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Abstract—Code Language Models (CLMs) have demonstrated
high effectiveness in automating software engineering tasks such
as bug fixing, code generation, and code documentation. This
progress has been driven by the scaling of large models, ranging
from millions to trillions of parameters (e.g., GPT-4). However, as
models grow in scale, sustainability concerns emerge, as they are
extremely resource-intensive, highlighting the need for efficient,
environmentally conscious solutions. GreenAI techniques, such
as QLoRA (Quantized Low-Rank Adaptation), offer a promising
path for dealing with large models’ sustainability as they enable
resource-efficient model fine-tuning. Previous research has shown
the effectiveness of QLoRA in code-related tasks, particularly
those involving natural language inputs and code as the
target output (NL-to-Code), such as code generation. However,
no studies have explored its application to tasks that are
fundamentally similar to NL-to-Code (natural language to code)
but operate in the opposite direction, such as code summarization.
This leaves a gap in understanding how well QLoRA can
generalize to Code-to-NL tasks, which are equally important
for supporting developers in understanding and maintaining
code. To address this gap, we investigate the extent to which
QLoRA’s capabilities in NL-to-Code tasks can be leveraged
and transferred to code summarization, one representative
Code-to-NL task. Our study evaluates two state-of-the-art CLMs
(CodeLlama and DeepSeek-Coder) across two programming
languages: Python and Java. Each model was tasked with
generating a meaningful description for Python and Java code
methods. The findings of our research confirm previous patterns
that emerged when applying QLoRA to source code generation.
Notably, we observe that QLoRA not only allows efficient
fine-tuning of CLMs for code summarization but also achieves
the best results with minimal parameter adjustment compared
to full model fine-tuning, which requires expensive recalibration
of all model parameters in the traditional fine-tuning process.

Index Terms—Code Summarization, PEFT, Quantization,
QLoRA, Code Language Models

I. INTRODUCTION

In recent years, deep learning (DL) generative models, par-
ticularly Large Language Models (LLMs) and Code Language
Models (CLMs), have transformed key software engineering
(SE) activities, including bug fixing, code generation, and
code documentation [1–5]. These advances have significantly
enhanced automation, driving productivity in SE workflows.

To fully realize their potential, CLMs often require fine-
tuning to achieve high accuracy on specific tasks. Prior re-
search [6, 7] has shown that fine-tuned CLMs outperform pre-
trained CLMs that rely on in-context learning (ICL), particu-
larly for downstream tasks such as code summarization [8–10].
Fine-tuning allows for deeper calibration of model parameters,
resulting in higher adaptability & robustness for specific tasks.

However, fine-tuning large-scale language models—often
comprising billions of parameters—demands significant com-
putational resources and time [11]. For instance, training the
CodeLlama [12] family of models reportedly required over
1.4 million GPU hours [13], highlighting the substantial effort
needed to achieve state-of-the-art performance.

In response to this challenge, researchers have explored
sustainable methods to reduce the environmental and compu-
tational costs associated with training large-scale models while
maintaining high performance [6, 14–16]. Techniques such as
model compression and parameter-efficient fine-tuning (PEFT)
[6, 15–18] have emerged as promising solutions, enabling
efficient training with significantly lower resource demands.

One recent advancement at the intersection of model com-
pression and PEFT is QLoRA (Quantized Low-Rank Adap-
tation) [19], a technique that combines model size reduction
with efficient fine-tuning strategies. QLoRA has been shown
to enable cost-effective fine-tuning of CLMs for tasks such as
program repair and code generation/completion [6, 20], which
fall into the categories of Code-to-Code and NL-to-Code (natu-
ral language to code) tasks. These results suggest that QLoRA
significantly reduces computational overhead while achieving
high effectiveness compared to methods requiring full param-
eter calibration. Despite these promising results, the applica-
bility of QLoRA to Code-to-NL tasks, such as code summa-
rization, remains unknown. This paper addresses this gap by
evaluating QLoRA’s effectiveness for code summarization.

Code summarization, like other bi-modal code-related tasks
(e.g., code review and code generation), requires reasoning
across code and natural language, with the aim to translate
complex code logic into accurate, clear, and concise natural
language explanations. Given that QLoRA has proven effective
for code generation [6], we hypothesize that it is equally
effective for code summarization. This hypothesis is grounded
in the conceptual parallel between teaching a model to gen-
erate code and teaching it to summarize code, as both tasks
involve an inverse relationship where input and output roles
are reversed, with both tasks learning nuanced relationships
between natural and programming languages.

To validate this hypothesis, we conducted a systematic eval-
uation of QLoRA using two state-of-the-art CLMs, CodeL-
lama [12] and DeepSeek-Coder [21], designed to summa-
rize code methods written in Python and Java from the
CodexGLUE’s code summarization dataset1. We trained these

1https://tinyurl.com/axbp8hua



models with QLoRA under varying parameter sizes and
compared their performance to full model fine-tuning, ana-
lyzing memory usage and predictive accuracy. Additionally,
we qualitatively analyzed two statistically significant samples
of code methods—one comprising Python methods and the
other Java methods—to evaluate how closely the generated
summaries align with the ground truth and how effectively
they convey equivalent information. This analysis establishes
a virtual upper bound on the potential effectiveness of QLoRA
for Code-to-NL tasks, particularly code summarization.

Our results show that QLoRA achieves superior predictive
performance compared to full fine-tuning while consistently
reducing the memory footprint of CLMs. These findings
provide compelling evidence of QLoRA’s ability to optimize
CLMs for resource-intensive, bi-modal code-related tasks,
thereby showing its utility across the full spectrum of code-
related tasks: Code-to-Code, NL-to-Code, and Code-To-NL.

To the best of our knowledge, this work represents the first
large-scale evaluation of QLoRA for code summarization, and
it makes the following key contributions:
● A comprehensive analysis of QLoRA’s capabilities for

code summarization, using two state-of-the-art CLMs
across two programming languages, contributing to
a broader understanding of resource-efficient training
across the full spectrum of code-related tasks.

● Key insights into the trade-offs between memory usage
and model performance compared to full model fine-
tuning, showcasing QLoRA’s ability to achieve remark-
able results with substantially reduced resource require-
ments in the context of code summarization.

● A replication package [22], including data, models,
scripts, and documentation, to facilitate reproducibility
and further research in this field.

II. BACKGROUND AND RELATED WORK

This section provides the reader with an overview of recent
advancements in efficiency-based methods that aim to improve
the sustainability of large language models, particularly code
language models (CLMs) for code summarization.

A. Code Language Models in Code Summarization

Given the significant potential of SE-related automation
through large code models grounded on LLMs, researchers
increasingly leveraged these models to support various tasks,
including those requiring higher levels of abstraction. One
such task is code summarization, which involves working
with bi-modal data to translate and summarize code into
natural language. In this task, LLMs have proven highly effec-
tive [23–27]. CLMs like Codex [28, 29], CodeBERT [30, 31],
and T5 [27] excel in understanding code functionality and
logic, generating clear and concise summaries. For example,
Mastropaolo et al. [27] pre-trained a T5-based model on a
blend of code and technical natural language before fine-tuning
it on various code-related tasks, including code summarization.
Their results highlighted the advantages of leveraging transfer
learning for bi-modal code-related tasks, particularly code

summarization. Haldar et al. [32] investigated the use of
CodeT5 [33], PaLM2 [34], and Llama2 [35] to generate mean-
ingful code summaries. While CodeT5 was subject to fine-
tuning, PaLM2 and Llama2 required no parameter adjustment.
The authors’ findings reveal that LLMs frequently leverage
function names and shared tokens between the code and its
summary to optimize predictive performance.

Ahmed et al. [9] found that few-shot prompting, which
involves providing the model with few examples for generation
tasks, significantly improves Codex’s performance in code
summarization, outperforming smaller pre-trained models like
CodeT5. In another study, Sun et al. [36] explored CodeL-
lama [13] and GPT-4 [37] for code summarization and evalu-
ated five prompting techniques (i.e., zero-shot, few-shot, chain-
of-thought, critique, and expert). They identified the most
effective prompt for guiding GPT-4 to generate in-distribution
code summaries.

B. Parameter-Efficient Fine-Tuning and Quantization Methods

Parameter-Efficient Fine-Tuning (PEFT) optimizes fine-
tuning by updating only a subset of a model’s parameters,
rather than the entire model. Common techniques include:
(i) Adapters, where additional model layers are introduced to
handle a limited set of parameters [38]; (ii) Prompt Tuning,
which trains the model to learn from prompts containing task
descriptions or canonical examples [39, 40]; and (iii) LoRA
(Low-Rank Adaptation), which decomposes weight gradients
into low-rank matrices during fine-tuning [41].

PEFT has shown strong performance in tasks such as
code generation and summarization, often outperforming
fully fine-tuned models. For instance, Wang et al. [42]
applied Adapter tuning for code search and summarization,
while Ayupov et al. [15] showcased the effectiveness of
Adapters and LoRA in tasks like code summarization and
code clone detection. Similarly, Liu et al. [43] compared
PEFT methods—such as Adapter, LoRA, prefix tuning,
and Multi-Head Modification (MHM)—for tasks like defect
detection, clone detection, code translation, and code
summarization. Recent studies [18, 44] have further explored
PEFT techniques in the context of code summarization,
highlighting their importance in this domain.

Quantization is a technique for model compression. It
aims to reduce the size of a model by preserving only the
most essential information encoded in the model’s param-
eters. Specifically, it achieves compression by representing
weights or activations in lower-precision formats, such as 8-
bit integers, rather than higher-precision formats like 16-bit
or 32-bit floats [45, 46]. This approach reduces latency while
minimizing any potential loss in accuracy.

In the software engineering domain, the pioneering study
by Wei et al. [14] represents the first large-scale investiga-
tion into the application of quantization techniques for code-
related tasks, including code generation and summarization.
The authors examined the effects of 8-bit quantization on
various code models, such as PLBART [47], CodeT5 [33],
InCoder [48], and CodeGen [49]. Their findings revealed that



applying 8-bit quantization to CodeGen and InCoder resulted
in improved energy efficiency during code generation, while
PLBART and CodeT5 showed similar benefits for code sum-
marization. Notably, these gains in efficiency were achieved
with only a minimal reduction in model accuracy.

C. Quantized Low-Rank Adaptation (QLoRA) of CLMs

Dettmers et al. [19] recently proposed QLoRA, an approach
that combines the LoRA PEFT technique with quantization of
LLMs. QLoRA introduces various key innovations, including
(i) the 4-bit NormalFloat (NF4) data type, (ii) Double Quanti-
zation (DQ), and (iii) a Paged Optimizer. It has been shown to
be an efficient fine-tuning method that reduces memory usage
while preserving the high performance of LLMs [19]. QLoRA
quantizes the pre-trained model’s weights to 4-bit precision
using NF4, a data type optimized for the normal distribution
of neural network weights. Additionally, through double quan-
tization, both the model weights and the quantization constants
are quantized, further reducing the memory footprint. To man-
age memory spikes during gradient checkpointing and prevent
out-of-memory errors, QLoRA employs Paged Optimizers. A
detailed explanation of QLoRA and the fine-tuning process to
achieve its goals is provided in Section III-B.

Limited research has investigated the efficiency of QLoRA
for code language models. Yang et al. [20] applied QLoRA
on models such as CodeLlama [13], StarChat-alpha [50], and
Mistral-Instruct-7B [51] to specialize large code models for
automatic program repair (APR). Their findings demonstrate
that QLoRA effectively supports LLMs in repairing defects
in software systems. Weyssow et al. [6] compared PEFT
techniques to In-Context Learning (ICL) for code generation,
concluding that PEFT methods achieved superior results. In
addition, the authors also investigated the applicability of
QLoRA to CodeLlama 7B, 13B, and 34B Python models,
using 8-bit and 4-bit quantization.

While these findings provide valuable insights, a compre-
hensive evaluation of whether QLoRA can effectively sup-
port the entire spectrum of code-related tasks–namely NL-
to-Code, Code-to-Code, and Code-to-NL–remains absent. To
address this gap, this paper takes a significant first step toward
exploring QLoRA’s potential across these task categories.
Specifically, we focus on Code-to-NL tasks, using code sum-
marization as a representative case study, to evaluate how
well QLoRA adapts in scenarios where the model processes
code as input and generates natural language as output. This
work seeks to deepen the understanding of resource-efficient
training methods in software engineering tasks while providing
a foundation for future research across diverse bi-modal tasks
(e.g., code review automation).

III. STUDY METHODOLOGY

The main goal of this study is to investigate the application
QLoRA fine-tuning to code language models (CLMs) for code
summarization. QLoRA combines PEFT and quantization
techniques, resulting in substantial improvements in memory

efficiency during LLM training compared to LoRA [19]. The
study addresses the following research question (RQ):

RQ: How effective and memory-efficient are CLMs for code
summarization when fine-tuned with QLoRA, compared to
full fine-tuning?

Through this RQ, we aim to validate our hypothesis that
QLoRA is equally effective for code summarization as it is
for code generation [6].

To answer the RQ, we examine two state-of-the-art
code models: CodeLlama [12] and DeepSeekCoder [21].
Each model is trained and evaluated on the CodexGLUE
code summarization benchmark [52], particularly the dataset
comprising Python and Java code methods and their respective
summaries [53].

Additionally, we investigate the impact of scaling up the
parameters of CLMs during QLoRA-based training, measur-
ing changes in GPU memory usage and overall predictive
performance for code summarization. This analysis aims to
determine whether larger models retain their performance
advantage, as demonstrated in previous studies [23–25, 54],
where increasing the number of model parameters has consis-
tently improved task-specific performance.

We also investigate the generalizability of QLoRA for LLMs
that, while widely utilized for automating SE-related tasks,
were not primarily designed for such tasks. The details of this
analysis are provided in Section IV-C.

A. Code Language Models (CLMs)

For our study, we selected two families of state-of-the-art
CLMs: CodeLlama [13] and DeepSeekCoder [21]. The models
have been frequently investigated in prior work [21, 55, 56].

Our selection includes models with distinct architectural
or training features, making them well-suited for code
summarization. For example, the models are available in
both instruction-tuned and non-instruction-tuned variants.
Instruction-tuned models are optimized to process human-like
instructions, making them particularly effective at manipu-
lating natural language and code. This additional capability
can be harnessed even in the context of QLoRA training, as
demonstrated in prior work [57, 58].

CodeLlama [12] is a family of open-source LLMs tailored
for coding tasks. It is based on the general-purpose Llama-2
model [59], with further training on a corpus of 500B tokens
that include both natural language and code. CodeLlama is
available in several variants [60], each designed for specific
use cases: a general-purpose coding model, an Instruct variant
optimized for instruction tuning, and a Python-specialized
version. The model sizes range from 7B to 70B parame-
ters, and all versions are publicly accessible. CodeLlama has
demonstrated strong performance in automating a range of
code-related tasks [61, 62], making it a representative model
for our study. We used the general-purpose Instruct version
featuring 7B and 34B parameters in our experiments.

DeepSeek-Coder [21] is a set of open-source LLMs ranging
from 1B to 33B parameters. These models are offered in two



configurations: Instruct, optimized for instruction tuning, and
Base. Trained on a dataset of two trillion tokens, including
code-specific data, DeepSeek-Coder has been shown capable
of outperforming larger models such as GPT-3.5 [63], while
the small-sized version featuring 6.7B parameters has proven
highly competitive to CodeLlama’s 33B variant. For this
study, we used the Instruct version of DeepSeek-Coder in
three variants, 1.3B, 6.7B, and 33B parameters. This selection
served two different goals: (i) it allowed us to compare the
performance of QLoRA-optimized models against fully fine-
tuned models by contrasting the results achieved by DeepSeek-
Coder 1.3B in both configurations; and (ii) it enabled a com-
parison between small-sized (CodeLlama 7B vs. DeepSeek-
Coder 6.7B) and mid-sized models (e.g., CodeLlama 34B vs.
DeepSeek-Coder 33B), providing insights into how QLoRA
fine-tuning impacts performance across different model sizes.

B. The QLoRA Fine-tuning Technique

QLoRA employs two innovative techniques for effective
4-bit finetuning: 4-bit NF4 quantization and Double Quan-
tization, along with Paged Optimizers to manage memory
efficiently during gradient checkpointing.

1) NF4 Quantization: The core of QLoRA’s approach lies
in a method designed to efficiently quantize neural network
weights into a 4-bit format which, uses NF4, a novel data type
designed for AI applications. The 4-bit Normal Float (NF4)
data type is based on Quantile Quantization [64], which en-
sures an even distribution of tensor values across quantization
bins or categories. Using fast quantile approximation algo-
rithms, QLoRA can estimate quantiles without the high com-
putational costs associated with precise quantile calculations.

During this process, the neural network weights, which
generally follow a zero-centered normal distribution, are ad-
justed to fit a predefined range. This normalization aligns the
weight tensors with the range of the data type, allowing for
more effective quantization by matching the tensor’s value
distribution to that of the quantized format.

2) Double Quantization: To further reduce memory
footprint, QLoRA follows a two-step approach: (i) the model
weights are quantized to 4-bit precision using NF4, and (ii) the
quantization constants (scales and zero-points) from the first
step are quantized to a lower precision. QLoRA implements
Blockwise k-bit Quantization, where weights are divided into
distinct blocks that are independently quantized, rather than
quantizing all weights collectively. This method generates
multiple quantization constants, which can undergo a second
round of quantization, providing additional memory savings.

3) Paged Optimizer: When training large models, gradient
checkpointing comes in handy as a technique to reduce mem-
ory usage during model training, yet memory spikes can still
occur when processing mini-batch with a long sequence of
input tokens. Paged optimizers minimize GPU memory use by
storing states in CPU memory and transferring them as needed.

Fig. 1 depicts the fine-tuning process of QLoRA, an exten-
sion of LoRA that, as noted, utilizes NF4 for efficient weight

Fig. 1. QLoRA finetuning with paged optimizers [19]

storage and BFloat16 for computations and gradient calcula-
tions. The addition of paged optimizer memory management
further enhances efficiency, making QLoRA particularly suit-
able for resource-constrained environments.

In our study, we selected the QLoRA parameter configu-
ration outlined in Table I, which includes three parameters:
(i) lora_r, (ii) lora_alpha, and (iii) lora_dropout.
These were kept constant for each QLoRA fine-tuning in-
stance. The choice of the hyperparameter values follows
established best practices to ensure precision while minimizing
resource consumption [19, 41].

TABLE I
QLORA HYPERPARAMETERS USED IN OUR EXPERIMENTS

Parameter Description Value
lora_r lora attention dimension/ rank 8
lora_alpha lora scaling parameter 16
lora_dropout lora dropout probability 0.1

C. Dataset and Model Training

We employed the Code-to-Text dataset from the
CodeXGLUE benchmark [52, 53] to train and evaluate
all QLoRA-optimized models, focusing specifically on
Java and Python. The benchmark consists of pairs of code
methods and their associated natural language descriptions,
extracted from ∼6 million instances of human-written code
documentation.

Our decision to leverage CodeXGLUE was driven by its
extensive use in prior research for studying LLMs in code-
related tasks [24, 27, 65–67].

Table II presents a summary of the datasets employed for
training and evaluation. To this extent, we train each QLoRA-



optimized model using a fixed set of hyperparameters, as
detailed in Table I. Each model was trained for 10 epochs
with a consistent batch size of 32 maintained throughout all
experiments. To prevent overfitting, we implemented an early
stopping, saving a new checkpoint after every 5,000 training
steps, and monitoring the performance of the models using
the METEOR score, which acts as a highly reliable proxy
for differences exceeding 2 points in evaluating the quality of
code summaries as perceived by humans [68]. In particular,
the training process stops if no improvements in the METEOR
score are observed after 15K steps, which equals to a window
of 3. This approach allowed us to effectively monitor model
performance and ensured that we retained the best-performing
checkpoint of the models for both programming languages.

TABLE II
#NUMBER OF DATA INSTANCES IN TRAINING, VALIDATION, AND

TESTING SPLITS

Language Training Validation Testing

Java 164,923 5,183 10,955
Python 251,820 13,914 14,918

During training, each model takes as input tokens the
tokenized code from the code_tokens field in the JSON
file, corresponding to either Java2 or Python3. The output
is the sequence of natural language tokens provided in the
docstring_tokens field and joined together to form a
string, specific to each programming language. We configured
the maximum sequence length to 300 tokens during the
training stage based on our analysis of the token distribution
for code and natural language in the Code-to-Text dataset.

In our implementation of QLoRA, we followed the findings
from [19] and applied QLoRA to all linear layers of the
networks (e.g., Feed-Forward Layers, Self-Attention Layers,
and Projection Layers). This approach enables QLoRA to ef-
fectively adapt to the task at hand by leveraging the parameter
space considered essential for optimal performance.

The training process for full fine-tuning followed the same
configuration as used for QLoRA-optimized models, including
batch size, number of training epochs, and early stopping.

D. Metrics and Experimental Procedure

We started by fine-tuning DeepSeek-Coder 1.3B using
QLoRA with the dataset described in Section III-C. As out-
lined in Section III-A, we limited full fine-tuning (FFT) to the
smaller model variants included in our study to mitigate the
substantial computational costs associated with adjusting all
parameters of larger models (e.g., DeepSeek-Coder 33B).

We proceeded by evaluating the performance of the
model when generating code summaries for Java and Python
methods. To this end, we relied on metrics that have been
widely used in prior code summarization research [5, 69, 70]:

2https://zenodo.org/record/7857872/files/java.zip
3https://zenodo.org/record/7857872/files/python.zip

BLEU (BilinguaL Evaluation Understudy) [71] measures
the similarity between candidate (predicted) summaries and
reference (oracle) summaries. This metric assesses the overlap
of n-grams within the two summaries, ranging from 0 (com-
pletely dissimilar summaries) to 1 (identical summaries). We
compute the BLEU score at the sentence level, fixing n = 4.

METEOR (Metric for Evaluation of Translation with Ex-
plicit ORdering) [72] is computed as the harmonic mean of
unigram precision and recall, with recall given a higher weight
than precision. Unlike BLEU, METEOR utilizes stemming
and synonym matching to align more closely with human
judgments of sentence similarity. METEOR ranges from 0 to
1, with a value of 1 indicating two identical sentences.

ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) [73] consists of a set of metrics for evaluating both au-
tomatic text summarization and machine translation methods.
ROUGE metrics compare automatically generated summaries
or translations against a set of reference summaries, typically
authored by humans. In line with Roy et al. [68], we computed
ROUGE-N(1-4), ROUGE-L, and ROUGE-W. ROUGE-N mea-
sures the number of matching n-grams between the generated
summary and the reference summary with results reported in
terms of recall, precision, and F1-score.

chrF (character n-gram F-score) [74] measures the sim-
ilarity between generated and reference summaries at the
character level (rather than at the token level, done by the
above metrics), reporting a F1-score value.

BERTScore [75] computes sentence similarity using the
embedding of a BERT model [76] trained on English textual
data. We report the F1-score (BERTScore-F1).

SIDE (Summary Alignment to Code Semantics) [3] offers
an automated method for evaluating the alignment between
a Java method and its corresponding summary. It produces a
score within the range of [-1, 1], where values closer to 1
indicate a stronger alignment between the comment and the
documented code component. Conversely, lower SIDE scores
signify weaker alignment, highlighting discrepancies between
the summary and the code.

Next, we conducted a comprehensive end-to-end, task-
specific fine-tuning of DeepSeek-Coder, updating 1.3 billion
parameters. This process, backpropagates gradients through
the entire model, enabling optimal adjustment of each
parameter to enhance task-specific performance (i.e., code
summarization).

Finally, we assessed whether there are statistically
significant differences in performance between fully fine-
tuned models and QLoRA-optimized models. To this extent,
we employed the Wilcoxon signed-rank test [77], and
measured the effect size using Cliff’s Delta (d) [78]. The
effect sizes are categorized as follows: negligible if ∣d∣ < 0.10,
small if 0.10 ≤ ∣d∣ < 0.33, medium if 0.33 ≤ ∣d∣ < 0.474, and
large if ∣d∣ ≥ 0.474. We used a 95% significance level across
all tests and, since we tested our hypotheses through multiple
tests, we adjusted the p-values using Holm’s correction



procedure [79]. The tests were computed for every metric
included in our evaluation.

To investigate the impact of various sizes of models, we
fine-tuned four model variants with QLoRA optimization:
CodeLlama 7B/34B and DeepSeek-Coder 6.7B/33B. Next, we
evaluated the performance of each model configuration in
generating meaningful code descriptions for Python and Java
methods. Additionally, we applied the Wilcoxon signed-rank
test to analyze performance differences in evaluation metrics
across models of varying sizes.

Each experiment was performed on a server running
Ubuntu 22.04.5 LTS (GNU/Linux 5.15.0-125-generic x86 64),
equipped with two Nvidia L40S GPUs, each featuring 48GB
of graphics memory.

E. Qualitative Analysis

Evaluating code summarization can present unique chal-
lenges, particularly in dealing with semantically equivalent
summaries. For example, in Fig. 2, the two summaries in-
dicated with S1 and S2, describe the same functionality of a
code snippet but use different phrasing. This discrepancy poses
a challenge because traditional evaluation metrics like BLEU
or ROUGE rely heavily on exact word matches and may
penalize the generated summary S1 for not being identical to
the ground truth S2. In addition, Mastropaolo et al. [3] have
recently demonstrated that word-overlap metrics like BLEU,
and even embedding-based metrics such as BERTScore [75],
can only capture one of the several dimensions pertaining
to the evaluation of code summarizers. Thus, to provide a
more accurate assessment of the capabilities of QLoRA in
fine-tuning models for bi-modal software engineering tasks,
we manually analyzed two statistically significant, randomly
selected samples: one consisting of 384 Java methods and
the other of 384 Python methods, generated by the best-
performing QLoRA-optimized model identified in our study.

With this manual analysis, we aimed to better understand the
nuances in code summarization tasks that automated metrics
might miss, offering a comprehensive evaluation of how
effectively QLoRA-optimized models can support bi-modal
SE-related tasks across two programming languages.

For this analysis, two paper authors independently reviewed
the 768 incorrectly generated summaries, equally split between
Python and Java (i.e., 384 + 384). Any conflicts were resolved
through open discussion between the reviewers, involving a
third author when needed. The summaries were sampled from
the set of incorrect predictions made by CodeLlama-34B, the
best-performing model. Each prediction was classified as:

● Semantically equivalent: The ground truth and the
model’s prediction use different wording but convey
exactly the same information to the developer.

● Meaningful code description: These cases represent in-
stances where the model generated a code summary that
not only conveyed the intended information but was of
better quality than the ground truth. A few examples are
reported in Fig. 3.

Fig. 2. Semantically equivalent Java code summaries.

● Partially equivalent: The prediction includes only part of
the information conveyed in the ground truth. While these
predictions can still be useful for the developer, some
code adjustments are needed to align the prediction with
the original method.

● Incorrect: The code summary predicted by the model is
documenting something else and not the underlying code.

To assess inter-rater reliability among the evaluators, we
calculated Krippendorff’s α coefficient [80]. For the analysis
of Java elements, the α coefficient was 0.752, and for Python,
it was 0.803. In both cases, the α that ranges between [-1;1]
indicated a high level of agreement between the two evalua-
tors. Following this, we report the percentage of instances in
each category detailed above.

IV. RESULTS AND DISCUSSION

In this section, we present and discuss the results of our
study addressing our RQ, which aims to evaluate the effec-
tiveness and memory footprint of the CLMs when fine-tuned
with QLoRA, compared to full fine-tuning.

A. QLoRA vs Full Fine-Tuning

As described in Section III-D, we fine-tuned DeepSeek-
Coder 1.3B under two configurations: QLoRA fine-tuning and
full fine-tuning (FFT). The CodeLlama models are only fine-
tuned with QLoRA due to the excessive computational costs
associated with full fine-tuning, which we could not afford.
Table IV illustrates the numbers of total model parameters
and trainable parameters for our selected models.

Table III summarizes the performance results for the five
models optimized using QLoRA, alongside the Full Fine-
Tuning (FFT) of DeepSeek-Coder 1.3B. A key insight that
emerges after observing the second and third rows is that
QLoRA-based fine-tuning consistently delivers superior per-
formance compared to full fine-tuning of DeepSeek-Coder
1.3B across the two programming languages. For example,
in terms of the METEOR score, the QLoRA fine-tuned model
surpasses its fully fine-tuned counterpart by approximately 2%
for both Python and Java. Similarly, based on the ROUGE-L
metric, performance improvements range from 1.9% to 2.7%,
with the largest gains observed for Java. For each metric
reported in Table III, the observed differences were found to
be statistically significant (based on a Wilcoxon signed-rank



TABLE III
PERFORMANCE OF DIFFERENT QLORA FINE-TUNED PARAMETER SIZE MODELS. THE BEST RESULTS ACROSS ALL THE EXPERIMENTED

CONFIGURATIONS ARE HIGHLIGHTED IN YELLOW.

Model Parameter Size Training Dataset Type BLEU METEOR Rouge-L chrF BERTScore F1 SIDE

CodeLlama
7B QLoRA Python 8.9% 33.9% 36.5% 29.7% 88.8% -

Java 10.3% 35.8% 37.4% 30.9% 89.0% 87.5%

34B QLoRA Python 10.7% 35.3% 35.2% 31.3% 89.0% -
Java 11.6% 37.2% 36.7% 32.0% 89.1% 86.6%

DeepSeek-Coder

1.3B
FFT Python 6.5% 32.3% 30.1% 27.4% 88.2% -

Java 8.2% 33.4% 32.2% 28.8% 88.4% 87.3%

QLoRA Python 7.4% 34.2% 32.0% 28.0% 88.5% -
Java 8.7% 35.1% 33.9% 29.0% 88.6% 88.1%

6.7B QLoRA Python 8.6% 36.5% 33.9% 29.4% 88.8% -
Java 9.9% 37.3% 35.5% 30.1% 89.0% 87.9%

33B QLoRA Python 10.5% 37.8% 35.2% 31.2% 89.0% -
Java 10.9% 38.1% 36.4% 31.5% 89.0% 87.4%

TABLE IV
SUMMARY OF MODEL TRAINING PARAMETERS AND MEMORY UTILIZATION IN MEGABYTES (MB)

Training Strategy Model Peak GPU Mem. Consumption (MB) Trainable Parameters Model’s Parameters Trainable %

QLoRA Fine-Tuning

CodeLlama-7b 11,877 20,277,376 6,758,820,064 0.300
CodeLlama-34b 37,424 54,781,952 33,798,752,256 0.162

DeepSeek-Coder-1.3b 5,154 7,770,112 1,354,242,048 0.574
DeepSeek-Coder-6.7b 12,894 20,279,296 6,760,792,064 0.300
DeepSeek-Coder-33b 39,724 61,898,752 33,404,890,112 0.185

Full Fine-Tuning DeepSeek-Coder-1.3b 16,776 1,354,242,048 1,354,242,048 100

test at 95% significance), though the effect size is negligible.
The detailed results of this analysis are available in our online
replication package [22].

Table IV shows the results of our analysis of the peak GPU
memory consumption during model fine-tuning. The table
reveals a substantial difference between QLoRA and full fine-
tuning. FFT of the 1.3B parameters requires an average of
approximately 16GB of GPU memory, while QLoRA fine-
tuning significantly reduces memory usage, requiring only
5GB on average–saving 10GB compared to FFT (i.e., about a
third of the FFT memory footprint). This reduction in memory
consumption can be attributed to the considerably lower num-
ber of trainable parameters in QLoRA (Table IV–Columns 4
and 5), which represents a significant scale difference (millions
vs. billions) compared to training all parameters. The freed-
up memory can be used to support additional tasks, enable
larger batch sizes, or improve overall computational efficiency,
making QLoRA a more practical and scalable solution for
resource-constrained environments.

The results indicate that QLoRA is not only effective in
optimizing resource efficiency but also in outperforming full
fine-tuning. These findings align with those presented in the
pioneering work that introduced QLoRA [19].

In the software engineering literature, Weyssow et al. [6]
demonstrated that for coding activities–particularly code
generation–the use of LoRA adapters for fine-tuning large
language models outperforms FFT. Furthermore, in the same
study, they showed that QLoRA fine-tuning surpasses LoRA
fine-tuning for the same task, establishing a clear hierarchy of

fine-tuning strategies: FFT < LoRA fine-tuning < QLoRA fine-
tuning. Hence, if LoRA fine-tuning already outperforms FFT,
this suggests that once the underlying model’s knowledge,
distilled within its parameters, is frozen–as in LoRA and
QLoRA fine-tuning–adapting a smaller subset of parameters
is sufficient to effectively capture the nuances of the intended
task. As we show, QLoRA improves model performance while
reducing memory footprint. This result might seem counter-
intuitive, given that QLoRA relies on extreme quantization
to optimize memory usage. However, a possible explanation
for this behavior comes from Dettmers et al. (the authors
of QLoRA), who observe that any performance degradation
due to information loss during quantization is not only fully
recovered but often surpassed through the fine-tuning of LoRA
modules after the quantization process.

Finding1: QLoRA fine-tuning for code summarization
delivers performance on par with what is observed for
other software engineering tasks such as code genera-
tion [6]. By optimizing a limited subset of quantized
parameters, it outperforms full fine-tuning in terms of
predictive performance and memory consumption.

Examining the impact of varying parameter counts, the
results align with our expectations: larger models consistently
outperform their smaller counterparts when QLoRA is applied
to support code summarization tasks (see Table III). For
example, CodeLlama-34B demonstrates significantly higher



performance compared to its 7-billion-parameter variant, and
a similar pattern is found with DeepSeek-Coder, where larger
versions achieve superior results. These trends hold true
across both programming languages, underscoring the effect of
QLoRA regardless of the model size. However, this improve-
ment comes at a cost. Larger models demand significantly
more GPU memory during training, with usage peaking at 40
GB when fine-tuning DeepSeek-Coder 33B and 37.5 GB when
fine-tuning CodeLlama 34B, as detailed in Table IV. This
highlights the trade-off between model size, performance, and
resource requirements. Depending on the final application and
available hardware, one may need to prioritize performance
over resource consumption or vice versa. In other words, if
GPU memory allocation is limited, sacrificing some perfor-
mance may be a reasonable trade-off, especially considering
the capabilities of models with around 7B parameters. The
observed improvements resulted in statistically significant
differences, though the effect sizes of these differences are
negligible. The detailed results of all the statistical analyses
are available in our online replication package [22]. Scaling up
to DeepSeek-Coder 33B, the improvements, while still statisti-
cally significant, exhibit diminishing returns. The performance
gap narrows across all evaluated metrics, as evidenced by
the negligible effect sizes. Although larger models generally
offer greater capacity, the diminishing improvements suggest
that further scaling might not always justify the increased
computational resources, particularly for code summarization.

In contrast, for CodeLlama, scaling from 7B to 34B yields
more pronounced gains. The larger 34B variant achieves
a 3-4% improvement in METEOR scores over its smaller
counterpart, equating to an 11.8% improvement for Python
and 8.4% for Java. These results highlight the effectiveness
of both the CodeLlama model family and DeepSeek-Coder
in leveraging increased parameter counts to enhance perfor-
mance. This trend becomes particularly apparent when exam-
ining the top-performing models in Table III, where the best
results across all experimental configurations are highlighted
in yellow. Notably, four out of six metrics in our evaluation
reach their highest values with models from the CodeLlama
family that have a parameter count exceeding 30B. The
performance differences remain consistent across embedding-
based metrics (BERTScore-F1 for both languages, SIDE for
Java) and are statistically significant but with negligible effect
sizes, suggesting limited practical impact. This reinforces that
while larger models can improve performance, the gains may
not justify the increased GPU memory consumption.

Finding2: Larger models generally offer greater capac-
ity and potential better support for code summarization,
but they eventually reach a point of diminishing return.
However, if maximizing performance is the primaryob-
jective, CodeLlama 34B delivers the best outcomes for
code summarization, with improvements of 11.8% for
Python and 8.4% for Java.

B. Qualitative Analysis

Fig. 3 presents four triplets of ⟨Method, Targetsummary or
GT, Predictedsummary or PR⟩. The examples are divided by
programming language, with two for each language. The top
section features Java examples, while the bottom showcases
two Python examples. In all cases, the model-generated com-
ments are not only accurate compared to the ground truth but
also offer improvements over it. We remind the reader that this
type of code comment falls under the category of meaningful
code descriptions (Section III-E).

Specifically, focusing on the first triplet 1 , the developer-
provided ground truth summary, attempt to exit
from an already switched user, encapsulates
the method’s basic functionality. However, the CodeLlama
34B model optimized using QLoRA, generates a summary
that clarifies the method’s logic, explicitly documenting
that the method attempts to exit the current
user by returning the original user that
was being impersonated. This provides valuable
additional information, specifically noting that the method
returns the original user who was being
impersonated. This distinction makes the summary more
comprehensive, as it clarifies the intended logic and provides
insights into the rationale of the code.

In 2 , the predicted summary demonstrates significant im-
provement, as the model captures details that the developer
overlooked or deemed unnecessary, such as the process of
extracting tokens. The model not only identifies these ele-
ments but also elaborates on them, providing a more compre-
hensive and actionable summary: extracts the scope
from the access token and converts them to
grant authorities. This enhanced prediction demon-
strates the model’s capability to infer additional context and
generate summaries that not only “copy” tokens already
present in the method but also synthesize new information.
For instance, the word-token access was inferred through the
model’s deeper understanding of the code’s logic and intent.
This ability allows for the creation of more comprehensive and
insightful summaries.

Turning to the Python first example 3 , the prediction adds
depth by conveying an additional message: that the dagrun
must be retrieved based on the most recent
execution date. This enriched context provides develop-
ers with summaries that are not only concise but also contextu-
ally informative. The second Python example ( 4 ) illustrates
that, despite the significantly smaller number of parameters
adjusted during fine-tuning (i.e., millions rather than billions),
the performance of the QLoRA-optimized model remains,
even for tasks demanding high contextual reasoning. Notably,
the model identifies an important detail revealed only at the
conclusion of the method: list py paths is a recursive method.
This ability to detect nuanced information demonstrates the
model’s effectiveness in generating meaningful and context-
aware summaries despite the limited parameter adjustment,
quantized and dequantized, as explained in Section III-B.



protected Authentication attemptExitUser(HttpServletRequest 
request)
        throws AuthenticationCredentialsNotFoundException {
    Authentication current =
          SecurityContextHolder.getContext().getAuthentication();
    if (null == current) {
        throw new AuthenticationCredentialsNotFoundException(
            this.messages.getMessage(
                 "SwitchUserFilter.noCurrentUser",
                 "No current user associated with this
                  request"));
    }
    Authentication original = getSourceAuthentication(current);
    if (original == null) {
        this.logger.debug("Could not find original user
                               Authentication object!");
        throw new AuthenticationCredentialsNotFoundException(
           this.messages.getMessage(
                "SwitchUserFilter.noOriginalAuthentication",
                "Could not find original Authentication
                 object"));
    }
    … …
    
    return original;
}

GT: attempt to exit from an already switched user
PR: attempt to exit the current user by returning the original user 
that was being impersonated.

@Override
public Collection<GrantedAuthority> convert(Jwt jwt) {
      return getScopes(jwt).stream()
            .map(authority -> SCOPE_AUTHORITY_PREFIX + authority)
            .map(SimpleGrantedAuthority::new)
            .collect(Collectors.toList());
}

GT: extract the authorities
PR: extracts the scopes from the access token and converts them to 
grantedauthorities.

def get_previous_dagrun(self, session=None):
        return session.query(DagRun).filter(
                  DagRun.dag_id == self.dag_id,
                  DagRun.execution_date < self.execution_date
        ).order_by(
            DagRun.execution_date.desc()
        ).first()

GT: the previous dagrun if there is one
PR: returns the dagrun for the most recent execution_date

GT: traverse a directory and look for python files.
PR: get all file paths in a directory recursively that end in py.

2

3

4

1

def list_py_file_paths(directory, safe_mode=True, 
                       include_examples=None):
      …
      …
    for root, dirs, files in os.walk(directory,followlinks=True):
          patterns = patterns_by_dir.get(root, [])
                ignore_file = os.path.join(root, '.airflowignore')
            …
            …
    if include_examples:
        import airflow.example_dags
        example_dag_folder = airflow.example_dags.__path__[0]
        file_paths.extend(list_py_file_paths(example_dag_folder, 
                          safe_mode, False))
    return file_paths

Fig. 3. Examples of predictions made by CodeLlama 34B that have been
labeled as meaningful code summaries.

These instances align with the findings of the manual
investigation conducted on 384 incorrect Java summaries and
384 incorrect Python summaries.

For Java, 15.36% of conflicts arose during the labeling
process. These conflicts, resolved by a third author who
was not involved in the initial labeling, resulted in the
following breakdown: 31.07% of summaries were deemed
semantically equivalent to the ground truth, 53.0% were

partially equivalent, and in 8.87% of cases, CodeLlama 34B
provided summaries that were more accurate and informative
than those written by developers. Finally, 7.57% of the
summaries were classified as incorrect.

A similar pattern was observed for Python, with slight
variations in the distribution across categories. Specifically,
CodeLlama 34B generated 37.86% of summaries as a real
developer would do (i.e., semantically equivalent summaries),
53.0% were partially equivalent, and in 3.66% of cases,
CodeLlama 34B produced recommendations superior to those
of developers. Finally, 5.48% of the recommendations were
found to be incorrect.

C. Can We Translate the QLoRA Benefits for Code Summa-
rization to General-Purpose Language Models?

Our investigation demonstrated that QLoRA can serve as
a resource-efficient training strategy for code summariza-
tion, paving the way for advancements in Code-to-NL tasks.
However, an open question remains: can these findings be
generalized to models that have been pre-trained—not solely
but partially—on software engineering data?

The rationale behind this question lies in the growing
adoption of hybrid models, such as Phi-3 mini [81], which
have been benchmarked extensively on coding tasks while
also serving as baselines in comparisons against both code-
specific and general-purpose language models [82]. These
models blur the lines between domain-specific and general-
purpose architectures, offering a unique ground for evaluating
the transferability of QLoRA’s fine-tuning benefits.

For such analysis, we selected Phi-3 mini [81], a 3.8-billion-
parameter model introduced by Microsoft in 2024 that was
shown to achieve results on par with Llama 3 [83], Meta’s
state-of-the-art 7-billion-parameter model, when applied to
code-related tasks such as code generation. Phi-3 mini is
nearly half the size of Llama 3 [83]. We chose this Microsoft
model for the generalizability analysis due to its popularity
and its frequent use as a baseline for coding tasks [82, 84].

We trained Phi-3 mini using two distinct configurations,
replicating the approach used for DeepSeek-Coder 1.3B (Sec-
tion III). Specifically, we conducted both full model fine-
tuning and QLoRA fine-tuning, followed by model evaluation
in each scenario. The training and evaluation processes were
carried out as outlined in Section III.

Table V presents the results of our experiments with Phi-3
mini. Notably, focusing on the BLEU metrics, the QLoRA-
optimized model consistently outperforms the fully fine-tuned
model, showing a performance improvement of 2% for Python
and 0.9% for Java. This trend extends to other metrics, such as
METEOR, ROUGE-L, and chrF, where the QLoRA-optimized
model surpasses the FFT model by a margin of approximately
2–3%. Further analysis compares the performance of code
models with the general-purpose phi-3 mini model. While
code models demonstrate better performance than Phi-3 mini,
the observed gap is not substantial. To validate this finding,
we conducted a Wilcoxon signed-rank test between the Phi-3



TABLE V
PERFORMANCE OF PHI-3-MINI WHEN FULLY FINE-TUNED AND QLORA FINE-TUNED

Model Parameter Size Training Dataset Type BLEU METEOR Rouge-L chrF BERTScore F1 SIDE

Phi-3-mini 3.8B
FFT Python 6.1% 31.8% 29.4% 26.3% 88.1% -

Java 7.9% 33.6% 32.1% 27.7% 88.5% 87.3%

QLoRA Python 7.9% 35.4% 32.9% 28.5% 88.7% -
Java 8.7% 35.9% 34.4% 28.9% 88.8% 88.1%

mini-3.8B and DeepSeek-Coder-1.3B models, evaluating both
fully fine-tuned and QLoRA fine-tuned versions. The analysis
failed to reveal statistically significant differences for Java
(regardless of the evaluation metric), whereas, for Python, this
behavior was observed only for the BLEU metric in the fully
fine-tuned setup. These analysis details are included in our
replication package [22].

V. IMPLICATIONS OF OUR FINDINGS

Among the various applications of code-related bi-modal
tasks, code summarization stands as a fundamental endeavor
in software engineering, playing a crucial role in enhancing
developer productivity [2, 55], improving code comprehen-
sion [5, 25], and supporting software maintenance [20].

Based on our findings, we draw the following implications:

Improving CLMs Sustainability via QLoRA fine-tuning.
By applying QLoRA fine-tuning to two SoTA code models
for code summarization activities, we demonstrated that it
achieves competitive results compared to full model fine-
tuning. Additionally, QLoRA significantly reduces memory
requirements, cutting the memory footprint by approximately
a third (see Table IV), which enhances the scalability, sustain-
ability, and usability of advanced AI systems built on large
language models for code.

QLoRA streamlines CLMs training for code summariza-
tion with comparable success to code generation.
The successful adaptation of QLoRA for code summarization
underscores its potential to enhance a wide range of code-
related tasks through efficient fine-tuning. In software engi-
neering research, this paves the way for exploring QLoRA’s
capability to fine-tune CLMs for hybrid tasks that integrate
code and natural language, such as code review. Examining
how QLoRA performs in these hybrid scenarios could unlock
new possibilities for leveraging code models in complex, real-
world applications.

VI. THREATS TO VALIDITY

Construct Validity threats pertain to the relationship be-
tween theory and observation, primarily concerning the mea-
surements used to answer our research questions. In this
context, the main threat in our study lies in the selection of
metrics to evaluate the quality of the generated summaries. As
outlined in Section III-D, we utilized well-established metrics
for assessing code summary quality [85], along with newer
metrics such as SIDE [3].

Internal Validity threats relate to factors internal to our
study that could affect the achieved results. One possible threat
can be the selected models to conduct the analysis. We par-
tially mitigate this issue by considering models from the state-
of-the-art that have been used in several prior studies [86–89].

Another threat is the selection of the QLoRA hyperparame-
ters. In this regard, we resorted to the literature and particularly
followed the recommendations provided in the original paper
that introduced QLoRA [19].

A further potential limitation concerns memory measure-
ment, which was conducted based on a single run within a
specific environment. Factors such as background processes or
system load variations could impact memory usage metrics.
To mitigate this, we maintained a controlled and consistent
environment across experiments. However, we acknowledge
that conducting multiple runs under varying conditions could
offer additional insights.

Conclusion Validity threats involve the link between the
experimental process and its outcomes. As detailed in Sec-
tion III-D, where appropriate, our conclusions are supported
by suitable statistical methods.

External Validity threats concern the generalizability of
our findings. In this regard, our study focuses solely on code
summarization as a representative bi-modal task. Furthermore,
although we conducted experiments using Python and Java—
widely studied programming languages in software engineer-
ing automation [11, 12, 21]—we recognize that results may
differ for other programming languages.

VII. CONCLUSIONS AND FUTURE WORK

This study found that QLoRA is as effective for code
summarization as it is for code generation—a task similar in
intent but distinct in execution. Specifically, our findings show
that QLoRA not only matches but consistently outperforms
full model fine-tuning, delivering superior results while signif-
icantly improving resource efficiency. Notably, QLoRA excels
in memory utilization, positioning it as a practical solution for
resource-constrained environments.

Building on the positive impact of QLoRA fine-tuning for
complex code-related tasks, our future research will focus
on achieving a balance between efficiency and performance
when deploying QLoRA in practical applications, such as live
coding assistance tools.
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