourth, Blip’s

superiority over Clip stems from their architectural differences (as

discussed in Section 3.5.1). Fifth, while it may be counter-intuitive

that SBert outperforms the multi-modal approaches, we generally

observed that OBs tend to describe the buggy components using a

language that is more similar to the component text observed by the

user, which a language model like SBert is specifically designed for.

While Blip also leverages textual information from components, it

does so based on the pixel data rather than the actual component

text extracted from the UI metadata.

3.5.3 RQ3: Results byQueryQuality and Retrieval Difficulty.

Query Quality. Figure 3 shows the screen localization results

(based on MRR) across different query quality ratings (from 1 to 5,

5 meaning most informative). The figure shows that while different

approaches perform differently across the quality ratings, all models

achieve the best performance for the most informative queries (i.e.,

rating 5). Moreover, the performance trend is similar for all the

models on the queries with quality ratings 4 and 5. Interestingly, of

18 queries for which Lucene fails to retrieve a buggy screen, eight

of them have a rating of 1, and the MRR achieved for the remaining

successful cases is relatively high.

Figure 4 shows the component localization results (based on

MRR) across different query quality ratings. The figure shows a

clear trend: the models tend to perform better for higher-quality

queries (rating 4 & 5) than lower-quality queries (rating 1 & 2).

As in screen localization, of 66 queries for which Lucene fails to

retrieve the buggy components, most of them (43) have a rating of

1 or 2. Of the 17 queries with a rating of 1, Lucene fails to retrieve

the UI components for 14 queries. For the remaining 3 queries, it

cannot retrieve any relevant component resulting in a 0 MRR.

For screen localization, we found a medium-to-high positive cor-

relation between the OB quality and the MRR results: a Spearman’s

correlation of 0.41 to 0.8 across all models except CLIP. For com-

ponent localization, we found a high correlation: Spearman’s cor-

relation of 0.72 to 0.99 across all models. The results show that the

models tend to perform better for higher-quality queries than lower-

quality queries for both screen and component localization. Our

replication package contains the # of queries per quality ratings [12].

Retrieval Difficulty. Figures 5 and 6 show the results (based on

MRR) for easy- and hard-to-retrieve retrieval tasks, for screen and
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Figure 3: SL results for different query quality levels
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Figure 4: CL results for different query quality levels

component localization respectively. For SL, all models perform

higher on easy-to-retrieve tasks. The same results are found for

component localization, except for Clip. The biggest performance

gap is observed for Lucene (31% for SL and 68.6% for CL). Of 18

failed screen localization cases for Lucene, 3 tasks are easy and 15

tasks are hard to retrieve, and of 66 failed component localization

cases, 17 tasks are easy and 49 tasks are hard to retrieve. Regardless

of the difficulty of the tasks, Blip performs highest for screen lo-

calization, and SBert performs highest for component localization.

The results suggest a correlation between the difficulty of retrieval

by humans and the retrieval performance of the models: they tend

to perform higher/lower for easier/harder cases.

The results of the different models stem from their distinct ar-

chitectures, training datasets, and types. Being heavily dependent

on word overlap, Lucene may fail to retrieve any UI screen/compo-

nents resulting in anMRR of 0. As among the failed cases of Lucene,

the majority of the queries have a lower quality level and are hard to

retrieve, it exhibits the worst performance in Figures 3 and 4 and the

largest gaps between easy- and hard-to-retrieve cases in Figures 5

and 6. For the other three models, it is always guaranteed that no

matter whether there is textual/visual similarity or not, the models

will retrieve the desired UI screen/UI component in some position.

3.6 Discussion

Screen Localization vs.Component Localization. We found per-

formance differences between screen localization (SL) (0.381 - 0.457

MRR) and component localization (CL) (0.398 - 0.517 MRR). Several

factors make SL more challenging than CL. First, the corpus size is

larger for SL than for CL (25.97 screens per app vs. 17.11 components

per screen on avg.). Second, SL is more abstract or general than CL

LUCENE SBERT CLIP BLIP

M
R
R

Approach

Easy (117 tasks) Hard (111 tasks)

Figure 5: SL results for easy- and hard-to-retrieve tasks

LUCENE SBERT CLIP BLIP

M
R
R

Approach

Easy (124 tasks) Hard (130 tasks)

Figure 6: CL results for easy- and hard-to-retrieve tasks

as the scope of SL is broader (all screens of the application vs. all

components of a screen). Additionally, OBs are generally written fo-

cusing on the component level as the user interacts with the compo-

nent while reproducing the bug. Third, the quality of the OBs has an

important impact on the results. For instance, “The color is unset." is

an OB with a quality rating of 2. The best SL model, Blip, identified

the relevant screen for this OB in the 21st place. However, the best

CL model, SBert, identified the relevant component in the 1st place.

Textual vs.Multi-modal Models. For screen localization, Blip

performs best on all metrics, while, for component localization,

SBert is the best performing. This distinction stems from the fun-

damental differences in the tasks: the retrieval corpus for compo-

nent localization consists of components from the buggy screen,

requiring a model that can distinguish subtle differences among

components without necessarily understanding the entire screen.

Additionally, when reporting bugs related to specific components,

users often use the text displayed in UI components to precisely

describe the issues. Therefore, text-based models like SBert are

effective at capturing the semantic meanings of these textual de-

scriptions, making them more suitable for component localization.

However, for screen localization, multimodal models like Blip

which integrates both textual and visual data, excel in understand-

ing the full context of a screen. They offer detailed insight into

spatial and functional interactions of various UI elements, which

is crucial for localizing buggy UI screens. Moreover, multimodal

models excel not only in capturing the overall screen content but

also in demonstrating strong grounding capabilities by locating

specific UI components within the screen based on textual bug

descriptions. This capability is particularly crucial for screen local-

ization, as it allows the model to identify and differentiate screens
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by accurately pinpointing the relevant components when bugs are

related to specific UI components.

While we found that both textual and textual-visual models

achieve a reasonable performance for Buggy UI Localization, no

single type of model seems to stand out. Blip and SBert were

the best-performing approaches, yet no single model was the best

for both tasks. The results indicate that both types of information,

textual and visual, can be leveraged for Buggy UI Localization, yet

textual data seems to be more useful for component localization,

while visual data seems to be useful for screen localization.

Design Requirements for Buggy UI Localization Methods.

The results suggest that both textual and visual information alone

are helpful for Buggy UI Localization. However, there is still room

for improving the localization performance and specialized models

may be required for this. We believe that both visual and textual in-

formation of the UI screens should be blended to build amore sophis-

ticated model to increase localization performance. Other sources

that can be explored are UI hierarchy information, which has shown

promising results for command/instruction UI grounding [55, 57].

Moreover, for a successful localization approach, we may require

potentially distinct models for screen and component localization.

Finally, while our study showed that it is feasible to leverage the

pre-trained models for Buggy UI Localization, fine-tuning may be

required to increase the performance of these models. However, cre-

ating or obtaining a comprehensive dataset for model fine-tuning is

challenging because it should include OB descriptions of different

types of bugs and wordings found in real bug reports, with corre-

sponding ground truth data. At the same time, such a dataset should

include a variety of mobile apps and should be sufficiently large for

the models to effectively learn patterns from the data. Creating a

global model that applies to any mobile app and bug description

is challenging. Future work should explore the possibility of com-

paring global vs. local models that work for specific apps, which

brings an additional challenge: collecting sufficiently large ground

truth data for individual apps.

UI Metadata Quality Assessment. To examine the impact of

potential noisy UI metadata on the results, we assessed the quality

of the three UI metadata attributes used by the textual models

(Lucene and SBert): component ID, label, and type. We focused

on two factors: attribute value presence and informativeness level.

For value presence, 95.2% of all the 36,572 UI components in our

dataset have at least one attribute value. For 92.9% of the compo-

nents, there is a value for the component ID and/or label, which are

potentially more informative than the component type. These re-

sults mean that, in 95.2% of the cases, Lucene and SBert leverage at

least one piece of information from the UI components for retrieval.

For the informativeness level, we qualitatively analyzed the at-

tributes of 380 UI components (a statistically significant sample

with 95% confidence level and 5% error margin). One author as-

sessed and assigned a category (informative or non-informative) to

the value of the three attributes. Another author reviewed the first

author’s categorization, agreeing in 91.4% of the cases. We found

that 95.8% of components have a least one informative attribute

(among the three attributes), which means that Lucene and SBert

leverage at least one informative value from the UI components for

retrieval. Aggregating across the three attributes, we assessed the

informativeness of 927 attribute values and found that 92% of them

are informative: 91.2% of the component IDs, 89.8% of the labels,

and 94.7% of the component types are informative.

We conclude that the UI metadata of our dataset is of high quality,

thus giving high confidence in the study results and conclusions.

4 Improving Buggy Code Localization

To illustrate the usefulness of automated Buggy UI Localization, we

conducted an additional study that investigated how the identified

buggy UI screens by Blip, our best-performing screen localization

model, can improve traditional buggy code localization approaches.

We aim to answer the following research question:

RQ4: Can the identified buggy UI screens by Blip lead to improved

buggy code localization?

To answer this RQ, we adapted Mahmud et al.’s approach [58]

(section 4.1) as an end-to-end automated buggy code localization

technique (section 4.2), which retrieves potentially buggy files based

on UI information from Blip’s suggested buggy UI screens. We de-

fined different pipelines that combine Buggy UI Localization and

buggy code localization (section 4.2) and compared their perfor-

mance with baseline techniques that do not use UI data (section 4.3).

4.1 UI-Based Buggy Code Localization

Mahmud et al. [58] showed that mobile app UI interaction data

improves the performance of four IR-based buggy code localizers

that rely on bug reports (e.g., BugLocator [86]). Their approach

modifies the initial ranking of potentially buggy code files produced

by a buggy code localizer for a given bug report, by boosting

relevant files and/or filtering out irrelevant files, or by performing

query reformulation. These operations (a.k.a. augmentations) use

information extracted from the UI screen that shows the reported

bug and the preceding 1-3 screens in a bug reproduction trace.

The information extracted from UI screens is UI terms (e.g., ac-

tivity and window names) which are matched against code file

names to produce a set of UI-related files. The UI terms and UI-

related files are used by two augmentation methods: (1) Reformu-

lating queries via query expansion, which appends UI terms to

bug reports, or via query replacement, which uses UI terms as the

query; and (2) File re-ranking by filtering, boosting, or combining

filtering and boosting. Filtering removes files that do not match

UI-related files (e.g., classes that directly interact with the UI) from

the file corpus. Boosting elevates the ranking of files in the corpus

that match UI-related files during the search.

Mahmud et al. employed four main configuration parameters to

integrate UI information into the IR bug localizers: (1) the number

of UI screens in a reproduction trace (i.e., the buggy screen and the

preceding 1-3 screens); (2) five types of UI information sources (e.g.,

UI screen, UI components, and exercised UI components); (3) query

reformulation strategies; and (4) re-ranking strategies. In total, 657

configurations were defined and evaluated for each bug localizer.

4.2 Integrating Buggy UI and Code Localization

Mahmud et al.’s approach [58] requires as input a trace of the UI

screens and UI components that the user interacted with to re-

produce a reported bug. The trace and the buggy UI screen in the

trace are meant to be manually collected/identified by the devel-

oper. Mahmud et al.’s approach then uses the metadata information
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from the buggy screen and the 1-3 prior screens/components in the

reproduction scenario as input to their augmentation approaches.

Our goal is to eliminate the manual effort of Mahmud et al.’s

approach and define an effective and fully automated end-to-end

pipeline of buggy code localization using the buggy UI screens rec-

ommended by a UI screen localizer. To that end, we adapted their

approach by using our best screen localization approach (i.e., Blip)

to automatically suggest the top 3-4 buggy UI screens as the only

information needed by the buggy code localization pipeline.

As such, we defined an approach that integrates both the screen

localization and buggy code localization pipelines since the ultimate

goal is to produce a ranked list of potentially buggy code files for a

given bug report. The challenge in defining this combined approach

is that a bug report can contain multiple OB descriptions. If we

execute Blip on each OB description, it would produce multiple

lists of potentially buggy UI screens. Therefore, this challenge is

rooted in deciding which buggy screens should be given as input to

the localization pipeline, to produce a single ranking of buggy files.

To address this problem, we considered two options: (1) produce

and provide a single ranking of UI screens for the bug report, or

(2) provide each ranking of UI screens (for each OB description in

the bug report) to the buggy code localization pipeline, to produce

multiple code file rankings, and then combine these rankings into

a final code file ranking. For option #1, we explored two strategies,

namely: (i) Concat OBs, which concatenates the OB descriptions

in a bug report and uses the resulting query as input to Blip, and (ii)

First OB, which selects only the first OB description found in the

bug report as a query to Blip. When executed, these two strategies

produce a single UI screen ranking, which can be used by the buggy

code localization pipeline to suggest a single code file ranking for

the bug report. As for option #2, to produce a single code file ranking,

we defined a strategy called IndividualOBs, which first averages

the similarity scores of each code file found in all the buggy file

rankings to produce a single similarity score for the file. Then, these

combined similarities, for all the files in the rankings, are used to

produce a final code file ranking (i.e., sorting by these similarities).

4.3 Approach Execution, Dataset, and Metrics

We selected the two best IR-based buggy code localization tech-

niques fromMahmud et al.’s study [58], namely Lucene [42] (adapted

for buggy code localization) and BugLocator [86], and executed

them in our combined pipeline for buggy code localization. We

tested all 70 feasible configurations of different augmentation meth-

ods and UI information kinds defined in the prior work. We also

experimented with providing the top 3 and 4 buggy UI screens

suggested by Blip, based on the best number of screens found in

the prior study for Lucene (4 screens) and BugLocator (3 screens).

We executed the three combined pipelines defined above, namely

Concat OBs, First OB, and Individual OBs, using both buggy

code localizers. However, we could not execute Individual OBs

with BugLocator because the tool provided by the original au-

thors [86] does not provide the code file rankings needed by In-

dividual OBs. The pipelines were executed on 79 of the 80 bug

reports from the buggy code localization benchmark provided by

Mahmud et al. [58]. As mentioned in section 3.2.1, we excluded one

bug report because we could not reproduce the bug. The full set of

Table 4: Buggy Code Loc. Performance via Buggy UI Loc.

Bug Localizer Approach
#

Scrns
H@5 H@10

RI of

H@10

#Bug

Top10

Lucene

Baseline 4 0.74 0.79 - 61

Concat OBs 4 0.75 0.88 11.49% 68

First OB 4 0.74 0.88 11.49% 68

Individual OBs 4 0.77 0.87 9.85% 67

BugLocator

Baseline 3 0.59 0.71 - 56

Concat OBs 3 0.72 0.79 10.72% 62

First OB 3 0.61 0.80 12.41% 63

87 bug reports was not used in the Buggy UI Localization due to the

absence of Java files as ground truth for buggy code localization.

The performance of the combined pipelines, using all possible

configurations and IR bug localizers, was measured and compared

using Hits@k and its relative improvement (RI), in line with the

methodology followed by the prior work [58]. We used as baselines

the original IR bug localizers, without using any UI information.

Note that 4 screen experiments used 77 bug reports as 2 bug reports

have only 3 screens in the screen localization (SL) corpus.

4.4 Results

Table 4 shows the buggy code localization results for both IR bug

localizers and the best configurations we obtained among all con-

figurations. These results are obtained when Blip suggests the top

3 and 4 buggy screens. Complete results of all configurations and

experiments are provided in our replication package [12].

For each pipeline, IR bug localizer, and number of buggy screens

recommended by Blip, we consistently found that the best con-

figuration (i.e., the highest H@10 improvement compared to the

baselines) includes filtering with UI Components (SC) and boosting

with UI Screens (GS). Additionally, the best configuration includes

query expansion with GS when Concat OBs is used with Lucene

and query expansion with SC when First OB is used with BugLo-

cator. As in the prior work [58], we obtained the best results with

4 screens for Lucene and 3 screens for BugLocator.

Table 4 reveals that all the combined pipelines for buggy code lo-

calization lead to a performance improvement compared to the base-

lines, by 9.85% to 12.41% H@10. When using Lucene, the Concat

OBs and First OB pipelines achieve the best improvement: 11.49%

for H@10, which translates into retrieving the buggy code files in

the top-10 results for 7 more bug reports, compared to the baseline.

When using BugLocator, First OB pipeline results in improving

the baseline by 12.41% H@10 (i.e., 7 more successful retrieval tasks).

We compare our results from table 4 with the results achieved by

the best configurations obtained for Lucene and BugLocator by

Mahmud et al. [58], since those results represent a perfect identifi-

cation of the buggy UI screen, along with the reproduction scenario.

However, we must cautiously compare these results since the bug

reports used in both studies are not exactly the same. Not sur-

prisingly, the performance of the manual buggy code localization

approach by Mahmud et al. [58] is slightly higher than the perfor-

mance of our best configurations (0.9 vs 0.88 H@10 for Lucene, and

0.84 vs 0.80 H@10 for BugLocator). This difference is acceptable,

considering that we propose a fully automated way of localizing

buggy code files via Buggy UI Localization, which still outperforms

baseline localizers, while the prior work requires manual effort in

collecting reproduction traces and the buggy screen.
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Given the results, we conclude that Buggy UI Localization can

be useful to improve the performance of UI-based buggy code

localization in a fully automated end-to-end way.

5 Threats to Validity

Construct Validity. There may be subjectivity introduced in the

dataset construction when identifying the OB descriptions in the

bug reports, their quality rating, retrieval difficulty levels, and the

ground truth buggy UI screens and components. We mitigated this

threat by adopting a rigorous methodology to label and curate the

data during joint sessions of bug understanding, replication, and

analysis among four authors, reaching consensus in all cases.

Internal Validity. The selection of models affects the internal

validity of our results/conclusions. To mitigate this, we covered

both uni-modal (SBert) and multi-modal (Clip & Blip) DL mod-

els, and a unsupervised textual technique (Lucene) as baseline for

Buggy UI Localization. For buggy code localization study, we con-

ducted various experiments with all feasible configurations on two

localizers (Lucene and BugLocator) to obtain the best-performing

configuration. Another threat concerns the methodology we used

to collect UI corpus data, which may have led to incomplete cov-

erage of UI screens for an app. While this can have an impact on

the study results, we used the same screen corpus to evaluate all

models, thus ensuring a fair evaluation.

External Validity. The conclusions of our study may not gen-

eralize to other retrieval models, bug descriptions, and apps. To

improve the generalization, we selected different types of models

and built a real dataset containing a variety of bug types, and apps

that implement different UIs for multiple domains.

6 Related Work

Mobile App Bug Report Management. Recent research [36, 38,

39, 71, 82] has explored the use of mobile app bug reports to auto-

mate various bug report management tasks. Researchers [82, 84]

have proposed approaches to reproduce Android bugs or gener-

ate test cases based on bug reports. Our Buggy UI Localization

approach that identifies the buggy screens/components can help

these approaches to generate assertions that validate the reported

bugs. Song et al. [71] proposed a chatbot to help users report An-

droid bugs via visual guidance and quality verification. This chatbot

can benefit from a Buggy UI Localization approach by accurately

assessing how bug descriptions corresponds to UI screens/compo-

nents. Despite the growing body of research on automating bug

report management tasks such as bug reporting [36, 71], repro-

duction [19, 20, 38, 82–84, 84], localization [14, 25–27, 40, 46, 76],

and others [32, 39, 78, 85], prior work has not explored how to

automatically localize buggy UIs as we do.

Static Analysis ofMobile AppUIs. Researchers have proposed

techniques/tools to statically analysis mobile app UIs (e.g., Front-

Matter [47, 48], Gator [79], Backstage [16], GoalExplorer [49],

and others [41, 54]). One main advantage of these approaches, over

dynamic analysis, is their ability to cover a large number of UI

screens for an application. Our future work will explore the use of

these techniques to assess how UI screen coverage can impact the

performance of the studied models. Static analyzers also provide

features that can assist buggy code localization. For example, Front-

Matter [47, 48] identifies which Android APIs can be triggered by

an interaction with a UI component, which may help identify buggy

code elements. While the main problem we address in this paper is

buggy UI localization, our future work will explore how static an-

alyzers and UI localizers can be integrated to better localize buggy

code based on a bug description. The main limitations of static

analyzers, which prevented us from using them for data collection,

include: (1) they may fail to capture server-side content loaded

only at runtime, resulting in potentially unrealistic UI screens (2)

they do not provide UI screenshots, needed to evaluate the studied

multi-modal models, and (3) potential imprecision of app behavior

captured by these tools as they may not provide UI screens display-

ing certain bugs (e.g., incorrect output and navigation issues).

UI Representation Learning and Applications. UI repre-

sentation learning aims to represent UI elements or text via em-

beddings [17, 43, 53, 57] for downstream tasks such as image cap-

tioning [30, 61, 74] and UI component labeling [29, 30, 56]. One

application of UI representation learning is mapping (a.k.a. ground-

ing) textual instructions to UI action/elements [55, 64, 77]. Pasupat

et al. [64] evaluated three models to ground natural language com-

mands to web elements. Li et al. [55] utilized transformers models

for this task, based on three synthetic training datasets. There are

key differences that make it hard to adapt those models to our prob-

lem. For example, Li et al.’s approach [55] requires a sequence of

screens where the instructions are performed, and then locating the

corresponding UI component for each instruction. In contrast, our

work identifies the buggy UI screens and components without any

prior information about relevant screens. Furthermore, our study

deals with bug descriptions, whose language is more complex than

that of UI instructions [28].

7 Conclusions

This paper reports the results of the first empirical study that in-

vestigates the effectiveness of textual/visual neural models for au-

tomatically localizing buggy UI screens and UI components based

on the bug descriptions of mobile apps. We evaluated approaches

for screen and component localization, using a real-world dataset

of manually-curated bug descriptions and ground truth UI data.

The study reveals that the best-performing approaches can local-

ize correct buggy UI screens and components in the top-3 recom-

mendations for 52% and 60% of the bug descriptions. We found that

the models tend to perform better for the bug descriptions which

are easier to retrieve even for humans and which have a higher

quality. We also illustrate that Buggy UI Localization can be useful

to automate and improve traditional buggy code localizers.

8 Data Availability

For verifiability and reproducibility, we have made all the study

artifacts (e.g., dataset, source code, and documentation) publicly

available including the latest version [12] and the first version [11].
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