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Abstract—Bug reports are essential for developers to confirm
software problems, investigate their causes, and validate fixes.
Unfortunately, reports often miss important information or
are written unclearly, which can cause delays, increased issue
resolution effort, or even the inability to solve issues. One of
the most common components of reports that are problematic
is the steps to reproduce the bug(s) (S2Rs), which are essential
to replicate the described program failures and reason about
fixes. Given the proclivity for deficiencies in reported S2Rs, prior
work has proposed techniques that assist reporters in writing or
assessing the quality of S2Rs. However, automated understanding
of S2Rs is challenging, and requires linking nuanced natural
language phrases with specific, semantically related program
information. Prior techniques often struggle to form such language
< program connections — due to issues in language variability
and limitations of information gleaned from program analyses.

To more effectively tackle the problem of S2R quality
annotation, we propose a new technique called AstroBR, which
leverages the language understanding capabilities of LLMs to
identify and extract the S2Rs from bug reports and map them to
GUI interactions in a program state model derived via dynamic
analysis. We compared AstroBR to a related state-of-the-art
approach and we found that AstrRoBR annotates S2Rs 25.2%
better (in terms of F1 score) than the baseline. Additionally,
AsTROBR suggests more accurate missing S2Rs than the baseline
(by 71.4% in terms of F1 score).

I. INTRODUCTION

End-users and developers frequently submit natural language
bug descriptions through issue trackers in the form of bug
reports. These reports are essential in helping developers
reproduce and understand the bugs, which in turn help in
fixing them. At the very least, a good bug report should
describe the observed behavior (OB) of the app (i.e., the
buggy behavior), the expected behavior (EB) of the app (i.e.,
the correct behavior), and the steps to reproduce the bug
(S2Rs) [1,2]. Among these, the S2Rs are arguably the most
important in reproducing the reported bug, an essential step in
confirming the presence of the bug.

In GUI-based applications, reproducing a bug requires
exercising a series of interactions via the Graphical User
Interface (GUI), as described by the S2Rs. A developer (or a
tool) trying to replicate a bug needs to understand and extract
from each S2R description the user action (a click, swipe, efc.)
and the GUI component the action is applied to (a button, menu,
check box, efc.). This is often challenging, as end-users often
use their own language and understanding of the app when de-
scribing the S2Rs, which may differ from that of the developers.

The first two authors contributed equally to this work.

Incorrect or ambiguous S2R descriptions and missing S2Rs
hinder developers’ ability to understand the bug and lead to
non-reproducible bugs [3], delays in bug fixes [4, 5], unresolved
bugs [4], and even reopening bugs due to incorrect fixes [5].
To address the problem of low-quality S2R descriptions in
bug reports, previous research focused on generating missing
S2Rs [6], providing quality feedback to bug reporters [7], auto-
matically reproducing the bug reports [8], or facilitating interac-
tive bug reporting [9-11]. A common issue shared by several of
these approaches is related to difficulties in mapping low-quality
S2R sentences to elements of the GUI, stemming from the lim-
itations of traditional natural language processing techniques.
In this paper, we present ASTROBR (LANGUAGE
UNDERSTANDING AND ASSESSMENT OF THE STEPS TO REPRODUCE
N BuG REPORTS), a novel approach for improving bug reports
at reporting time, by providing quality feedback on S2Rs to
the reporter. To do this, AsTRoBR constructs an application
execution model comprising the application interactions
via dynamic analysis. Then, for each S2R, it identifies the
corresponding application interactions via traversal of an app
execution model, guided by GPT-4 [12]. During the traversal,
it identifies the best path comprising interactions for the first
to last S2R of the bug report. Leveraging the interaction
path and the mapped interaction information for each S2R,
AsTrROBR can assess the quality of the reported S2R as well
as generate the potential steps that are not reported in the bug,
but required to reproduce the bug (i.e., missing steps).
Unlike previous work, AsTrRoBR uses an LLM (GPT-4) for
three different tasks, in three distinct ways. First, it automat-
ically extracts S2R sentences in a natural language bug report,
framing the task as a text classification problem. For this task,
we evaluated three prompt templates, based on three prompting
strategies (i.e., zero-shot, few-shot, and chain-of-thought),
using a development set of 54 bug reports. Second, it extracts
individual user actions and the GUI components interacted
with from the S2R sentences, framing the task as a phrase
extraction problem. For this task, we evaluated three additional
prompt templates, based on the three prompting strategies.
Third, it maps the extracted actions and GUI components to
elements of an app execution model, framing the task as a
guided graph exploration problem. For this task, we evaluated
six prompt templates, based on the three prompting strategies.
GPT-4 is used to guide the systematic and efficient exploration
of the execution model. During this mapping process,
AsTrOBR identifies problems with the S2R sentences (e.g.,
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Fig. 1: Bug Report Quality Annotations

ambiguous descriptions, vocabulary mismatches, or missing
steps) and generates a quality report with annotations reflecting
these issues. When S2Rs are missing, AsTRoBR also generates
the missing steps and includes them in a quality report.

We compared the performance of AstrRoBR with a recent
state-of-the-art technique, EuLER [7], utilizing a test dataset
consisting of 21 bug reports having 73 S2R sentences, from
five Android applications. AsTrRoBR achieves better results
in generating quality annotations (by 25.2% F1 score) and
identifying missing S2Rs (by 71.4% F1 score).

In summary, this paper makes the following contributions:

« An approach that integrates graph-based dynamic analysis
and LLMs (i.e., GPT-4) to automatically identify and extract
S2Rs from the bug report, assess their quality, and generate
missing steps.

o A ground truth dataset containing the identified and ex-
tracted S2Rs, quality annotations, and missing steps to
evaluate AstTrRoBR with the existing baselines. This dataset
contains 75 annotated bug reports.

« A replication package [13, 14] containing all the dataset
and source code to replicate and validate our results.

II. QuaLiTY MODEL FOR REPRODUCTION STEPS

In this paper, we adopt the quality model proposed by
Chaparro et al. [7], with the following quality categories for
the steps to reproduce the bug (S2Rs) in a bug report:

o Correct step (CS): the step corresponds to a specific
interaction and GUI component on the application.

« Ambiguous Step (AS): the step corresponds to multiple
interactions on GUI components on the application.

« Vocabulary Mismatch (VM): the step does not correspond
to any interactions or GUI components on the application
due to misaligned terminology.

o Missing Steps (MS): interactions that are required to
replicate the bug, but not reported in the bug report.

We illustrate the definitions with an example in Figure 1.
The bug report presented in the figure comprises six S2Rs,
each annotated with the above categories. (D) The first S2R
is "Change the phone setting”, which does not represent
any interactions in the app. Therefore, this S2R is annotated
as VM. @ The second S2R contains only one individual
S2R, "Open Mileage Tracker", representing only one app

interaction. Therefore, this S2R is annotated as CS. @) The
third S2R, "Navigate to the ‘Service Intervals’ screen”, does
not immediately follow after the second step. There is a
required intermediate step, "Open the app menu", which must
be performed by tapping the "three dots" button in the bottom
left menu bar of Screen 1. Therefore, this missing step is
included in the quality report and annotated as MS. With
this missing step added, the third reported S2R requires a
single interaction that can be reliably mapped to the GUI,
i.e., performing a click operation on the "Service Interval”
button on Screen 1. Therefore, it is categorized as CS. @
"Tap on ‘Add Service Interval’ requires only one interaction in
the GUI, i.e., performing a click operation on "Add Service
Interval" component on Screen 2, and hence, is annotated as
CS. (® The fifth S2R, "I entered the information for my next
o0il change", requires multiple operations. At first, a user has to
enter the "Oil change title" by performing a type operation on
the "title" text field at the top of Screen 3. The individual S2R
for this interaction is "Enter Oil change title". Secondly, s/he
has to enter a value in the "Odometer" text field on Screen 3
by performing a fype operation which implies an individual
S2R: "Enter distance on odometer field". Finally, s/he has to
perform a click operation on the "Add Service Interval" button
on Screen 3. This interaction represents the individual S2R:
"Tap on Add service interval button”. As three interactions
are required to complete the fifth step in the bug report, it
is labeled as AS. (6 To execute the sixth S2R, "I added a
second service my yearly State Inspection”, there is another
step missing, "Open the app menu", and it is labeled as MS.
Moreover, the sixth step requires the same three individual
S2Rs as the fifth step and annotated as AS. In the next section,
we explain how this quality model can be automatically applied
to bug reports.

III. AsTrROBR: AUTOMATED S2R QUALITY ASSESSMENT

This section presents AsTRoBR, an automated approach that
leverages an LLM and a graph-based app execution model to
assess the quality of the steps to reproduce (S2Rs) in textual bug
reports. AsTROBR identifies, extracts, and processes the S2Rs
from a bug report to detect which ones are correct, ambiguous,
missing, or phrased using language that does not correspond
to a target app, according to the quality model described in
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Fig. 2: The AstroBR Approach

Section II. AsTrROBR generates a quality report with annotations
that provide feedback to the reporter about problematic S2Rs
and includes generated missing S2Rs. AsTroBR has four main
components, as illustrated in Figure 2:

1) S2R sentence identification: AsTrRoBR identifies the
sentences that describe any S2Rs (Section III-A).

2) Individual S2R extraction: AstroBR extracts phrases
describing individual S2Rs from S2R sentences (Sec-
tion III-B).

3) App execution model generation: AstroBR builds a graph-
based model using automated and manual app execution
(Section III-C).

4) S2R quality assessment: AsTRoBR maps individual S2Rs
to GUI-level interactions captured in the app execution
model, providing feedback about high- and low-quality S2Rs
as well as missing steps in a quality report (Section III-D).

We leverage the language processing capabilities of LLMs

(i.e., GPT-4) across the three phases, integrating these with

GUlI-level dynamic app analysis to assess S2R quality. The

selection of GPT-4 as the LLM was based on its demonstrated

effectiveness in language and bug understanding tasks, includ-
ing bug reproduction [15] and analysis [6]. In the remainder
of this section, we detail AsTRoOBR’s components or phases.

A. S2R Sentence Identification Phase

AsTrROBR automatically identifies sentences that describe
any steps to reproduce (S2R) in the bug report (see the blue
sentences in Fig. 1). This is necessary as the bug report typically
includes other content, notably the observed (OB) and expected
app behaviors (EB). We formulate this task as a text classifica-
tion task, using LLMs. AstroBR decomposes the bug report
into a list of sentences and asks the LLM to identify which of
these sentences describe any S2Rs. Sentence parsing is done
using the Stanford CoreNLP toolkit [16] and heuristics. We
experimented with three types of prompts, each one providing
a different context to facilitate the task for the LLM (e.g., the
definition of S2Rs and guidelines on how to distinguish them
from other content like the OB and EB). Section IV describes
the process we followed to develop and evaluate these prompts.

B. Individual S2R Extraction Phase

After identifying S2R sentences, AsTRoBR asks the LLM to
extract the individual S2Rs from these sentences in a particular

format (described below). Individual S2Rs are phrases that
describe a single, atomic interaction with the app. Individual
S2R extraction is needed because S2R sentences may describe
multiple interactions with the app together with content such as
the OB (e.g., “I opened the app and clicked on the Start button”
or “The app crashes if the user checks the Angle Box”). In addi-
tion, different S2R sentences may describe the same interaction
(e.g., "... the user checks the Angle Box" and "give the Exercise
a name and check the Angle Box"). AsTroBR resolves this
redundancy by asking the LLM to provide only one S2R among
all extracted individual S2Rs that describe the same interaction.

The output of this phase is a list of individual S2Rs
extracted in the order they appear in the sentences from
left to right and top to bottom. AsTrROBR asks the LLM
to represent the individual S2Rs in the following for-
mat:
[action] is a verb associated with the app interaction (tap,
long tap, enter, efc.). The [object] is the GUI component
upon which the action is performed. The [object2] is
additional information related to the object connected by a
[preposition]. For example, the S2R “Click any button
on this page" is formatted as [Click]
[this page].

We designed and evaluated three prompt types to extract
individual S2Rs via GPT-4. Each prompt implements a
different approach, providing different contexts about the task
(e.g., examples that illustrate how to accomplish the task).
Section IV details the prompts and the process we followed
to design and evaluate them.

[action] [object] [preposition] [object2]. The

[any button] [on]

C. App Execution Model Generation Phase

AsTrROBR’s quality assessment relies on mapping individual
S2Rs to interactions that can be executed on the app to replicate
the reported bug. This requires collecting and representing
possible user GUI interactions, for which we adapt graph-
based representations and dynamic app execution strategies
from prior work [17, 18].

AsTROBR creates an app execution model represented as
a directed graph, G = (V,E), where V represents the set
of unique GUI screens for an app, and E represents the set
of unique interactions that users can perform on the GUI
components of the screens. A GUI screen (i.e., node) is
represented as a hierarchy of the GUI components and layouts.



Two GUI screens with different GUI component hierarchies are
considered distinct graph nodes. Each interaction (i.e., edge) in
E is represented by a unique tuple in the form of (vx,vy,e,c),
where ¢ is a GUI component of screen v, and e in an action
(tap, type, etc.) performed on c, resulting in a transition to
another screen v,. Each edge contains additional interaction
metadata such as the interacted GUI component type, ID, text
(i.e., label), and description.

To build the execution model for an app, AsTRoBR parses
GUTI interaction traces collected from automated app exploration
and manual app usage. AsTROBR executes an adapted version
of the CrasHScorE tool [19,20], which implements multiple
automated exploration strategies to interact with the Ul com-
ponents of app screens, trying to exercise as many app screens
and GUI components as possible. In the process, CRASHSCOPE
collects app screenshots and XML-based GUI hierarchies and
metadata for the exercised app UI screens and components.
As CrasHScopE may fail to interact with certain GUI screens
and components that app users would normally interact with,
AsTtrOBR can also make use of interaction data collected from
manual app usage and testing. In this paper, for the development
set, we used the set of traces collected by Saha et al. [18] which
consists of 10-12 manually recorded feature interaction traces
for each of the 5 test applications. For the prompt development
dataset, two authors collected the same number of traces for
each of the 31 apps. These recordings include all the app
GUI interactions starting from launching the application to
the last step related to carrying out an application feature
(more details of this process, used for prompt development and
evaluation, are found in Section IV-A). In practical applications
of AstroBR, manual executions can be collected in several
ways. For example, developers can enable user monitoring
features in the app and perform record-and-replay during in-
house or crowd-sourced app testing [21]. AsTROBR parses
the interaction traces generated by CrasaScopE and the traces
collected during app usage/testing to build the graph, according
to the graph format we previously described in this section
(details found in Section IV-A).

D. S2R Quality Assessment Phase

The app execution model captures possible interaction
sequences that a user could perform when using or testing
an app as paths in the graph. To assess the quality of the S2Rs,
AsTrOBR attempts to map each individual S2R to interactions
(i.e., edges) along these paths. To do so, AstroBR implements
an LLM-guided depth-first-search (DFS) graph traversal to
establish the correspondence between an individual S2R and
interactions on a given screen.

Any S2Rs that cannot be mapped to a graph interaction are
labeled as having a Vocabulary Mismatch (VM). S2Rs that
map to multiple interactions performed on a single screen (i.e.,
a node) are labeled as Ambiguous Steps (AS). Those that map
to single interactions within a sequence are labeled as Correct
Steps (CS). Finally, for the mapped S2Rs that correspond to
non-consecutive interactions spanning different screens in a
path, additional interactions are required to connect them to

form a complete path. These additional interactions are used to

generate individual S2Rs that are labeled as Missing Steps (MS)

and used to fill in the "gaps" between the existing S2Rs.

1) Mapping Individual S2Rs to Interactions on a Screen:
Mapping an individual S2R (S2R, hereon) to interactions on a
given screen is supported by GPT-4. For a graph node (i.e., a
screen), AsTROBR asks GPT-4 to identify which of the outgoing
edges (i.e., interactions) from that node correspond to the S2R.
Both the S2R and graph interactions are represented textually:
the S2R is extracted from the bug report, while each interaction
is represented as a tuple of textual information (e.g., the event
description and the label of the interacted GUI component).
We designed and evaluated a set of prompts using different
prompting strategies to accomplish this mapping in a 2-step
manner: a first prompt asks GPT-4 to return a yes/no answer
on whether an individual S2R maps to the interactions of a
given screen and if the answer is yes, a second prompt asks
GPT-4 to return the list of corresponding interactions. The
methodology used to develop and evaluate the prompts is
detailed in Section IV-B.

2) Graph Traversal and S2R Mapping to Interaction Paths:
To map all the S2Rs from a bug report to app interaction
sequences, ASTROBR implements an algorithm that traverses the
graph in a depth-first-search (DFS) manner, aiming to map the
S2Rs to interactions along the DFS paths. When S2Rs map to
non-consecutive interactions within a path, AstroBR connects
these interactions by selecting the shortest path between the
nodes where these interactions occur. Since multiple paths may
map to the S2Rs, AstroBR selects the path with the most
mapped S2Rs or the shortest path, if multiple paths have the
same number of mapped S2Rs.

The DFS traversal of the graph is guided by the LLM-based
mapping approach from Section III-D1, as only edges that map
to S2Rs are traversed, avoiding the need to explore the entire
graph. While none of the S2Rs can map to any interaction in
the graph (in which case AsTrRoBR would traverse the graph
entirely), this scenario is expected to be rare, as we assume
reporters would describe at least one S2R using the app’s
vocabulary and the graph is as complete as possible, covering
a broad range of screens and interactions.

Algorithm Details. AstroBR’s DFS-based graph traversal
algorithm is recursive. It receives an S2R s and graph node n
as input, where s is the first item in the S2R list L (the bug
report S2Rs). The algorithm returns either: the best DFS path p
(starting from n) that maps to a subset of S2Rs in L (possibly
including s), or no path if no S2Rs can be mapped.

The traversal begins with the first S2R from the bug report
and the starting node of the graph, which contains "open app"
interactions that navigate to the screens users usually see upon
launching the application.

The algorithm has two main logic branches:

1) If S2R s does not map to any of the outgoing interactions /
from n, the algorithm recurses, attempting to map s on each
node connected to n by /. If this traversal results in no DFS
paths mapped to s or following S2Rs in L, s is labeled as
having a Vocabulary Mismatch (VM), and the algorithm



recurses with the next S2R in L at the current node 7. This
means that the S2R s cannot be mapped to any node in the
(sub)graph starting from n, then the algorithm attempts to
map the next S2R.

2) Conversely, if s maps to interactions in /, the algorithm
checks whether there are one or more mapped interactions.
If there is a single interaction, s is labeled as a Correct
Step (CS); if there are multiple, it is labeled as an
Ambiguous Step (AS). The algorithm then recurses with
the next S2R in L on each node connected to n by only the
mapped interactions from /. Essentially, if the algorithm
succeeds at mapping s to interactions from n, then it
proceeds with attempting to map the next S2R to the
resulting nodes after navigating to the mapped interactions.

It is possible that s maps to interactions in / (second branch
above), but there are "gaps" between the previous mapped S2R
and s: if their mapped interactions are not consecutive in the
DFS path. If this is the case, the algorithm connects them
by determining the shortest path between the involved nodes.
The interactions used to connect the nodes are then labeled as
Missing Steps (MS). Note that this shortest path may include
interactions outside the DFS path, as we are not limiting the
shortest path search to the DFS path alone. A shorter path may
exist that bypasses parts of the DFS path.

After traversing a node with a given S2R (in either
branch above), it is possible that when calling the algorithm
recursively on a set of interactions (i.e., when navigating down
DFS paths), it returns multiple DFS paths mapped to the
S2Rs. If this is the case, the algorithm selects the DFS path
to return based on the following criteria: prioritizing the path
with the most mapped S2Rs in L, or, if paths have the same
number, choosing the shortest path.

The traversal continues until all S2Rs in L have been ex-
hausted or until none of the S2Rs are mapped to any DFS paths.
If all S2Rs have been mapped, but there are still nodes along a
DEFS path, the algorithm does not proceed to check additional
nodes down the current DFS path. To prevent re-processing
nodes and their interactions, the algorithm marks each (node,
S2R) pair as visited before it processes the node and S2R.

3) Quality Report Generation: The returned DFS path
contains interactions mapped to all or a subset of the S2Rs
from the bug report. Each S2R is labeled as either a Correct
Step (CS), Ambiguous Step (AS), or Vocabulary Mismatch
Step (VM). In addition, interactions identified to fill in the
"gaps" between S2Rs are labeled as Missing Steps (MS). For
evaluation purposes, we also mark the corresponding S2Rs
with missing steps as MS, so that we can perform a fine-grained
analysis of results (more details found in Section V).

IV. AstrOBR’S ProMPT DEVELOPMENT AND EVALUATION

This section describes how we developed and evaluated
the LLM prompts for three distinct tasks: (i) S2R sentence
identification, (ii) individual S2R extraction, and (iii) individual
S2R mapping to app interactions. We adopted a rigorous,
comprehensive, and data-driven approach in which we designed
an initial prompt that was iteratively evaluated and refined into

new prompts. Prompt development and evaluation followed
a quantitative and qualitative methodology based on a set of
Android app bug reports. Overall, we designed and evaluated
12 prompt templates across all three tasks. To generate GPT-4
responses with the prompts for all tasks, we used a temperature
of 0 to minimize randomness/non-determinism in the responses.

A. Development Dataset Construction

We constructed a dataset of 54 bug reports and corresponding
ground truth data, with manually identified S2R sentences,
individual S2Rs, and interactions mapped to each S2R.

1) Bug Report Collection: We selected the 54 bug reports
from the dataset released by Saha et al. [18], which contains
reproducible mobile app bug reports from the AndroR2
dataset [22,23]. These reports describe bugs for 31 Android
apps of various domains (e.g., web browsing, WiFi network di-
agnosis, and finance tracking). The reported bugs span different
bug types, namely crashes (15 reports), output problems (19),
UI cosmetic issues (13), and navigation problems (7).

2) S2R Sentence Labeling: Two authors annotated the 1,031
sentences present in the bug reports as either S2R or non-
S2R, following the S2R criteria and methodology defined by
Chaparro et al. [24]. One author annotated each sentence, while
the second author validated the annotations, recording disagree-
ments and their rationale. The authors agreed on the annotations
for 1,002 sentences (97.2%, 0.91 Cohen’s kappa [25]), which
represents near-perfect agreement. Disagreements were resolved
via discussion. The most common reasons for disagreements
were content misinterpretations and mistakes (e.g., a sentence
describing the observed behavior, not S2Rs). In total, the 54 bug
reports contain 189 S2R sentences (3.5 per report on average),
while the remaining 842 sentences describe non-S2R content.

3) Individual S2Rs Extraction: Two authors manually in-
spected the 189 S2R sentences to extract individual S2Rs
(phrases describing a single interaction with the app). One
author read and extracted the individual S2Rs in the format
defined in Section III-B. The extracted S2Rs were validated
by a second author. They discussed disagreements to reach
a consensus where needed. From the 189 S2R sentences, we
extracted 246 individual S2Rs with an agreement rate of 97.6%.

4) S2Rs to GUI Interaction Mapping: To create ground truth
mappings between individual S2Rs and GUI app interactions,
we first built the execution models (i.e., graphs) for the 31 apps
corresponding to the bug reports. To do so, we executed the
CrasHScorE tool [19] using the corresponding APKs (from
the original dataset [18,23]) and a Pixel 2 Android emulator.
We also used the manual interaction traces collected as part of
Saha er al.’s dataset [18]. Both the CrasuScoprE and manual
interaction traces consist of GUI-event execution traces and
(video) screen captures showing the executed interactions. We
used Song et al.’s toolkit [9] to parse the traces and build the
execution graphs.

Two authors manually inspected the execution data, graphs,
and reproduction screen captures to map each S2R to graph
nodes and interactions. One author first inspected this data to
identify the GUI screen and target GUI component for each S2R.



Then, the author identified the graph node corresponding to
such screen, and within it, the interaction corresponding to the
S2R. In the process, missing steps and the path that represented
a minimal bug reproduction scenario were identified. A
second author followed the same procedure to verify the
interactions/nodes mapped to the S2Rs and the reproduction
paths identified by the first author. Both authors discussed any
disagreements, involving a third author where necessary.

We applied the above methodology on a sample of 10 bug
reports, in such a way that they spanned different bugs types,
apps of different domains (9 apps), and S2R types (taps, types,
etc.). The two authors created the ground truth for 46 individual
S2Rs among 49 individual S2Rs for the 10 bug reports, agreeing
on 43 S2Rs (agreement rate of 93.5%). The excluded three
individual S2Rs did not have corresponding app interactions in
the execution model because they are performed outside the app
(e.g., "install the app"), and hence, are not included in the graph.
Common reasons for disagreements were unclear individual
S2Rs and misinterpretation of graph nodes/interactions. During
the data creation process, we realized that it would take the
two authors a prohibitive amount of effort to create the data
for the remaining 44 bug reports. Therefore, we decided to
focus on the S2R mapping prompt development using only the
10 bug reports and redirect our effort to curating the test data
used for AsTroBR’s evaluation (see Section V).

B. Prompt Development Methodology

For each of three tasks where AstTroBR uses GPT-4, our
overall data-driven methodology used three prompting strate-
gies, commonly used in software engineering research [26]:

o Zero Shot (ZS) prompting: starting from a base prompt
template that includes the task description, input, and
response format, we iteratively executed, evaluated, and
refined the template until the performance plateaued. This
involved computing performance metrics (precision, recall,
and F1 score) against the ground truth, qualitatively analyz-
ing false positives (FP) and negatives (FN), and adjusting
the prompt to address those cases. For example, as S2R
sentence identification is a classification task, two authors
investigated the FP and FN of the GPT-4 responses to
derive the classification criteria (Figure 3a) to better guide
GPT-4 in the S2R sentence classification task. This process
resulted in four versions of each type of prompt template.
To determine if performance plateaued, we monitored the
F1 score. For example, from version 3 to version 4 the F1
score decreased by 0.001 for the S2R identification task.
Based on this minimal change, we selected version 3 as
the optimal prompt for this phase.

Few Shot (FS) prompting: starting from the obtained ZS
template, we created a base FS template containing positive
and negative examples selected from the remaining bugs
of Saha er al.’s dataset [18] and the expected output.
The example bug reports are representative of each task
and selected based on certain criteria, e.g., various bug
types (crash, output, efc.), and bug reports with different
wordings and structures. We iteratively executed, evaluated,
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and refined the template until the performance no longer
improved, in the same way we did it in ZS prompting.

o Chain of Thought (Col) prompting: starting from the
obtained FS template, we created a base Col template
containing explanations for the outcome of the positive and
negative examples. The explanation for the outcome was
designed by two authors after discussion and reaching a
consensus. We iteratively executed, evaluated, and refined
the template until the performance plateaued, in the same
way we did it in ZS and FS prompting.

This methodology resulted in three prompt templates (one
from each prompting strategy) for S2R identification and three
templates for individual S2R extraction. For S2R mapping,
since we defined mapping as a 2-step task, we designed two
prompts for each strategy, resulting in six prompts. The 2-step
task consisted of first asking GPT-4 to return a yes/no answer on
whether an individual S2R maps to the interactions of a given
screen and if the answer is yes, asking GPT-4 to return the list
of interactions that the S2R maps to. Our tests revealed that
this approach led to less noisy answers from GPT-4, compared
to executing only the second step. In total, we developed 12
prompt templates. To help visualize our prompt templates,
Figure 3 illustrates the various components associated with the
prompts for each task—our detailed templates are found in our
replication package [13, 14].

C. Prompt Evaluation Results

We evaluated the prompt templates for S2R identification
and extraction in terms of precision, recall, and F1 score, by
executing these two phases in isolation. The F1 score was used
to rank the templates. The S2R mapping prompt templates were



TABLE I: Prompt Template Performance for S2R Identification

Template | Precision | Recall F1 #TP | #FP | #FN
ZS 0.929 0.968 | 0.948 | 183 14 6
FS 0.897 0.963 | 0.929 182 21 7
CoT 0.915 0.963 | 0.938 | 182 17 7

TABLE II: Prompt Template Performance for S2R Extraction

Template | Precision | Recall F1 #TP | #FP | #FN
ZS 0.918 0.951 0.934 | 234 21 12
FS 0.897 0.951 0.923 | 234 27 12
CoT 0.810 0.951 0.875 | 234 55 12

TABLE III: Prompt Performance for S2R-Interaction Mapping

1st-step template 2nd-step template

Template # Predictions | # Hits | Hit Rate | # Hits | Hit Rate
7S 939 887 94.5% 30 76.9%
FS 970 912 94.0% 26 66.7%
CoT 1214 1152 94.9% 18 46.2%

evaluated by executing ASTROBR’s S2R quality assessment
phase and evaluating the resulting S2R-interaction mappings.
Since S2R mapping is a 2-step task, we evaluated each of
the prompts based on the # and % of hits, defined as follows.
For the first prompt, it is the number (and proportion) of
correct predictions for the presence or absence of an S2R-
interaction mapping in a given screen (out of the total number
of predictions). For the second prompt, it is the number
(and proportion) of correctly identified interactions for each
individual S2R (out of the total number of individual S2Rs).

Tables I to III show the performance of the designed prompt
templates for the three tasks: S2R identification, individual S2R
extraction, and S2R mapping. Among the three templates for
the S2R identification task, ZS achieved the best performance
across the three metrics having the lowest # of FP (14) and
FN (6). Likewise, for the individual S2R extraction task, the ZS
template achieved the highest precision (0.918) with the lowest
# of FP (21), sharing the same # of FN (12) with the other two
prompts. Regarding the S2R mapping task, AsTrRoBR with all
three templates for the 1st-step prompt achieved a similar hit
rate (94.0% to 94.9%) and with ZS template for the 2nd-step
prompt achieved the best hit rate of 76.9%.

Interestingly, although prior research has shown the supe-
riority of CoT prompts over ZS and FS prompts [15,26],
this is not the case for our tasks. Via qualitative analysis of
GPT-4 responses, we observed that GPT-4 with FS and CoT
prompts tends to include more unintended text in the responses
compared to ZS prompt which results in more false positives,
e.g., CoT template for S2R extraction generated 55 FPs while
ZS template generated 21 FPs only. We conjecture that the
long and complicated input (e.g., bug reports can be long,
and interaction information can be complicated) made the task
difficult for GPT-4. Moreover, having three or four examples
with reasoning made the prompts even longer.

As for all three tasks, ZS templates outperformed the other
two, we utilized the ZS templates for implementing AsTrRoBR.

V. AstrOBR’s EvaLuaTioN DESIGN

AsTROBR’s evaluation has two main goals: (i) to evaluate

AsTROBR’s ability to provide correct quality annotations for real
bug reports, and (ii) to examine how well AsTrRoBR can infer
missing S2R information in bug reports. We apply AstrRoBR
to a test dataset (see Section V-A) comprising 21 bug reports,
in order to provide a comparison with prior work. We aim to
answer the following research questions (RQs):

« RQ;: How effective is AsTRoBR in generating correct S2R

quality annotations?
o RQ;,: How accurately can AstroBR infer missing S2Rs?

A. Evaluation Dataset

We used the bug reports (i.e., test set) used by Chaparro
et al. [7], which allow us to provide a direct comparison
with their approach, EuLer. This dataset contains 24 bug
reports of various kinds ( crashes, UI problems, and navigation
problems) from six Android applications of different domains
(web browsing, WiFi network diagnosis, finance tracking, efc.).
The diverse evaluation set, separate from the development
set, enabled us to assess the generalizability of the developed
prompts across different bug reports. We discarded three bug
reports, as follows: (1) two bug reports [27,28] from the Aard
Dictionary App [29], because the app version 1.4.1 is unable
to load its dictionary database, and (2) one bug from Time
Tracker app [30], because we could not generate the execution
model for this app as the bug report requires a rotation action
which AsTroBR does not support. Hence, our test set contains
21 bug reports from the original EULER dataset.

Since this dataset does not contain any ground truth infor-
mation for evaluating AsTrRoBR, we constructed the ground
truth manually. We used the same methodology discussed
in Sections IV-A2 and IV-A3 to do so for identifying S2R
sentences and extracting individual S2Rs.

To construct the quality assessment ground truth, the first
two authors mapped the extracted individual S2Rs to GUI
interactions manually following the methodology discussed in
Section IV-A4. App execution models for the bug reports were
built by parsing execution traces collected via CRASHSCOPE’S
app exploration and manual app usage. One author identified
the reproduction interactions on the generated data and mapped
such interactions with the extracted individual S2Rs from the
bug report. They collected the mapped interactions for each
individual S2R, as well as the interactions that are required
to reproduce the bug, but not reported in the bug report,
i.e., ground truth for missing steps. Each individual S2R
was mapped with one or more interactions in the execution
model path, as needed. Using the mapped interactions and
the quality assessment model (discussed in Section II), they
assigned quality labels to each individual S2R. A second author
performed the same steps and validated the interactions in
the reproduction scenario as well as the quality annotations.
Disagreements were resolved via discussion.

In summary, we identified 73 S2R sentences out of the 275
sentences present in the 21 bug reports with a near-perfect
agreement between the two authors (98.2% agreement rate and
0.88 Cohen’s kappa [25]). From the 73 S2R sentences, we
extracted 82 individual S2Rs with an agreement rate of 93.9%



between the two authors. We discarded four individual S2Rs
as they represent rotation operation and the current version of
AsTrOBR does not support this operation. We assigned the
remaining 78 individual S2Rs quality annotations (i.e., 70 S2Rs
as CS, 7 S2Rs as AS, 1 S2R as VM, and 38 S2Rs as MS). We
identified 158 missing interactions, i.e., missing steps for the
38 MS positions (i.e., S2Rs with filled-in missing interactions).
For constructing the annotations ground truth, the two authors
agreed on 90% of the cases. Cohen’s kappa for individual S2R
extraction and mapping is inapplicable since the labeling is
not based on a discrete set of labels.

B. Baseline Approach

We considered EuLER [7] as the baseline approach, which
also aims to assess the quality of S2Rs in a bug report. It
identifies the S2R sentences from a bug report using deep
learning techniques (e.g., CNN [31], Bi-LSTM [32]). It
identifies individual S2Rs via analysis of discourse patterns
and assigns quality annotations by employing keyword-based
mapping to app Ul information. EULER and AsTROBR generate
similar quality reports, therefore we can directly compare the
AsTrROBR reports to the original EULER reports provided by
EuLER’s replication package [7], to answer the RQs.

C. Evaluation Methodology

We executed AsTroBR with the 21 bug reports on the test
set, producing the quality report for each bug report, including
the quality annotations and missing steps. To answer RQ;, we
compared the AsTrRoBR assigned quality annotations with the
ground truth quality annotations. To answer RQ,, we evaluated
the generated missing steps by AsTrRoBR against the ground
truth missing steps. For both RQs, we computed precision,
recall, and F1 score. We applied the same process for EULER
and qualitatively analyzed the false positives (FP) and negatives
(FN) to understand the limitations of both approaches.

VI. ResuLts
A. RQ: Quality Annotation Results

We compared all the quality annotations in the ground truth
with those produced by both AstroBR and EuLer. EULER fails
to identify four (among the 78) S2Rs from the ground truth,
whereas AsTROBR fails to identify two S2Rs. We considered
these in our analysis as they represent false negatives.

Table IV compares the performance of AsTrRoBR and EuLErR
for each quality annotation and in aggregate across all annota-
tions. Overall performance metrics were computed by summing
the TPs, FPs, and FNs. Overall, AstrRoBR outperforms EuLEr
in S2R annotation by a relative improvement of 25.2% in
terms of F1 score. The overall performance difference between
AsTtrROBR and EULER are statistically significant according
to the Wilcoxon test (p-values = 0.03, 0.004, and 0.005 for
precision, recall, and F1 scores, respectively).

Both AstroBR and EuLer incorrectly labeled two S2Rs
as CS. For example, the S2R "Add a split" from report #699
from GnuCash App [33] requires a user to perform fap add
split button and type split amount interactions. However, GPT-4

TABLE IV: Quality Annotation Results (AsTrRoBR vs. EULER)

QAs Approach | Precision | Recall F1 #TP | #FP | #FN
cs EuLER 0.964 0.771 0.857 54 2 16
AsTROBR 0.971 0.943 | 0.957 66 2 4
AS EuLER 0.600 0.429 | 0.500 3 2 4
AsTrROBR 1.000 0.714 0.833 5 0 2
MS EULER 0.600 0.553 0.575 21 14 17
AsTROBR 0.750 0.789 | 0.769 30 10 8
VM EULER 0.077 1.000 0.143 1 12 0
AsTROBR 0.333 1.000 | 0.500 1 2 0
Overall EuLER 0.725 0.681 | 0.702 79 30 37
AsTROBR 0.879 0.879 | 0.879 | 102 14 14

identified only one mapped interaction for this S2R. EULER also
incorrectly labeled it as CS because the matching algorithm
used by EULER is too restrictive: it maps an S2R to one
interaction even if multiple interactions exist on the screen.
Moreover, EULER failed to annotate 16 S2Rs as CS, while
AsTrOBR failed to annotate four S2Rs as CS.

Furthermore, EUuLER incorrectly labeled S2Rs as AS for
two S2Rs where only one mapped interaction exist, whereas
AsTrROBR never made such errors. For example, the individual
S2R, "Select an event” from bug report #154 in schedule-
campfahrplan [34] is annotated as AS by EUuLER because it
incorrectly mapped to multiple actions (e.g., long click or click).
However, AstroBR accurately annotated the S2R as CS. Over-
all, we observed this is because (i) GPT-4 is able to correctly
identify whether the S2Rs refers to single or multiple interac-
tions, and (ii) AsTRoBR can map an S2R to multiple interac-
tions on the current GUI screen when reporters combine steps
or use generic verbs. Moreover, EULER failed to annotate four
S2Rs as AS while AsTroBR failed to annotate two S2Rs as AS.

Additionally, the vocabulary mismatch (VM) annotation is
typically assigned when interactions are not present in the
GUIs. EuLer produced 12 false positive VMs due to low graph
coverage and its inability to infer the actual step in the app,
even with the capability of adding screens/interactions to the
graph while executing S2Rs (see EULER’s paper for details [7]).
In contrast, AsTRoBR incorrectly annotated two S2Rs only as
VM. The reasons for EULER failing more than AsTrRoBR can
be attributed to the restrictive matching algorithm EuULER uses,
whereas AsTrROBR leverages GPT-4 to map interactions to S2Rs.
It is also possible that EULER could not cover the necessary
screens even after random exploration, whereas AsTRoBR
utilizes a more complete graph in mapping interactions for
S2Rs that traverse many GUI app screens.

There can be one or multiple missing steps between two
consecutive mapped interactions for two S2Rs. In such cases,
we annotated the latter S2R as MS for analysis purposes.
In EuLer’s 14 misclassified MS annotations, the suggested
missing steps were not necessary for bug reproduction. In
contrast, out of the ten individual S2Rs misclassified as MS
by AstrOBR, four involved completely unnecessary steps
for bug reproduction, and the remaining six were due to
the incorrectly mapped interactions. For example, the S2R,
"Select Units" from bug report #12 from DroidWeight [35]
could not map to a GUI interaction because the corresponding
GUI component description is "back modal" and that GUI
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interaction was considered a missing step. This leads to the
necessity for developers to use meaningful GUI descriptions
in the underlying code. A possible strategy to address this
issue is to use GUI interaction images in the prompt to GPT-4
to provide additional context. Moreover, AsTrRoBR failed to
identify MS annotations for 8 S2Rs whereas EuLER failed in
17 S2Rs, meaning AsTrROBR is more successful in identifying
intermediate paths between two S2Rs.

B. RQ»>: Missing S2R Results

In addition to evaluating EULER and AsTrROBR’s ability
to assign MS annotations, we also calculated the number of
intermediate steps missing between two consecutive S2Rs. The
ground truth dataset consists of 158 missing steps (7.5 per bug
report on average) across 21 bug reports. EULER suggested 271
missing steps (12.9 missing steps per bug report on average),
and 80 of those steps are present in the ground truth, achieving
a precision of 0.295, a recall of 0.506, and an F1 score of
0.373. In contrast, AsTRoBR suggested 158 missing steps (7.5
per bug report on average), 101 of which are in the ground
truth, resulting in a precision, recall, and F1 score of 0.639.
This means that AstrRoBR outperforms EULER by 71.4% in
terms of F1 score; AsTRoBR not only produces fewer incorrect,
missing steps but also identifies more accurate missing steps.

We also analyzed if the missing steps provided by AstrRoBR
are different compared to EULER, presented in Figure 4.

Both EuLer and AsTroBR successfully identified 52 correct
missing steps, which represents 33% of the missing steps in
the ground truth. These steps are primarily the setup steps
commonly performed in the apps; however, reporters often
forgo describing such steps in bug reports. For example, nine
bug reports from the Gnucash app [36] require "click the next
button” as the initial setup steps. In addition, both approaches
produced one unnecessary missing step because of app traversal
in an incorrect path. Moreover, both AsTrRoBR and EULER failed
to identify 29 crucial steps that reporters often ignore. These
types of steps include: (i) actions in a popup dialog (e.g., "Click
OK button"), and (ii) implicit steps that are easy to understand
for humans but challenging for an automated tool to infer.
For example, the S2R, "Click on existing transaction” from
Gnucash’s bug report #699 [33] requires the existence of a
transaction in the app before clicking on the GUI component
corresponding to the transaction, but that S2R is not explicitly
described in the bug report.

EuLERr identified 28 ground truth missing steps that AsTRoBR
failed to detect. This occurred for two main reasons. First,
AsTrROBR would sometimes perform incorrect mapping between
S2Rs and GUI interactions due to choosing an alternate path
to reach from the current screen to a mapped screen, thus
skipping crucial steps. For example, the S2R "Navigate to
Service Intervals screen” from android-mileage’s bug report
#65 [37] was incorrectly mapped to "click the ok button”,
which lead to omitting the necessary step "open the app menu".
Second, EuLER identifies more initial setup steps required on a
screen to proceed from the current GUI screen to the next due
to its random exploration; however, AsTRoBR often ignores
such steps, as it identifies the minimal steps necessary to
perform on the current screen. To resolve this problem, future
versions of AsTRoBR may incorporate knowledge of specific
app functionalities to suggest missing steps in bug reports.

Across 21 bug reports, EULER produces 190 unnecessary
steps that are not detected by AstrRoBR, whereas AsTrRoBR only
produces 56 such steps, excluding the ones detected by EULER.
Although EuLER prioritizes recall over precision to ensure
the presence of necessary missing steps from which reporters
can choose, the large number of missing steps may confuse
developers when reproducing the bug. The reason for the large
number of unnecessary steps is attributed to the incorrect S2R
interaction matches in the GUIs. However, EULER’S random
exploration strategy in the graph exacerbates this problem by
producing an excessive number of unnecessary steps.

AsTrOBR correctly identified 49 missing steps in the ground
truth test dataset that EULER failed to detect. There are primarily
two reasons: (i) EuLER includes "Open App" step only if
explicitly described in the bug report, yet only two out of
21 bug reports contain this step—AsTrROBR includes this step
in all quality reports; and (ii) EULER’s graph prevents the identi-
fication of GUI information for navigation components such as
the navigation drawer and input widgets such as the spinner. For
example, in Gnucash’s bug report #615 [38], EULER identifies
the step "Tap the ‘Navigation drawer opened’ image button”
but fails to identify the interaction for the "Manage Books" that
becomes visible when the navigation drawer is opened. The
graph used in AsTROBR correctly identifies such interaction,
exhibiting its ability to handle complicated GUI structures.

VII. RELATED WORK

Researchers have investigated bug reports for a variety
of purposes including bug report management [18,39-41],
understanding bug resolution [42], predicting bug priority and
severity [43—45], categorizing bug types [46,47], identifying
duplicate bugs [48-53], reproducing bugs [8, 15,54-58], and
localizing buggy code [59-62]. We discuss the most closely
related work in this section.

Assessing Bug Report Quality. Past research in assessing
the quality of bug reports is primarily focused on the readability,
coherence, and inclusion of the necessary components within
bug reports. Zimmermann [1] proposed an approach to
assess the quality of bug reports by classifying them as bad,
neutral, or good, considering various features such as keyword



completeness, patches, screenshots, and readability. Dit et
al. [63] evaluates the quality of bug reports based on the
coherence of comments in bug report discussions. Linstead et
al. [64] later proposed a different textual coherence calculation
technique, utilizing an information-theory-based approach by
measuring the entropy of the distribution of latent topics in
bug reports. Very recently, Bo et al. introduced ChatBR [6],
which assesses and generates S2Rs if absent but does not
evaluate generated S2R quality. AsTrRoBR advances upon
ChatBR by assessing S2Rs using annotations by determining
whether S2Rs can be mapped to application Ul interactions.

Chaparro et al. [7] introduced EULER, an approach that
provides quality annotation for the S2Rs in bug reports. EULER
is the closest related work, in as much as they produce the
same type of quality reports, given a bug description. Unlike
EuLER, AsTROBR uses LLMs to generate the quality reports.
In consequence, its internals are fundamentally different, partic-
ularly in how the app model is explored. These improvements
lead to more effective quality annotations as illustrated by the
results of AsTRoBR’s evaluation.

Automated Bug Reproduction. Researchers introduced
various techniques to generate test cases for automated bug
reproduction to diagnose, validate, and understand bugs. Fazzini
et al. [8] developed Yakusu, which combines program analysis
and text processing techniques to create test cases for bug
reproduction. Zhao et al. [54] proposed ReCDroid, to reproduce
crashes. ReCDroid formulates a dynamic ordered event tree
(DOET) leveraging GUI components and event transitions,
which aids in traversing GUIs for a given app and prioritizes
relevant GUI components for exploration. Feng and Chen [15]
introduced AdbGPT, which focuses on automatically reproduc-
ing bugs using LLMs. AdbGPT extracts actions and objects
from S2Rs through prompt engineering and later leverages GUI
encoding and LLMs to replay bugs within app screens. Wang
et al. [55] proposed ReBL that mitigates different limitations
of AdbGPT and utilizes the entire bug report instead of only
using S2Rs to improve the contextual reasoning of the LLMs
in automatically reproducing bugs.

Interactive Bug Reporting Systems. Researchers have
proposed systems for interactive bug reporting, which typically
aim also at improving the quality of the bug reports. Moran
et al. proposed Fusion [10] that allows reporters to choose
available actions and GUI components from dropdown lists,
resulting in more structured and comprehensive bug reports.
Fazzini et al. proposed EBuc [65] that extends Fusion and
suggests potential S2Rs to the reporters alongside the dropdown
lists available to Fusion. Song et al. proposed BurT [9, 17], a
chatbot that guides the reported and verifies the quality of bug
information in real-time, providing suggestions to the reporters.

VIII. THREATS TO VALIDITY AND LIMITATIONS

Construct Validity. The main threats to construct validity
stem from manually verifying the matching of the interactions
extracted from the S2R sentences to the information on the
execution model and constructing a ground truth dataset. To mit-
igate this threat, two authors independently carried out the man-
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ual verification tasks and ground truth creation, following well-
defined and replicable methodologies. More so, we computed
and reported agreement levels, which are very high in all cases.

Internal Validity. Selecting the optimal prompt can be
challenging for any use of GPT-4, let alone for multiple distinct
tasks, and this process of finding the best prompt impacts the
performance of our approach. We selected the best prompt
by evaluating 14 prompt templates, using three prompting
strategies (i.e., zero-shot, few-shot, and chain-of-thought) on a
rich development set of bug reports from multiple applications.

External Validity. Our results are compared with the state-
of-the-art, EULER, where we used 21 bug reports from their
original dataset across six applications. We could not increase
the dataset size for comparison due to difficulties in running
the EULER tool. However, our approach is built by analyzing
a dataset with bug reports from nine different applications
consisting of four types of bugs. Therefore, AsTrRoBR can be
generalized to diverse types of bug reports. Moreover, AstroBR
currently supports the most frequently used GUI interactions
in Android applications (tap, long tap, efc.). While the lack
of support for certain types of interactions (e.g., rotation) is
a limitation, this is not due to the inherent design of the
approach, and the support of these features can be added
through additional engineering effort in future work.

Limitations. AstroBR’s performance depends on the com-
pleteness of the app execution model. The automated execution
information collected with CrasHScopE may result in an
incomplete execution model. To overcome this issue, we
collected information from manual app executions.

IX. ConcLusioNs AND FUTURE WORK

Providing quality feedback to bug reporters at reporting time
promises to result in bug reports that are easier to understand
and reproduce by developers. We found that using LLMs
(i.e., GPT-4) for automatically extracting and analyzing S2Rs
from natural language bug reports, and matching them to
GUI interactions, is very effective, resulting in better quality
annotations than state-of-the-art approaches. As with any other
applications of LLMs, their performance is highly dependent
on the prompting quality. By investigating 12 prompt templates,
using different prompting strategies, we observed that the use
of GPT-4 in this context is quite robust with respect to the
type of prompt used. That is, different prompt templates lead
to similar performance levels.

Future work will focus on expanding the evaluation to larger
data sets and tackle the quality of other elements of bug reports,
such as, the observed and expected behavior. We will also
add support for additional types of interactions (e.g., rotation)
and perform a user study to assess ASTROBR’s usability by
engineers in real-world scenarios. In addition, we will compare
multiple LLMs in a follow-up extension of this work.
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