Decoding the Issue Resolution Process in Practice

via Issue Report Analysis:

Antu Saha
William & Mary
Williamsburg, Virginia, USA
asaha02 @wm.edu

Abstract—Effectively managing and resolving software issues is
critical for maintaining and evolving software systems. Develop-
ment teams often rely on issue trackers and issue reports to track
and manage the work needed during issue resolution, ranging from
issue reproduction and analysis to solution design, implementation,
verification, and deployment. Despite the issue resolution process
being generally known in the software engineering community
as a sequential list of activities, it is unknown how developers
implement this process in practice and how they discuss it in
issue reports. This paper aims to enhance our understanding
of the issue resolution process implemented in practice by
analyzing the issue reports of Mozilla Firefox. We qualitatively
and quantitatively analyzed the discussions found in 356 Firefox
issue reports, to identify the sequences of stages that developers
go through to address various software problems. We analyzed
the sequences to identify the overall resolution process at Firefox
and derived a catalog of 47 patterns that represent instances of
the process. We analyzed the process and patterns across multiple
dimensions, including pattern complexity, issue report types,
problem categories, and issue resolution times, resulting in various
insights about Mozilla’s issue resolution process. We discuss these
findings and their implications for different stakeholders on how
to better assess and improve the issue resolution process.

I. INTRODUCTION

Issue management is a fundamental process that aims to
track and manage the code changes needed to address issues
during the maintenance and evolution of a software project.
Issue trackers are essential tools that provide the infrastructure
to implement issue management [1]. Such systems provide a
platform for documenting software issues, facilitating discus-
sions among stakeholders, and tracking the work and progress
of solving the issues [1,2]. The issue management process
assisted by issue trackers, typically involves steps such as issue
understanding, triage, replication, and analysis, as well as issue
fixing (a.k.a. issue resolution) [2, 3]. Issue resolution is a sub-
process of issue management that aims to diagnose and resolve
the reported problems.

According to existing literature [4-8], the typical issue
resolution process includes steps such as issue reproduction,
problem investigation, solution design, solution implementation,
and validation/verification, which are sequentially applied to
solve issues. However, while this process is meant to be
generally applied to any software issue, it is unclear how
developers implement it in practice for different problems and
contexts and how developers discuss it in issue reports.

A Case Study of Firefox

Oscar Chaparro

William & Mary
Williamsburg, Virginia, USA

oscarch@wm.edu

Understanding the issue resolution process implemented in
practice is important for improving software maintenance and
evolution processes. By gaining insights into how developers
address software problems, we can identify bottlenecks and
anomalous process implementations, align prescribed processes
with actual practices, and provide developers with better
guidance for issue resolution. Additionally, studying issue
resolution can help identify common patterns and strategies
that can be applied to similar problems in the future, and
confirm the extent to which the implemented process deviates
from the typical, linear resolution process from the literature.

This paper aims to enhance our understanding of the issue
resolution process implemented in practice by identifying and
analyzing the sequence of steps (i.e., stages) that developers
perform and discuss in issue reports when solving issues.
To that end, we conducted a case study on Mozilla Firefox,
a mature and widely-used open-source project. Combining
qualitative and quantitative methods, we analyzed the discus-
sions present in a sample of 356 Firefox issue reports to
identify the stages of issue resolution that Firefox developers
engage in, the sequences of stages that issue discussions form,
recurrent transitions between stages present in the sequences,
the overall issue resolution process implemented at Firefox,
and the recurrent instances of this process to solve a variety
of problem types reported in different issue reports.

Using a multi-coder iterative open-coding methodology, we
identified six issue resolution stages (e.g., issue reproduction,
solution design, implementation, and code review). The stages
appear in issue reports with varying frequencies across different
issue types (defects, enhancements, and tasks) and problem
categories (e.g., Crashes, Ul Issues, and Code Improvements),
and form sequences that represent particular instances of the res-
olution process at Firefox. The stage sequences reveal frequent
relationships among stages, particularly between issue reproduc-
tion and analysis; among solution design, implementation, and
code review; and among implementation, code review, and solu-
tion verification. Additionally, based on analysis of consecutive
stages appearing in the sequences (i.e., bi-grams), we identified
the most common transitions between stages and derived the
overall issue resolution process at Firefox from them. Such
a process is primarily iterative, deviating from the theoretical
linear process found in the literature and Firefox’s documen-
tation. In this process, developers go back and forth from one

mailto:
mailto:

stage to another as needed to solve the issues. Finally, utilizing
qualitative analysis of the sequences, we identified 47 issue res-
olution patterns that represent recurrent instances of the overall
process of solving different types of problems. Two Mozilla
developers assessed the usefulness of the patterns, identifying
potential use cases to enhance Firefox’s resolution process.

Our study provides evidence of the iterative and diverse
nature of the issue resolution process, which widely deviates
from the theoretical linear process from the literature. Our
methodology, stage sequences, and patterns serve to identify
potential anomalies in the way Firefox developers implement
the resolution process. Our pattern catalog and results can help
educate future developers and train newcomers at Firefox in the
intricate process of issue resolution. Finally, we advocate for
developing advanced tooling to assist developers in recording
issue resolution activities more easily, as this can have great
benefits for traceability, process assessment, code change
rationale management, and more.

In summary, this paper makes the following contributions:

o A model of Firefox’s issue resolution process implemented
in practice, derived from qualitative and quantitative analy-
sis of issue report discussions.

o A novel catalog of 47 patterns of issue resolution, de-
rived from qualitative analysis of issue discussions. The
patterns represent instances of Firefox’s resolution process,
employed by Firefox developers to address different types
of software problems.

e A comprehensive analysis of the derived process and
patterns, across different types of issues and problem
categories, showing that Firefox’s issue resolution is a
diverse and iterative process, which deviates from the
prescribed linear process from the literature.

o A novel dataset with annotated issues and related artifacts
that enables further research in this area. We publicly release
this data and the derived catalog, scripts, and other artifacts
useful to validate and replicate our study [9].

II. BACKGROUND, PROBLEM, AND MOTIVATION
A. Issue Management during Software Evolution

Issue management aims to track and manage all the
change requests of a software system, including new
feature developments, non-functional implementations, defect
corrections, and enhancements to existing functionality [2, 6, 7].
Issue trackers, such as Bugzilla [10], Jira [11], and GitHub
Issues [12], are communication and social platforms that allow
coordination among different stakeholders around the process
of issue management [13—15]. Issue reports are the main
artifacts created and used during issue management [2], and
typically include an issue title, a detailed issue description,
metadata (e.g., issue severity and priority, operating platform,
and product versions affected by the issue), and attachments
(e.g., system logs and screenshots).

During the process of managing and solving the issues,
stakeholders change the status of the issues (e.g., from Assigned
to Resolved and from Verified to Closed [8,16]), and engage
in discussions when needed. These discussions are recorded in

issue comments, which document relevant information about
the reported problems [6], including possible circumstances
in which the problem occurs, potential causes, how the code
should be changed to address the issue, and more.

B. Issue Resolution within the Issue Management Process

The literature has defined the different phases that compose
the issue management process. Zhang et al. [4] report three
major phases: issue understanding, triaging, and fixing (a.k.a.
issue resolution). In the first step, triagers read and understand
the report to determine the issue type, priority, and severity.
In the second step, the triagers assign the issue to an expert
developer. Finally, in the issue resolution phase, the assigned
developer locates the code that needs to be changed in response
to the issue and implements the desired code change.

K. Saha et al. [5] define similar phases, including a fourth
phase called issue verification, in which a developer verifies
that the code change indeed addresses the issue and conforms
with the quality standards. Zeller [6] includes issue reporting,
duplicate report identification, and fix delivery as part of
the issue management process. Zeller also decomposes the
issue resolution phase for bug reports into multiple steps: bug
reproduction, isolation and localization, and fix implementation.

Rajlich [7] defines software change as a general process to
modify and evolve software systems, based on change requests.
Rajlich defines seven phases of software change: initiation,
concept location, impact analysis, actualization, refactoring,
verification, and conclusion. Initiation includes prioritization
of change requests. All these phases except for initiation and
conclusion are part of issue resolution, which aims to analyze
and implement the solution to an issue.

In this paper, we investigate how developers perform issue
resolution, a critical sub-process of issue management that
aims to diagnose and solve the reported problems [8]. This
issue resolution process includes reproducing the reported
bugs (for bug reports), understanding and analyzing the issues,
designing a solution to the issue, implementing the solution,
and validating/verifying the quality of the implementation.

C. The Issue Resolution Process Implemented in Practice

Although the issue resolution process includes different
activities as discussed above, it is unclear how this process is
implemented in practice to address different kinds of issues,
under various operating circumstances. As we discuss in the
related work section (Section VII), prior work has focused on
studying different aspects of issue reports and their manage-
ment, including the overall issue management process based on
issue status transitions, but no prior work has studied in detail
the process that developers implement in practice to analyze
and solve issues. We fill in this knowledge gap by analyzing
issue discussions and studying patterns of issue resolution.

We motivate our work by discussing two examples of issue
resolution at Mozilla Firefox [17]. Issue report #1029919 [18]
describes a buggy behavior in the way Firefox renders a web
page: when the user hovers over HTML buttons on a page,
Firefox draws a border around the button. The issue report

contains rich information in the issue comments that help
us understand the process followed to solve this issue. At
first, developers reported multiple bug reproduction attempts,
asking for additional information from the reporter. After it
was successfully reproduced, the developer assigned to solve
the issue posted the result of his investigation, describing
the potential problem location and cause. The developer then
attached two fixing patches describing the root cause, the
solution, and the potential impact of the solution on the system.
The patches were reviewed by another developer and after the
original developer corrected a few problems, the code reviewer
inspected and approved the implementation. The code change
was then integrated into Mozilla’s code base, the reporter
verified the fix, and a triager closed the issue.

Another example is issue #1718748 [19], which describes
a failure in Firefox’s cross-platform component that handles
UI rendering. The issue states that some buttons in Firefox’s
toolbar customization Ul become invisible when switching to
a dark theme. The reporter is a QA member who identified a
prior commit and issue that could have introduced the bug (via
Mozilla’s mozregression tool [20]). The developer responsible
for that prior commit and issue, assigned to solve the issue,
provided a patch with the description of the code change
to correct the defect. Another developer reviewed the code
change (via the Phabricator code review tool [21]) and a QA
member then successfully verified the solution, marking the
issue as Verified and Fixed.

Both examples illustrate different ways to resolve bugs
related to Firefox’s web page and UI rendering. In the first
example, we observe all the expected major steps of issue
resolution, however, in the second example, the process did not
include any issue reproduction and analysis. In both cases, these
issue resolution steps were performed by different stakeholders,
recording the activities and the relevant information obtained
during the issue resolution. While the nature of the problems
might have been different, it is clear that the issue resolution
process that we would expect from theory can be implemented
and recorded in issue reports in different ways. Our goal is to
investigate these different approaches and determine if there
are recurrent patterns in the process of solving different kinds
of issues. We do so by qualitatively analyzing the discussions
that developers document in issue reports.

D. The Issue Resolution Process at Mozilla Firefox

We selected Mozilla Firefox [17] as the subject of our
study because (1) it is a mature and widely-used project
with 19+ years of evolution, and (2) it has well-documented
practices for issue management [3] and software development
(e.g., patching [22], code quality [23,24], testing [25], and
debugging [26]), which allow us to understand Firefox’s
issue resolution process in detail. Mozilla Firefox is a
multi-language, multi-platform open-source project that uses
BMO, an adapted version of the Bugzilla issue tracker [10],
to manage all the changes made to Firefox’s source code [22].

All of Firefox’s code changes are documented in issue reports
by end-users, community members, QA members, and develop-

ers during system usage, testing, and analysis [27]. Firefox has
three issue report types [28]: defects, enhancements (i.e., user-
facing improvements), and tasks (i.e., back-end improvements).
These issues are triaged differently by a rotating group of
engineering managers who are owners of a Firefox component
and by QA members [29-31]. These members assess the issues
and assign a correct issue type, severity, priority, target release,
and other metadata (e.g., security flags [31]) to better prioritize
and manage the problems. QA members, component owners,
and developers are in charge of determining the resolution state
of the issues (e.g., Resolved - Won't fix or Verified - Fixed [30]).

The open nature of the project makes Firefox’s software
development, and in particular issue resolution, a worldwide
and distributed process. Developers are assigned to issues and
work on one or more patches to address the problems. For
diagnosing and solving defects, Firefox provides guidelines for
using various debugging tools across different platforms [26].
Once the patches are completed, they are attached to the
issue reports, requiring a code review through the Phabricator
tool [21]. The tool posts comments on issues whenever a code
review is submitted. The code reviewer is mainly a component
owner or peer, a newcomer mentor, and/or any other developer
familiar with the modified code or module [22]. The patch
is tested in Try [32], a system for running automated tests
without integrating patches into Firefox’s code base. Once the
patches are approved, they are integrated (a.k.a. landed), by the
code reviewer, into the ‘autoland’ repository, where regression
tests are executed [33]. Once the tests pass and the code
changes are further validated/verified by the QA team, they are
merged by ‘code sheriffs’ into ‘mozilla-central’, Firefox’s main
development repository [33]. Merging into ‘mozilla-central’
occurs periodically or on demand (e.g., when critical security
fixes are validated) [33, 34].

During the resolution process, the status of the reports is
updated accordingly (e.g., from Assigned to Verified and Fixed).
Information relevant to the issue (e.g., failing regression test
results), obtained at any moment during the process, may be
posted as an issue comment. For example, failing regression
test results are posted in the issues. Code changes in ‘mozilla-
central’ are integrated into ‘mozilla-beta’ for additional quality
assurance during a four-week beta cycle. After this, a release
candidate build is generated, tested thoroughly, and made
available as the next version of Firefox [34].

III. STUDY METHODOLOGY

This study aims to investigate how the issue resolution
process is implemented in practice at Mozilla Firefox to solve
various software problems and tasks described in issue reports.
We investigate the major stages of the issue resolution process,
described in Section II-B, and how developers1 follow them to
solve a variety of problem categories (e.g., crashes, Ul issues,
or refactoring changes) reported in various issue report types
(defects, enhancements, or tasks). The study addresses the
following research questions (RQs):

'We hereon use developers to refer to all stakeholders involved in issue
resolution: programmers, reporters, QA members, efc.

RQq: What issue resolution stages are found in issue reports?
RQs: How do the resolution stages interact with each other?
RQ3: What is the overall process of issue resolution?
RQy: What resolution patterns are found in issue reports?
RQs5: What are the potential use cases of the patterns?
RQ; investigates the major stages that Mozilla developers
go through to address reported issues and how frequently these
stages are discussed in issue reports. RQ- investigates how
these stages interact with one another, including how frequently
these stages co-occur in issue reports. RQs investigates the
overall issue resolution process at Mozilla Firefox. RQy
investigates recurrent instances of the resolution process,
expressed as sequences of stages. RQ5 examines the potential
applications of the derived patterns for Mozilla developers.

A. Issue Collection

Mozilla’s BMO is the centralized system for managing the
issues of Firefox desktop and mobile [35]. In this study, we
focused on the desktop version of Mozilla Firefox, studying
the issues of its two main components: Firefox and Core. The
Firefox component (a.k.a. product in BMO) implements the
graphical user interface (GUI) of the web browser, while the
Core component includes essential functionality such as web
page rendering, web browsing, and networking services.

Our study focused on FIXED and RESOLVED issue reports
for the selected components. To obtain recent issues within a
significant period of system evolution, we downloaded all the
issues created from January 1st, 2010 to April 30th, 2023 using
Bugzilla’s API [36], including their title/summary, comments
(which contain the issue description), and relevant metadata:
creation time, resolution time, and others. From 199,271
downloaded issues (=164.7k/34.5k for Core/Firefox), we
randomly sampled 384 issues for analysis. This is a statistically
significant sample, at a 95% confidence level and 5% error
margin, that captures the diversity and characteristics of the
entire population of Core and Firefox issues. This is evidenced
by comparing our sample and the entire issue population in
terms of the proportion of issue types (defects: 71.1% vs 70.1%,
enhancements: 16.9% vs 16.1%, and tasks: 12% vs 13.5%),
the proportion of issues per product (Core: 81.5% vs 82.7%
and Firefox: 18.5% vs 17.3%), average # of comments per
issue (13.4 vs 14.6), and average resolution time (81 vs 88
days). The 384 issues contain 13.4 (9) comments, 30.27 (16)
paragraphs, and 56.73 (25) sentences on average (median).

B. Issue Annotation

1) Goals and Overview: We qualitatively analyzed all the
information provided in the issues, annotating textual content re-
lated to issue resolution by employing an iterative open coding
methodology [37]. The annotation process was conducted by six
Ph.D. students and one professor (a.k.a. annotators), including
the authors of this paper. The annotators have 1-9 years of
research experience (particularly in qualitative text analysis),
and five of them have 1-4 years of industry experience.

The annotation targeted all the textual content written by
different stakeholders in issue comments and aimed to identify:

(1) themes or codes about different activities performed to
resolve the issue (e.g., reproduction attempts or a code review),
and (2) the types of problems described in the issues (e.g.,
crashes, Ul issues, efc.), which we call problem categories.

2) Annotation Tool and Unit: We used the Hypothesis
annotation tool [38] to directly annotate the web pages of the
issue reports. The tool allowed us to collaboratively assign
codes to text snippets in the issue threads, modify the assigned
codes, and discuss the annotations.

We coded fext snippets in the issue comments. The minimal
annotation unit was a complete sentence. Since one or more
sentences may convey the same type of information (i.e., a
given resolution activity), the annotation included individual
sentences, multiple sentences, paragraphs, or even entire
comments. A single textual snippet was allowed to be coded
with one or more codes.

3) Code Catalog and Coding Guidelines: We maintained a
code catalog via a Google spreadsheet shared among the anno-
tators. The catalog included a list of codes, code descriptions,
rules to apply the codes, and text snippets from annotated issues
used as examples. The code catalog also included a list of
problem categories, with detailed definitions and examples of
annotated issues. We also maintained a shared Google document
with detailed guidelines of the annotation procedure, coding
rules, and necessary resources for annotating the issues (e.g.,
official Mozilla documentation to get familiar with Firefox’s
resolution process and a glossary of annotation terminology).
Both the catalog and guidelines were built from scratch and de-
veloped by all the annotators incrementally and collaboratively.

4) Annotation Procedure: We adopted an iterative multi-
coder open-coding methodology wherein each issue report was
annotated and validated by at least two annotators. The 384
issues were distributed evenly among the seven annotators, who
iteratively examined, annotated, and validated the issue com-
ments in batches of 30-50 issues. The first annotator assigned
codes to text snippets in the comments, and a second annotator
reviewed these annotations for accuracy and completeness. Dis-
crepancies were resolved in reconciliation sessions. Annotator
roles alternated across batches, with each person either anno-
tating from scratch or reviewing the annotations by the first an-
notator. To avoid fatigue and reduce potential mistakes, the an-
notators annotated small sets of issues with breaks in between.

The overall process for a single issue involved the first anno-
tator thoroughly reviewing the issue, including attached patches,
linked commits, and metadata (e.g., issue commentators, tags,
and status), to identify/annotate relevant content and the
problem category. Codes were assigned based on the content’s
meaning and the code catalog. The second annotator then
reviewed these annotations, verifying their accuracy, suggesting
additional codes, or flagging mistakes. After processing a batch,
both annotators discussed disagreements to reach a consensus.

To establish the initial coding framework, two researchers
annotated the first batch of 30 issues, creating an initial set
of codes and problem categories. These were refined through
discussion sessions, resulting in complete definitions, examples,
and rules for applying the codes. This initial annotation

informed the creation of the coding guidelines, which included
resources for understanding issues and general annotation rules.

Before annotating the remaining issues, training sessions
were conducted with the other annotators to review the coding
guidelines, discuss examples from the initial batch, and solve
misunderstandings. Throughout the entire annotation process,
the code catalog was continuously updated, with changes such
as new codes, code merges, or renames collectively agreed
upon and promptly communicated. When the catalog was
updated, previously coded issues were revisited to ensure
consistency. Regular communication via Zoom meetings and
Slack discussions was essential to maintain the accuracy and
uniformity of the catalog and annotated content.

5) Annotation Results and Inter-coder Agreement: During
the annotation process, 28 issues, that were pull requests (PR)
automatically created by the issue tracker, were discarded.
In summary, we annotated 3,707 textual snippets in 2,574
issue comments across 356 issue reports. The annotation
process resulted in 22 issue resolution codes, and 17 problem
categories which we further grouped into 3 problem classes.
Tables I and II show examples of these elements; our replication
package contains the full catalog of codes and problems [9].

The annotators agreed on 3,438 annotations with an agree-
ment rate of ~93% and a Cohen’s kappa of 0.92, which
indicates a high overall agreement [39]. Common sources of
disagreement (269/3,707 text snippets) included misunderstand-
ings due to ambiguous comments or unclear code definitions.
If both annotators were unable to reach an agreement, a third
annotator reviewed the issue to resolve the conflict.

C. Inferring and Analyzing Issue Resolution Stages

The 22 codes obtained from the issue report annotation
represent the information about activities performed by
developers during issue resolution. We implemented two steps
for inferring the issue resolution stages from the annotation
codes. In the first step, we qualitatively analyzed the code
catalog and annotated issues and identified 13 codes (i.e.,
actionable codes) that signified specific actions performed to
directly address the problems (e.g., reproducing the problem or
implementing a solution as a code change). In the second step,
we engaged in an analysis of issues/codes and a discussion to
categorize the 13 codes for inferring issue resolution stages.

The first step was necessary because 9 of the 22 codes were
either: (1) requests to perform an action, not an action in itself;
or (2) cross-cutting actions, which can be performed at any
stage of the resolution process. SOLUTION_REVIEW_REQUEST
is an example of a request, which represents a petition, made by
a developer to another one, to review a proposed solution to the
problem. SOLVED_BY_OTHER_ISSUE is an example of a cross-
cutting code that represents an issue resolved in another issue.

Based on the qualitative analysis, we identified six different
issue resolution stages, namely: REPRODUCTION (R), ANAL-
YSIS (A), SOLUTION DESIGN (SD), IMPLEMENTATION (I),
CODE REVIEW (CR), and VERIFICATION (V). Each stage is rep-
resented by one to five actionable codes, each code belonging
to a single stage. Examples of codes for the ANALYSIS stage (A)

TABLE I: Issue Resolution Stages

Stage Description Annotation Codes # of Issues
REPRODUCTION (R) Developers atiempt to REP_ATT 47 (13.2%)
reproduce the issue.
Developers analyze the i
lfyi;&ivjiigatgeepiozl:;ue PROB_LOC,
ANALYSIS (R) . e 3 i PROB_REV, 134 (37.6%)
identifying the problem cause,
: CAUS_IDENT
or locating the relevant code.
Developers discuss how to
SOLUTION DESIGN (SD) 5°1Zep’oh;r:fit\'“;e;o’i;;}o‘:‘;pr"se Pogasg]ﬁgfs' 150 (42.1%)
review a proposed solution.
Developers make the
IMPLEMENTATION (I) necessary code changes CODE_IMPL 328 (92.1%)
to resolve the issue.
CODE REVIEW (CR) _ Developers review the CODE_REV 264 (74.2%)
implemented code changes.
SOL_VER,
Developers verify the UPLIFT_APRV,
VERIFICATION (V) solution by testing the IMPL_REV, 146 (41%)
implemented code changes. COL_PROB_ANA,
COL_POT_SOL
TABLE II: Problem Categories and Classes
Problem Class Problem Categories (Examples) # of Categ. | # of Issues
Implementation UI Issue, Feature Development, Crash 12 261
Refactoring Code Improvement, Unnecessary Code Removal 2 51
Testing Test Failure, Test Update, Flaky Tests 3 44

are PROBLEM_LOCALIZATION and CAUSE_IDENTIFICATION.
Table I shows all the stages with their description and codes.

To answer RQ;, we analyze the frequency in which the six
stages appear in the issue reports, across different report types
and problem classes and categories.

D. Analysis of Stages Sequences and Process Inference

When the identified stages are aggregated in the order in
which codes appear in the issue report (i.e., chronologically),
they create a sequence of codes, which we can then examine
to understand the process adopted to resolve the issue. For
example, issue #1363344’s [40] annotation code sequence is:
CODE_IMPLEMENTATION, CODE_REVIEW, CODE_REVIEW,
CODE_REVIEW. We created a stage sequence by utilizing
the code sequence and the code-stage mapping for each
issue. For example, for the above code sequence of issue
#1363344 [40], the derived stage sequence is: I,CR, CR,CR
which we simplified as I, CR by merging consecutive repeating
stages. This process was applied to all the issues.

To answer RQ2, we counted the bi-grams and tri-grams ap-
pearing in the stage sequences, as well as the number of issues
where these n-grams appear. Bi-grams are pairs of consecutive
stages, while tri-grams are triplets of consecutive stages in the
sequences. We also analyzed the frequency with which the
stages appear at the beginning or end of the sequences.

To answer RQgs, we constructed a graph representing the
overall issue resolution process, where the nodes correspond to
the stages and the edges represent the transitions between stages.
This graph was constructed based on the most frequent bi-grams
found in the sequences and serves to validate the patterns of
issue resolution we derive as part of RQ, (see Section III-E).

E. Inferring Issue Resolution Patterns

To answer RQ,, we engaged in a qualitative analysis of
the stage sequences and derived issue resolution patterns by
grouping similar stage sequences into coarse-grained sequences.
The derived patterns correspond to instances of the derived
issue resolution process in RQs.

1) Pattern Notations: To communicate the issue resolution
patterns clearly and analyze them in different dimensions, we
represent the patterns as a string based on three notations:

o A? indicates that stage A is optional;

 (A|B) indicates that either A or B or both stages appear;

e (A,B,...,Z)+ indicates that stages A, B, ..., and Z appear
more than once, and at least one subsequence of two or more
stages (A,B or B,Z or A,B,Z, etc.) appears more than once.

2) Deriving Issue Resolution Patterns: At first, we
identified the stage sequences where the 3rd notation,
(A,B,...,Z)+, is applicable and created issue resolution pat-
terns for those stage sequences applying the notation. For
example, issue #991812 [41] with the stage sequence
I,CR,I,CR,I,CR,V,I,VhasI,CR,andV appearing more
than once and the sub-sequence I,CR appears more than
once. Hence, the sequence can be collapsed to create the issue
resolution pattern (I, CR,V)+. With this notation, the order
of the stages does not matter.

Second, we created groups of stage sequences that differ only
by one or two stages in order and qualitatively analyzed each se-
quence to understand the differences among the sequences. We
aimed to represent the sequences using the first two notations
(i.e., A? and (A|B)) to form a coarse-grained sequence. For
example, issues #698552 [42], #676248 [43], and #730907 [44]
have the stage sequences “SD, I,CR”, “SD,I,CR,I”, and
“SD, I, CR, V", respectively. Here, all three stages, SD, I, and
CR, are included in the three issues. However, the sequences
only differ by the last stage: I or V is present for the last
two issues while it is not present in the first one. Hence,
we can create a common pattern for these three issues, i.e.,
SD, I,CR, (I|V)? which will represent all three sequences.

We meticulously created this grouping by considering
several factors (e.g., the # of issues per sequence, the presence
of unique stages per sequence, and the issue resolution
process of each issue in the group) so that we would not lose
information or create any misleading sequence that does not
represent the actual resolution process. For example, we could
create a group for the sequences I and I, CR by making CR
as an optional stage (i.e., I, CR?). However, the first sequence
is found for 21 issues and the second sequence is found for 50
issues which implies these two sequences are already widely
used and can represent two distinct ways of issue resolution.
In the first sequence, no CR is performed, whereas in the
second, it is performed to resolve the issue. Hence, we did
not create a group from these two sequences.

In all qualitative steps, one researcher qualitatively analyzed
the issue and made necessary changes by documenting the
rationale behind each change which was reviewed and vali-
dated by the second researcher. Both researchers continuously
discussed the patterns and solved any disagreements.

3) Pattern Derivation Results and Pattern Categorization:
Our analysis resulted in 47 distinct issue resolution patterns
— the 10 most frequent patterns are shown in Table III. The
patterns contain 1-6 stages and appear in 1-64 issues (7.6 issues
on average). The more unique stages and the more interacting
stages a pattern has, the more complicated a pattern is. We argue

that the complexity of a pattern reflects the effort developers
invest in resolving an issue, which can be quantified by the num-
ber of stages in the sequences associated with the pattern. There-
fore, we categorized the patterns as simple or complex based
on the average number of stages in their sequences. Since the
distribution of these averages is not skewed (see our replication
package for the distribution [9]), the mean serves as a threshold
for classification. Specifically, the process involves calculating
the average number of stages (P,) for each pattern, determining
the overall mean across the patterns (1" = 6.2 stages), and
classifying a pattern as complex if P, > T or simple if P, < T
In Section IV-D, we discuss the pattern catalog and compare
it with the derived process from RQ3 to answer RQy.

F. Investigating Potential Use Cases of the Derived Patterns

To answer RQs, we conducted semi-structured interviews
with two Mozilla developers, aimed to gather detailed feedback
from them on the usefulness of the resolution patterns. The
interviews were conducted over Zoom for 60 minutes and were
structured into four sections:

1) Participant’s Background: Participants were asked to share
their background and experience in software development
and issue resolution at Mozilla and other companies.

2) Mozilla’s Issue Resolution Process: Participants were
asked to describe Mozilla’s issue resolution process (both
prescribed by Mozilla and implemented by developers) as
well as the specific approaches they follow.

3) Research Presentation: The research team presented the
study’s goals, methodology, and findings, including the
identified patterns. Participants were encouraged to ask
questions about the patterns and findings.

4) Question-Answering: Participants were asked 11 questions
that prompted for feedback on the identified patterns, with a
focus on understanding their potential benefits for Mozilla.

Follow-up questions were asked when additional informa-
tion was needed. The interview questionnaire, protocol, and
anonymized responses are found in our replication package [9].

1) Finding Participants: Our target population consisted of
Mozilla stakeholders with experience in issue resolution. To
identify potential participants, we explored the developers’
profiles from Mozilla Research’s website [45], LinkedIn,
Mozilla’s issue tracker, Mozilla’s Forums [46], and Matrix [47].
We created a shortlist of 42 potential participants, all of whom
were invited to participate via email.

2) Participants’ Background: Two developers responded
to our call and participated in the interview (i.e., referred to as
D1 and D2). They are current Mozilla developers with 7 to 11
years of experience at the company. They have extensive issue
resolution experience, having resolved around 1.4K issues and
contributed to approximately 19K issues in total.

3) Response Analysis: We recorded and transcribed the
interviews using Zoom to facilitate response analysis. We
corrected inaccuracies in the transcripts, e.g., misspellings,
incorrect phrases, and punctuation. Using the revised transcripts,
one author analyzed and grouped the participants’ answers to
each question into themes representing use cases of the patterns.

A second author reviewed the answers and themes for accuracy.
Misinterpretations were resolved through discussion.

IV. RESULTS

A. RQq: Issue Resolution Stages

Table I lists the six identified issue resolution stages and
reveals that not all issue reports include all stages, indicating
that Firefox developers do not go through these stages, do not
need to discuss them in the reports or discuss them in other
systems or artifacts (e.g., instant messaging tools). We discuss
the stages starting with the most frequent ones.

1) IMPLEMENTATION: This stage is frequently performed
and discussed (in 92.1% of the issues), which is expected as
Firefox’s issue tracker is integrated with the version control
system (Mercurial). Among the 28 issues not including any
IMPLEMENTATION, 25 issues were resolved in other issues, two
issues were resolved by updating libraries in the host operating
system, and the remaining issue was closed after more than
four years of being open because the issue was no longer valid.

2) CODE REVIEW: This stage is also frequently performed
and discussed (in 74.2% of the issues), which is expected as
Firefox’s issue tracker is integrated with Firefox’s code review
tools (e.g., Phabricator [21]). While CODE REVIEW is frequently
discussed, it is not found in 25.8% of the reports, especially
in defect reports. We found that defects are the least discussed
with CODE REVIEW (31.9%), compared to enhancement and
task reports (6.7% and 7.7%). Phabricator [21], adopted in
2019, replaced MozReview [48] and Splinter [49] and became
Firefox’s only code review tool. Analysis shows that 35%
of defects resolved in or before 2019 lacked CODE REVIEW,
compared to only 17% after 2019. We found that post-2018
issues without CODE REVIEW do not include code changes, as
the issues were resolved in other issues.

3) VERIFICATION: This stage, covering manual and auto-
matic testing, appears in only 41% of issues. It is less common
in task reports (26.9%) than in defect and enhancement reports
(42.2% and 41.7%). Refactoring and testing issues include
VERIFICATION less often (19.6% and 31.8%) compared to
implementation-related issues (46.7%). Categories like Code
Improvement, Test Failure, Code Design, and Performance Op-
timization have few VERIFICATION discussions, while Crashes
(65%), Feature Dev. (61.5%), and UI Issues (63.6%) show
higher inclusion. This indicates still low VERIFICATION dis-
cussions in the issues and this is consistently found every year.

4) ANALYSIS and SOLUTION DESIGN: The ANALYSIS
and SOLUTION DESIGN stages are infrequently discussed,
appearing in only 37.6% and 42.1% of the issues, respectively.
Defects are analyzed more frequently (i.e., ANALYSIS in
44.8% of defects) compared to enhancements (20%) and tasks
(3.9%), with Crashes, Flaky Tests, Incorrect Page Renderings,
and Test Updates being the most analyzed defects. SOLUTION
DESIGN is more common in enhancements (42.2%) and
defects (43.3%) than in tasks (38.5%). Refactoring issues
are the least analyzed (7.8%) compared to implementation
(42.2%) and testing-related issues (45.5%).

5) REPRODUCTION: REPRODUCTION is the least frequent
stage, appearing in only 13.2% of issues, with just 17% of
defects including it. This suggests that Firefox stakeholders
rarely discuss bug reproduction in issue reports. We observed
that REPRODUCTION is included when bugs are difficult to
reproduce or when reproduction is necessary to identify the
root cause or localize the bug. The first scenario typically
leads to more effort in solving the issues: compared to defects
without REPRODUCTION, defects with REPRODUCTION take
longer to resolve (avg/med: 82.9/5.5 vs. 79.3/18.5 days) and
involve more commentators (avg/med: 4.9/4 vs. 7.7/7). This is
validated by a Mann-Whitney U test [50] with o = 0.05, with
p-values nearly 0. The second scenario is supported by the data:
73% of the issues with REPRODUCTION include ANALYSIS.

RQ: Findings: The six stages of issue resolution found in
Firefox issue reports appear with varying frequency across
different issue reports and problem categories. IMPLEMENTA -
TION and CODE REVIEW are the most frequent stages while
REPRODUCTION is the least frequent.

B. RQ-: Interactions between Issue Resolution Stages

We examined the 356 stage sequences obtained in
Section III-D by analyzing the frequency of stage bi-grams and
tri-grams in the sequences. Bi-grams are pairs of consecutive
stages (S,T) in a sequence, which represent possible stage
transitions (S—T) in the resolution process. In our data, we
found all possible bi-grams between stages, except for CR—R,
and five extremely rare transitions (appearing only once or
twice): I—»R, V=R, R—CR, and R—V. All these transitions
include REPRODUCTION (R) as the source or target stage.

Of the 1,430 bi-grams found in the sequences, nine are the
most recurrent, covering 80.6% of the bi-gram occurrences:
I—CR (403 cases), CR—I (187), sSD—I (133), CR—V
(94), I—V (86), V—I (73), A—I (70), A—>SD (65), and
CR—SD (41). From these transitions, we observe the interplay
among IMPLEMENTATION, CODE REVIEW, and VERIFICATION,
in which IMPLEMENTATION undergoes quality assurance
activities and these also lead to additional code changes (or to
SOLUTION DESIGN — see CR—SD above). SOLUTION DESIGN
(SD) can lead to code changes, and ANALYSIS (A) can result
in code changes or solution design activities. Notably, while
A—R and R—A are not among the most frequent bi-grams,
they appear in 73.5% and 70.6% of the issues containing both
stages (34). This further supports our finding that ANALYSIS
and REPRODUCTION typically occur together.

The analysis of tri-grams, sets of three consecutive stages
in a sequence (S—T—U), not only provides extra evidence of
the interplay among IMPLEMENTATION, CODE REVIEW, and
VERIFICATION, but also the relationship among ANALYSIS,
SOLUTION DESIGN, IMPLEMENTATION, and CODE REVIEW.
Of 1,109 tri-grams found in the sequences, 25 are the most
frequent, covering 80.6% of the tri-grams, with the following
three being the most frequent: I—-CR—1I (168 occurrences in
97 issues), CR—I—CR (114 occurrences in 61 issues), and
SD—I—CR (85 occurrences in 76 issues).

RQ: Findings: Firefox’s developers switch among different
resolution stages to solve issues. Stage bi-gram and tri-gram
analysis reveal that developers frequently engage in three
scenarios: 1) reproducing the issues (R) along with issue
analysis () to confirm the issues and reason about them;
2) analyzing the issues (A) along with solution design (SD),
and then engaging in implementation (I) and code reviews
(CR); and 3) inspecting (CR) and verifying the implemented
solution (V), adapting the implementation when needed (I).

C. RQs: Issue Resolution Process

Figure 1 shows the overall issue resolution process at Firefox,
derived from the bi-gram analysis we performed on the 356
stage sequences. The process is a directed graph in which
the nodes represent the six resolution stages (e.g., IMPLEMEN-
TATION or I) and the edges represent transitions between
stages (e.g., IMPLEMENTATION—CODE REVIEW or I—CR).
The nodes with 'green| and red| borders are initial and end
nodes, selected from the most frequent initial and end stages
in the sequences. All nodes imply a loop to itself, indicating
that the stage can be performed multiple times in a row.

The process includes only the most frequent bi-grams S — T,
selected based on the proportion of bi-grams starting with
S (S—=«) that contain S—T. This proportion is shown in
blue boxes of the edges in Figure 1. For example, I—CR has
a frequency of 403/530 = 76% since from all 530 bigrams
that start with I (I—*) there are 403 occurrences of I—CR.
The frequencies of all transitions starting from a given node
add up to at least 90%. For example, all transitions coming
out of I add up to 92.3%. The yellow boxes of the edges
represent the proportion of issues containing S and T that
contain the bigram S—T. For example, 254 of 264 (96.2%)
issues with both I and CR contain I—CR.

We make two observations about the process in Figure 1:

o The process deviates from the (theoretical) linear process out-
lined by the existing literature and Firefox’s documentation
(see Sections II-B and II-D). Instead of a linear sequence of
stages (starting with R and going through every stage from
left to right until VERIFICATION and/or CODE REVIEW are
completed — see the path with green transitions in Figure 1),
the process is more complicated than expected as it includes
iterative interactions between stages. This means developers
go back and forth from one stage to another, forming different
workflows of issue resolution.

o Some nodes have a high number of incoming and outgoing
transitions, indicating the level of importance of such stages
in the process. Specifically, SOLUTION DESIGN has four in-
coming and four outgoing transitions and IMPLEMENTATION
has five incoming and two outgoing transitions. These stages
are pivotal because they allow for stage switches from and to
many of the other stages. CODE REVIEW and VERIFICATION
are the second most important stages, both having three
incoming and three outgoing transitions, while ANALYSIS and
REPRODUCTION are less important with fewer transitions.

149
R 550> A) E5F7(SD @ CR)- @i v
387 (564 g2 155127
64431
R = REPRODUCTION, A = ANALYSIS, SD = SOLUTION DESIGN,
I = IMPLEMENTATION, CR = CODE REVIEW, V = VERIFICATION
% of A > * that contain A>B
9 o (¥)% of issues with A and B that contain A B

Fig. 1: Overall Issue Resolution Process of Firefox

RQs3 Findings: Firefox’s issue resolution follows an iterative
process that deviates from the theoretical linear process. In
this process, developers go back and forth from one state to
another as needed to solve the issues. SOLUTION DESIGN
and IMPLEMENTATION, followed by CODE REVIEW and
VERIFICATION, play a key role as they are the source and
target for most of the other stages.

D. RQ,: Issue Resolution Patterns

Figure 1 shows that Firefox’s issue resolution process differs
from the expected linear process from prior work. However,
the figure does not show how much the process differs and
the different instances of the process that developers follow.

Employing the qualitative approach described in Sec-
tion III-E, we identified 47 distinct instances of the process,
which we call issue resolution patterns. These patterns appear
in the 356 issue reports with varying frequency and complexity:
a pattern appears in 1 to 64 reports (7.6 on avg, 4 median),
20 patterns are categorized as complex (they imply high issue
resolution effort) and 27 as simple (they imply low resolution
effort). Of all patterns, 18 patterns are the most recurrent:
they are found in 5 to 64 reports (16 on avg., 9.5 median),
covering 287 reports (80.6%); 12 are simple, and 6 are complex.
Table IIT shows the 10 most recurrent patterns — the entire
pattern catalog can be found in our replication package [9].

1) Pattern Examples: We describe two patterns of different
kinds to illustrate different workflows of issue resolution.

The pattern A, SD, I, (I|CR|V) ? represents the process in
which developers first analyze the reported problem (A). They
then design the solution (SD) (e.g., propose a potential solution
or review a proposed solution), and then implement the solu-
tion (I). Developers may then review the code (CR) and/or test
the code changes to verify if they solved the issue (V). Based on
QA feedback, more code changes may occur (I). This pattern
is simple because it includes only three “mandatory” stages
(A, sD, I) followed by three “optional” stages ((I|CR[V) ?).

The pattern (SD, I, (CR|V))+ suggests a process in
which SOLUTION DESIGN, IMPLEMENTATION, CODE REVIEW,
and/or VERIFICATION are performed repetitively to resolve the
issue. In the repetitive series, (CR|V) means that either one
or both can appear after an SD and an I. To resolve issues,
developers perform four distinct stages where all stages are
repetitive, making this pattern complex.

TABLE III: Top 10 Frequent Issue Resolution Patterns

Pattern Description Cor!-n- # of
plexity Issues

Implement the solution and review the code; .

I,CR,I? followed by another optional implementation. Simple o4
Analyze the problem and implement the solution;

A, I, (I|CR|V)? followed by another optional I or CR or V or Simple 32
any combination.
Implement the solution; review the code and/or

(I, (CRIV))+ verify the implementation; I, CR and/or V Complex 28
repeat more than once.
Design and implement the solution and review the .

SD, I,CR, (I[V)? code; followed by another optional I or V or both. Simple 24
Analyze the problem, design, and implement the

A,SD, I, (I|CR|[V)+ | solution; followed by another optional I or CR Simple 22
or V or any combination.

I Implement the solution. Simple 21
Implement the solution, review the code, and verify j

I.CR,V,I? the implementation; followed by another optional I. Simple 16
Design the solution; implement the solution,

SD, (I, (CR|V))+ review code and/or verify the implementation; Complex 13
I, CR and/or V repeat more than once.
Design and implement the solution; review the

(SD, I, (CR|V))+ code, and/or verify the implementation; Complex 12
SD,I, CR and/or V repeat more than once.
Analyze the problem; implement the solution,

A, (I, (CRV))+ review code, and/or verify the implementation; Complex 7
I, CR and/or V repeat more than once.

R=REPRODUCTION, A=ANALYSIS, SD=SOLUTION DESIGN,
I=IMPLEMENTATION, CR=CODE REVIEW, V=VERIFICATION

2) Process and Pattern Diversity: All the identified patterns
represent instances of the issue resolution process. The 47
instances indicate a wide variety of ways to solve Firefox
issues. While more generalized patterns can be formed from
the 47 patterns, our qualitative approach carefully identified
the patterns to accurately reflect the observed process from
the issues. We did not forcefully merge patterns into more
general ones but did validate the patterns against the process
from Figure 1 (which was derived quantitatively).

The diversity of the patterns/process is observed across
problem categories. Six of the 17 problem categories have more
unique patterns (14 to 23) than the remaining 11 categories (1 to
11 patterns). These six categories are: Defective Functionality
(23 unique patterns found in 43 issues), Code Design (21
patterns in 75 issues), UI Issue (22 patterns in 33 issues), Test
Failure (17 patterns in 17 issues), Crash (17 patterns in 17
issues), and Feature Development (14 patterns in 39 issues).

Issue resolution for some categories is more diverse than

for other categories, despite having a similar number of issues.

For example, UI Issues are solved with 22 patterns, and Code
Improvement issues are solved with 11 patterns, despite both
categories covering 32-33 issues. We also found that the
six most frequent patterns shown in Table III were used to
resolve issues of more than half of the categories (9-11 of
17 categories). This illustrates that the same issue resolution
pattern can solve problems of different kinds.

The diversity of the patterns/process is also observed
throughout Firefox’s lifespan, from 2010 to 2023. During these
14 years, the five most frequent patterns (found in 48% of the
issues) were observed in 11 to 14 different years. The 10 most
frequent patterns (found in 67% of the issues) are found in
7 to 14 different years. The 39 patterns appearing in two or
more issues were used in 2 to 14 years.

3) Pattern Complexity and Resolution Effort: Table IV
shows that 70.8% of the issues (252 of 356) are solved with
the 27 simple patterns. These, compared to issues solved with a
complex pattern, are solved faster (avg/med: 58/5 vs. 119.8/19.5

TABLE IV: Number of Issues Across Issue Types

Issue Type lé?)ttnf;; XComg)ilel;:::Z Total
Defect 79 191 270
Enhancement 19 41 60
Task 6 20 26
Total 104 252 356

days), require fewer stages in the process (avg/med: 2.9/3 vs.
9.9/9), and include fewer commentators (avg/med: 4.4/4 vs.
7.4/7). A Mann—Whitney U test [50] (at o« = 0.05) confirmed
these differences across all these factors with p-value = 0.0.

While all the problem kinds are solved with simple patterns
in most of the cases (55.8% - 85.1.7% of the issues), 5 of
17 categories tend to have more issues solved with complex
patterns (104 of 356 = 29.2%), compared to the other 12
categories. These five categories are: Code Design (22 of
75 issues are solved with a complex pattern), Defective
Functionality (19 of 43), Feature Development (13 of 39),
UI Issue (14 of 33), and Crash (8 of 23). This indicates that
these categories contain issues that require more effort to be
solved. Despite the issues in these categories being solved
with similar resolution time (avg/med: 72.4/9 vs 81.6/6 days),
they include more stages in their process (avg/med: 5.2/4 vs.
4/3) and more commentators (avg/med: 5.8/5 vs. 4.4/4) with
statistical significance (Mann—Whitney U test, p-value = 0.0),
suggesting potentially higher resolution effort.

Table IV also reveals that 76.9% of the tasks are solved using
a simple pattern whereas 70.7% of the defects and 68.3% of
the enhancements are solved with a simple pattern. As pattern
complexity suggests, compared to defects and enhancements,
tasks require less effort: they are solved significantly faster
(avg/med: 9/4 vs. 82.3/7 and 76.9/11.5), require fewer process
stages (avg/med: 3.6/2 vs. 5.2/4 and 5/4), and include fewer
commentators (avg/med: 4/3 vs. 5.4/4 and 5.3/5). These results
are statistically significant, according to the Mann—Whitney
U test (p-values = 0.02, 0.03, and 0.002, respectively.)

RQ4 Findings: The 47 identified issue resolution patterns
indicate that solving issues at Firefox is done in a wide variety
of ways. Of these, 18 patterns are recurrently found in 80.6%
of Firefox issue reports. The process of issue resolution in
Firefox is diverse and far from linear. The diverse and iterative
nature of the process is consistently observed throughout
Firefox’s 14 years of evolution.

E. RQs5: Use Cases for the Issue Resolution Patterns

The two interviewed Mozilla developers (i.e., D1 and D2)
identified the following use cases for the derived patterns:

1) Identifying Issues with a Complex Resolution: D1 and
D2 suggested that the patterns could help detect issues with
complex resolutions, especially those involving repetitive stages,
which may signal excessive time and effort spent by developers.
D1 noted that such patterns could indicate when a bug takes an
unexpectedly complex path, explaining, “If you went through
three different implementations and three different verifications

and it still didn’t work, something went wrong here.” D2 also
emphasized the value of a tool that identifies these complex
issues, saying, “It might be interesting to have some sort of tool
that watches the bugs and when it sees this snowball effect...
it could alert a product person that this bug is chewing up
a lot of time.” Both developers agreed on the importance of
early detection of complex resolutions. Both emphasized that
detecting these issues would help understand why a process is
taking longer than expected, allowing for timely corrections.

2) Identifying Issues Not Following the Expected Process:
D1 suggested that a tool could be useful for detecting issues that
deviate from expected workflows, especially those requiring
human verification. He explained, “Some bugs require human
verification... it requires installing third-party software on a
machine. [...] And it’s up to developers to highlight when this
is the case.” D1 emphasized that a tool could help by alerting
developers when an issue seems to need third-party support
for verification, stating, “If you had a tool that said, hey, this
bug that you open looks like it might need some third-party
support for verification, that might actually be a helpful thing.”

3) Identifying Potentially Complex Code Components: D2
suggested that tracking the complexity of issue resolution in spe-
cific Mozilla Firefox code components or modules could reveal
underlying quality issues, such as technical debt or accumulated
code complexity. As D2 put it, “You could track the complexity
of the issue resolution process in a given module... and get
insights like, hey, it looks like most of the time when you
touch this area of code it ends up being a slog.” D2 emphasized
that such insights could signal the need for refactoring, stating,
“Maybe it’s time to refactor this? Maybe it’s time to clean this
up... this part of the code base is a tar pit and we probably
want to spend some resources making it less ornery.”

4) Improving Bots to Detect Unsolvable Issues: D2
suggested that the resolution patterns could help improve the
heuristics of existing bots (e.g., bugbug [51]) used to process
Mozilla issues, enabling them to better identify issues that
are unsolvable or particularly challenging to solve. As D2
explained, “If you could identify signs that this bug is not going
to be solved or is about to fall through the cracks, that would be
pretty cool.” He noted that current bots already attempt to detect
when issues have “fallen through the cracks” and need attention,
saying, “We have some bots that do that kind of work.”

5) Suggesting and Decomposing Meta-Issues: Both D1 and
D2 suggested that issues with complex resolutions, as indicated
by the complex patterns, might represent meta-issues: large
issues that could be broken down into smaller, more manageable
issues. They proposed that a tool capable of flagging these
cases and suggesting possible decompositions would be highly
beneficial. As D1 explained, “We have this idea of a meta bug,
which is a bug which hosts a whole bunch of related bugs,”
and suggested the tool could flag such cases and offer ideas
like, ”could this be split? Here are some topics that it sounds
like you could split this down into.”

6) Training Junior Developers: D1 and D2 both indicated
that the patterns could serve as valuable training tools for junior
Mozilla developers, offering insights into the practical aspects

10

of issue resolution. D1 noted that junior developers often have
high expectations and approach issues linearly, seeking a perfect
solution. However, D1 emphasized that the patterns show the
issue-resolution process is typically incremental and iterative,
involving multiple cycles of code review and verification. As
D1 explained, “You will probably have to iterate... you will
probably have to go through this solution more than once. And
that’s okay. That’s expected. It’s part of the job.”

Both developers suggested that automation is needed to
realize such use cases, particularly tools that identify patterns
in issue discussions and classify them as simple or complex.
Our future work will develop such tools to automate the
identification of textual content in issue comments (e.g., issue
resolution activities) and use algorithms to derive sequences of
stages and patterns. This process will likely combine machine
learning with heuristic-based approaches.

RQs5 Findings: The interviewed Mozilla developers suggested
that the resolution patterns could help identify complex issues,
workflow deviations, and low-quality code components,
improve bots for detecting unsolvable issues, decompose
large issues, and train junior developers.

V. DISCUSSION AND IMPLICATIONS

Firefox’s Issue Resolution in Practice. Our study highlights
the iterative and diverse nature of Firefox’s issue resolution
process, which widely deviates from the theoretical linear mod-
els often assumed in the literature (e.g., Rajlich’s incremental
change process [7]). Instead of following a straightforward
path, developers address various types of issues by moving
back and forth through multiple stages as needed. This
reflects the iterative and incremental approach characteristic of
modern software development, aligning more closely with agile
methodologies than with rigid frameworks like Waterfall [7].

Patterns Generalizability. While the results only apply to
Firefox, we conducted a small case study that annotated 20
issue reports (of different kinds) from two open-source projects:
Chromium [52] and GnuCash [53]. The goal was to validate
if these projects follow resolution patterns similar to Firefox’s.
Details of the study methodology are found in our replication
package [9].

We identified seven distinct resolution patterns for the
10 Chromium issue reports, all of which correspond to
Firefox’s patterns. Three patterns, ‘I,CR’, ‘I,CR,V’,
and ‘SD,I,CR,V’ appeared in two issues each, aligning
with Firefox patterns ‘I,CR,I?’, ‘I,CR,V,I?’, and
*SD, I,CR, (I|V)’ which appeared in 64, 16, and 24 issues
respectively. Notably, these Firefox patterns are among the
top seven most recurrent patterns, which strengthens pattern
generalizability (they are found in Chromium issues). As for
GnuCash, we identified 10 resolution patterns across the 10
issues, with nine of these patterns aligning with nine of the 47
Firefox patterns. The nine Firefox patterns are fairly common
as they were observed in 4 to 22 issues. The GnuCash pattern
(A, I)+’ does not have any corresponding Firefox pattern.

The 7 and 10 patterns identified for Chromium and GnuCash
indicate that developers in these projects also employ diverse
approaches to issue resolution. This suggests that some Firefox
patterns may generalize across projects of varying scales and
governance. However, a large-scale study with a statistically
significant sample is needed to confirm these observations.

VI. THREATS TO VALIDITY

Construct and Internal Validity. Relying solely on issue
reports poses a validity threat. Issue discussions may not capture
all of Firefox’s resolution activities, either because certain ac-
tions do not require documentation or were discussed/recorded
in other artifacts or channels. This limitation may explain why
some stages (e.g., issue reproduction) are absent in certain
issues. Consequently, the derived patterns should be interpreted
with caution, as they reflect the resolution process documented
in issue reports, which may differ from the practical process.
However, according to Firefox’s documentation [22], issue
reports are one of the primary artifacts for tracking Firefox
changes, and developers are encouraged to document relevant
problem information within them. Moreover, we are confident
in the accuracy of traces for implementation, code review, and
verification stages, due to the tool integration with the issue
tracker, as well as the requirement for verification to mark
an issue as “VERIFIED.” This provides confidence that issue
report discussions capture the implemented resolution process.

Researcher subjectivity and potential confirmation bias
introduced during issue coding, resolution pattern inference, and
results interpretation represent key validity threats. To address
these, we implemented a rigorous open-coding methodology
involving multiple coding phases. Each issue report was
reviewed multiple times, accompanied by discussion sessions
between annotators. Both annotators critically annotated and
verified the data at each phase, resolving disagreements through
consensus. The results interpretation was thoroughly discussed
and supported by data-driven evidence.

External Validity. Our pattern catalog and results may not
generalize to all issues from Firefox and to other systems, as
is typical in case studies. This stems from the relatively small
set of issues we coded to derive the patterns. To strengthen
generalization, our study analyzed a statistically significant
sample, in which the distribution of coded issues resembles
that of all Firefox issues. We also annotated 20 issue reports
of Chromium and GnuCash, and found that some of the most
frequent Firefox patterns cover the resolution workflows found
in the 20 issues, which implies that at least some of the derived
patterns can be generalized to these projects. While the results
are indicative, in-depth studies are needed to confirm these
results and establish generalizability.

VII. RELATED WORK

Researchers have proposed a variety of techniques to address
issue management challenges and automate several tasks in
the process [54, 55]. For example, researchers have proposed
automated techniques to better report issues [S6-58], assess
issue quality [59-62], predict the priority and severity of the

11

issues [63, 64], categorize issue types [65, 66], assign developers
to issues [15, 67], suggest potential duplicate issues [68—70],
reproduce buggy behavior [71,71-74], localize buggy code
files [75-87], and predict re-opened issues [88, 89].

Researchers have studied issues for a variety of purposes:
to understand decision-making [90] and the discourse used
to describe issues [61,91]; extract decision information [92];
understand stakeholders’ information needs [93]; character-
ize/predict different kinds of issues such as wont fix issues [94],
fixed/resolved issues [95], non-reproducible bugs [96], and
bug/issue types [66,97,98]; predict issue severity [99]; under-
stand workarounds [100] and visual content in issues [101];
questions [102], and information types in issues [103].

Researchers have used automated mining of issue data
(e.g., status changes) and version control/code review data
to identify development processes and assess delays and
inconsistencies [104, 105]. They have utilized process mining
techniques to integrate data from different sources (e.g., VCS,
issue trackers, and mail archives) [106-108] and proposed
process mining techniques [109-111] to gain insight into
development processes. Other work has studied the life cycle of
issues by mining and analyzing issue state transitions [8, 112—
114]. These works focused more broadly on issue management
and identified transitions of issue states (e.g., from “Assigned”
to “In progress” to “Closed”). However, issue states are often
too broad to provide detailed insights into how stakeholders
resolve issues in practice.

Unlike prior work, our research qualitatively analyzed issue
reports to identify resolution stages, develop a process model,
and uncover detailed patterns of issue resolution at Firefox. This
in-depth analysis led to new insights into the issue resolution
process. To our knowledge, we are the first to examine how the
issue resolution process is actually implemented and discussed
in practice, and how it differs from the theoretical models
found in the literature.

VIII. CONCLUSIONS

We conducted a case study to understand the process em-
ployed by Mozilla Firefox developers to solve software issues.
By implementing a multi-coder open-coding methodology, we
qualitatively analyzed the issue report comments, identified six
issue resolution stages, and derived an overall process model.
We found 47 issue resolution patterns, which are instances
of the process and represent how Firefox developers resolve
issues in practice. This process is iterative and deviates widely
from the theoretical linear process from the literature.

ACKNOWLEDGEMENTS

We thank Trevor Stalnaker, Nathan Wintersgill, Nadeeshan
De Silva, Mehedi Sun, and Md Akram Khan for assisting with
issue report annotation. This work is supported by U.S. NSF
grant CCF-2239107. The opinions, findings, and conclusions
expressed in this paper are those of the authors and do not
necessarily reflect the sponsors’ opinions.

(1]
[2]

[3]
[4]

[3]

(6]
(71
[8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]

[17]
[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]

[34]
[35]

[36]
[37]

REFERENCES

T. Zimmermann, R. Premraj, J. Sillito, and S. Breu, “Improving bug
tracking systems,” in ICSE’09, 2009, pp. 247-250.

T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What Makes a Good Bug Report?” TSE, vol. 36, no. 5, pp.
618-643, 2010.

“Firefox’s bug handling documentation,” https://firefox-source-docs.
mozilla.org/bug-mgmt/index.html, 2024.

T. Zhang, H. Jiang, X. Luo, and A. T. Chan, “A literature review of
research in bug resolution: Tasks, challenges and future directions,” The
Computer Journal, vol. 59, no. 5, pp. 741-773, 2016.

R. K. Saha, S. Khurshid, and D. E. Perry, “Understanding the triaging
and fixing processes of long lived bugs,” Information and software
technology, vol. 65, pp. 114-128, 2015.

A. Zeller, Why programs fail: a guide to systematic debugging. Elsevier,
20009.

V. Rajlich, Software engineering: The current practice.
2011.

C. Eren, K. Sahin, and E. Tiiziin, “Analyzing bug life cycles to derive
practical insights,” in EASE’23, 2023, pp. 162-171.

“Online replication package,” https://doi.org/10.5281/zenodo.14727541,
2024.

“Bugzilla,” https://www.bugzilla.org/, 2024.

“Jira,” https://www.atlassian.com/software/jira, 2024.

“Github,” https://github.com/features/issues, 2024.

D. Bertram, “The social nature of issue tracking in software engineering,”
University of Calgary, 2009.

D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” in CSCW’10, 2010, pp. 291-300.

X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-
dation for bug resolution,” in WCRE’13, 2013, pp. 72-81.

“The life cycle of a bug in bugzilla,” https://www.bugzilla.org/docs/2.
18/html/lifecycle.html, 2024.

“Firefox browsers,” https://www.mozilla.org/en-US/firefox/, 2024.
“Firefox bug #1029919,” https://bugzilla.mozilla.org/show_bug.cgi?id=
1029919, 2024.

“Firefox bug #1718748,” https://bugzilla.mozilla.org/show_bug.cgi?id=
1718748, 2024.

“mozregression,” https://mozilla.github.io/mozregression/, 2024.
“Phabricator,” https://phabricator.services.mozilla.com/, 2024.
“Firefox: how to submit a patch,” https:/firefox-source-docs.mozilla.
org/contributing/how_to_submit_a_patch.htm, 2024.

“Firefox: Code quality,” https://firefox-source-docs.mozilla.org/
code-quality/index.html, 2024.

“Firefox: Reviewer checklist,” https://firefox-source-docs.mozilla.org/
contributing/reviewer_checklist.html, 2024.

“Firefox: Fixing security bugs,” https:/firefox-source-docs.mozilla.org/
bug-mgmt/processes/fixing-security-bugs.html, 2024.

“Working on firefox,” https://firefox-source-docs.mozilla.org/
contributing/index.html, 2024.

“Firefox’s bug pipeline documentation,” https://tinyurl.com/2up6w;jp3,
2024.

Crc Press,

“Mozilla’s bug types,” https://firefox-source-docs.mozilla.org/
bug-mgmt/guides/bug-types.html, 2024.
“Firefox’s bug triage,” https://firefox-source-docs.mozilla.org/

bug-mgmt/policies/triage-bugzilla.html, 2024.

“Firefox’s new feature triage,” https:/firefox-source-docs.mozilla.org/
bug-mgmt/policies/new-feature-triage.html, 2024.

“Firefox: Approving security bugs,” https:/firefox-source-docs.mozilla.
org/bug-mgmt/processes/security-approval.html, 2024.

“Pushing to try,” https://firefox-source-docs.mozilla.org/tools/try/index.
html, 2024.

A. Halberstadt and M. Castelluccio, “Testing firefox more effi-
ciently with machine learning,” https://hacks.mozilla.org/2020/07/
testing- firefox-more-efficiently- with-machine-learning/, 2020.
“Pocket guide: Shipping firefox,” https:/firefox-source-docs.mozilla.
org/contributing/pocket- guide- shipping-firefox.html, 2024.

“Mozilla products in bmo,” https://bugzilla.mozilla.org/
describecomponents.cgi, 2024.

“Bugzilla’s rest api,” https://wiki.mozilla.org/Bugzilla:REST_API, 2024.
D. Spencer, Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

12

[38]
[39]

[40]
[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]
[50]

[51]
[52]
[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

“The hypothesis web annotation tool,” https://web.hypothes.is, 2024.
J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37-46, 1960.
“Firefox bug #1363344,” https://tinyurl.com/mr3d7h6e, 2023.
“Firefox bug #991812,” https://bugzilla.mozilla.org/show_bug.cgi?id=
991812, 2024.

“Firefox bug #698552,” https://bugzilla.mozilla.org/show_bug.cgi?id=
698552, 2024.

“Firefox bug #676248,” https://bugzilla.mozilla.org/show_bug.cgi?id=
676248, 2024.

“Firefox bug #730907,” https://bugzilla.mozilla.org/show_bug.cgi?id=
730907, 2024.

“https://research.mozilla.org/,” 2024.
“https://www.mozilla.org/en-US/about/forums/,” 2024.
“https://wiki.mozilla.org/Matrix,” 2024.

“Mozreview,” https://wiki.mozilla.org/EngineeringProductivity/Projects/
MozReview, 2024.

“Splinter,” https://wiki.mozilla.org/BMO/Splinter, 2024.

P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini
encyclopedia of psychology, pp. 1-1, 2010.
“https://github.com/mozilla/bugbug,” 2024.

“Chromium,” https://www.chromium.org/Home/, 2024.

“Gnucash,” https://www.gnucash.org/, 2024.

W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, “How practitioners
perceive automated bug report management techniques,” 7SE, vol. 46,
no. 8, pp. 836-862, 2018.

A. Adnan, A. Saha, and O. Chaparro, “Sprint: An assistant for issue
report management,” in MSR’25, 2025.

Y. Song, J. Mahmud, Y. Zhou, O. Chaparro, K. Moran, A. Marcus, and
D. Poshyvanyk, “Toward interactive bug reporting for (Android app)
end-users,” in FSE’22, 2022.

M. Fazzini, K. P. Moran, C. Bernal-Cardenas, T. Wendland, A. Orso,
and D. Poshyvanyk, “Enhancing mobile app bug reporting via real-time
understanding of reproduction steps,” TSE, 2022.

Y. Song, J. Mahmud, N. De Silva, Y. Zhou, O. Chaparro, K. Moran,
A. Marcus, and D. Poshyvanyk, “Burt: A chatbot for interactive bug
reporting,” in /CSE’23, 2023.

J. Mahmud, A. Saha, O. Chaparro, K. Moran, and A. Marcus,
“Combining language and app ui analysis for the automated assessment
of bug reproduction steps,” in ICPC’25, 2025.

O. Chaparro, C. Bernal-Cardenas, J. Lu, K. Moran, A. Marcus,
M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the quality of the
steps to reproduce in bug reports,” in ESEC/FSE’19, 2019.

O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Mar-
cus, G. Bavota, and V. Ng, “Detecting missing information in bug
descriptions,” in FSE’17, 2017.

Y. Song and O. Chaparro, “Bee: A tool for structuring and analyzing
bug reports,” in ESEC/FSE’20, 2020.

Q. Umer, H. Liu, and I. Illahi, “Cnn-based automatic prioritization
of bug reports,” IEEE Transactions on Reliability, vol. 69, no. 4, pp.
1341-1354, 2019.

Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug
report priority using multi-factor analysis,” ESE, vol. 20, pp. 1354-1383,
2015.

K. Somasundaram and G. C. Murphy, “Automatic categorization of
bug reports using latent dirichlet allocation,” in ISEC’12, 2012, pp.
125-130.

G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, “Not all bugs
are the same: Understanding, characterizing, and classifying bug types,”
JSS, vol. 152, pp. 165-181, 2019.

B. Chaitra and K. Swarnalatha, “Bug triaging: right developer recommen-
dation for bug resolution using data mining technique,” in ERCICA’22.
Springer, 2022, pp. 609-618.

J. Zhou and H. Zhang, “Learning to rank duplicate bug reports,” in
CIKM’12, 2012, pp. 852-861.

J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, “Duplicate bug report detection
using dual-channel convolutional neural networks,” in /ICPC’20, 2020,
pp. 117-127.

T. Zhang, D. Han, V. Vinayakarao, I. C. Irsan, B. Xu, F. Thung, D. Lo,
and L. Jiang, “Duplicate bug report detection: How far are we?” TOSEM,
vol. 32, no. 4, pp. 1-32, 2023.

Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G. Halfond,
“Recdroid: Automatically reproducing android application crashes from
bug reports,” in ICSE’19, 2019, pp. 128-139.

https://firefox-source-docs.mozilla.org/bug-mgmt/index.html
https://firefox-source-docs.mozilla.org/bug-mgmt/index.html
https://doi.org/10.5281/zenodo.14727541
https://www.bugzilla.org/
https://www.atlassian.com/software/jira
https://github.com/features/issues
https://www.bugzilla.org/docs/2.18/html/lifecycle.html
https://www.bugzilla.org/docs/2.18/html/lifecycle.html
https://www.mozilla.org/en-US/firefox/
https://bugzilla.mozilla.org/show_bug.cgi?id=1029919
https://bugzilla.mozilla.org/show_bug.cgi?id=1029919
https://bugzilla.mozilla.org/show_bug.cgi?id=1718748
https://bugzilla.mozilla.org/show_bug.cgi?id=1718748
https://mozilla.github.io/mozregression/
https://phabricator.services.mozilla.com/
https://firefox-source-docs.mozilla.org/contributing/how_to_submit_a_patch.htm
https://firefox-source-docs.mozilla.org/contributing/how_to_submit_a_patch.htm
https://firefox-source-docs.mozilla.org/code-quality/index.html
https://firefox-source-docs.mozilla.org/code-quality/index.html
https://firefox-source-docs.mozilla.org/contributing/reviewer_checklist.html
https://firefox-source-docs.mozilla.org/contributing/reviewer_checklist.html
https://firefox-source-docs.mozilla.org/bug-mgmt/processes/fixing-security-bugs.html
https://firefox-source-docs.mozilla.org/bug-mgmt/processes/fixing-security-bugs.html
https://firefox-source-docs.mozilla.org/contributing/index.html
https://firefox-source-docs.mozilla.org/contributing/index.html
https://tinyurl.com/2up6wjp3
https://firefox-source-docs.mozilla.org/bug-mgmt/guides/bug-types.html
https://firefox-source-docs.mozilla.org/bug-mgmt/guides/bug-types.html
https://firefox-source-docs.mozilla.org/bug-mgmt/policies/triage-bugzilla.html
https://firefox-source-docs.mozilla.org/bug-mgmt/policies/triage-bugzilla.html
https://firefox-source-docs.mozilla.org/bug-mgmt/policies/new-feature-triage.html
https://firefox-source-docs.mozilla.org/bug-mgmt/policies/new-feature-triage.html
https://firefox-source-docs.mozilla.org/bug-mgmt/processes/security-approval.html
https://firefox-source-docs.mozilla.org/bug-mgmt/processes/security-approval.html
https://firefox-source-docs.mozilla.org/tools/try/index.html
https://firefox-source-docs.mozilla.org/tools/try/index.html
https://hacks.mozilla.org/2020/07/testing-firefox-more-efficiently-with-machine-learning/
https://hacks.mozilla.org/2020/07/testing-firefox-more-efficiently-with-machine-learning/
https://firefox-source-docs.mozilla.org/contributing/pocket-guide-shipping-firefox.html
https://firefox-source-docs.mozilla.org/contributing/pocket-guide-shipping-firefox.html
https://bugzilla.mozilla.org/describecomponents.cgi
https://bugzilla.mozilla.org/describecomponents.cgi
https://wiki.mozilla.org/Bugzilla:REST_API
https://web.hypothes.is
https://tinyurl.com/mr3d7h6e
https://bugzilla.mozilla.org/show_bug.cgi?id=991812
https://bugzilla.mozilla.org/show_bug.cgi?id=991812
https://bugzilla.mozilla.org/show_bug.cgi?id=698552
https://bugzilla.mozilla.org/show_bug.cgi?id=698552
https://bugzilla.mozilla.org/show_bug.cgi?id=676248
https://bugzilla.mozilla.org/show_bug.cgi?id=676248
https://bugzilla.mozilla.org/show_bug.cgi?id=730907
https://bugzilla.mozilla.org/show_bug.cgi?id=730907
https://research.mozilla.org/
https://www.mozilla.org/en-US/about/forums/
https://wiki.mozilla.org/Matrix
https://wiki.mozilla.org/EngineeringProductivity/Projects/MozReview
https://wiki.mozilla.org/EngineeringProductivity/Projects/MozReview
https://wiki.mozilla.org/BMO/Splinter
https://github.com/mozilla/bugbug
https://www.chromium.org/Home/
https://www.gnucash.org/

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

S. Feng and C. Chen, “Gifdroid: an automated light-weight tool for
replaying visual bug reports,” in ICSE’22, 2022.

Z. Zhang, R. Winn, Y. Zhao, T. Yu, and W. G. Halfond, “Automatically
reproducing android bug reports using natural language processing and
reinforcement learning,” in ISSTA’23, 2023, pp. 411-422.

Y. Zhao, T. Su, Y. Liu, W. Zheng, X. Wu, R. Kavuluru, W. G. Halfond,
and T. Yu, “Recdroid+: Automated end-to-end crash reproduction from
bug reports for android apps,” TOSEM, vol. 31, no. 3, pp. 1-33, 2022.
S. A. Akbar and A. C. Kak, “A large-scale comparative evaluation of
ir-based tools for bug localization,” in MSR’20, 2020, pp. 21-31.

J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon, “Bench4bl:
reproducibility study on the performance of ir-based bug localization,”
in ISSTA’18, 2018, pp. 61-72.

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in ICSE’16, 2016, pp. 404-415.

A. Ciborowska and K. Damevski, “Fast changeset-based bug localization
with bert,” in ICSE’22, 2022, pp. 946-957.

C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis,” in ICSME’14, 2014, pp. 181-190.

P. S. Kochhar, Y. Tian, and D. Lo, “Potential biases in bug localization:
Do they matter?” in ASE’14, 2014, pp. 803-814.

J. M. Florez, O. Chaparro, C. Treude, and A. Marcus, “Combining
query reduction and expansion for text-retrieval-based bug localization,”
in SANER’21, 2021, pp. 166-176.

O. Chaparro, J. M. Florez, and A. Marcus, “Using bug descriptions to
reformulate queries during text-retrieval-based bug localization,” EMSE,
vol. 24, pp. 2947-3007, 2019.

——, “Using observed behavior to reformulate queries during text
retrieval-based bug localization,” in ICSME’17, 2017, pp. 376-387.
O. Chaparro, J. M. Florez, U. Singh, and A. Marcus, “Reformulating
queries for duplicate bug report detection,” in SANER’19, 2019, pp.
218-229.

A. Saha, Y. Song, J. Mahmud, Y. Zhou, K. Moran, and O. Chaparro,
“Toward the automated localization of buggy mobile app uis from bug
descriptions,” in ISSTA’24, 2024, pp. 1249-1261.

J. Mahmud, N. De Silva, S. A. Khan, S. H. Mostafavi, S. H. Mansur,
O. Chaparro, A. Marcus, and K. Moran, “On using gui interaction data
to improve text retrieval-based bug localization,” in ICSE’24, 2024.
O. Chaparro and A. Marcus, “On the reduction of verbose queries in
text retrieval based software maintenance,” in ICSE’16, 2016.

T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Character-
izing and predicting which bugs get reopened,” in ICSE’12, 2012, pp.
1074-1083.

E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto, ‘“Predicting re-opened bugs: A case
study on the eclipse project,” in WCRE’10, 2010, pp. 249-258.

T.-M. Hesse, V. Lerche, M. Seiler, K. Knoess, and B. Paech, “Doc-
umented decision-making strategies and decision knowledge in open
source projects: An empirical study on firefox issue reports,” IST, vol. 79,
pp. 36-51, 2016.

O. Chaparro, J. M. Florez, and A. Marcus, “On the vocabulary agreement
in software issue descriptions,” in ICSME’16, 2016.

A. Mahadi, K. Tongay, and N. A. Ernst, “Cross-dataset design discussion
mining,” in SANER’20, 2020, pp. 149-160.

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information Needs
in Bug Reports: Improving Cooperation Between Developers and Users,”
in CSCW’10, 2010, pp. 301-310.

13

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]
[113]

[114]

S. Panichella, G. Canfora, and A. Di Sorbo, ““won’t we fix this issue?”
qualitative characterization and automated identification of wontfix
issues on github,” IST, vol. 139, p. 106665, 2021.

P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Charac-
terizing and predicting which bugs get fixed: An empirical study of
Microsoft Windows,” in ICSE’10, 2010, pp. 495-504.

M. M. Rahman, F. Khomh, and M. Castelluccio, “Works for me!
cannot reproduce—a large scale empirical study of non-reproducible
bugs,” EMSE, vol. 27, no. 5, p. 111, 2022.

L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug
characteristics in open source software,” EMSE, vol. 19, no. 6, pp.
1665-1705, 2014.

N. Limsettho, H. Hata, A. Monden, and K. Matsumoto, “Unsupervised
bug report categorization using clustering and labeling algorithm,”

JSEKE’16, vol. 26, no. 07, pp. 1027-1053, 2016.
A. Sureka and P. Jalote, “Detecting Duplicate Bug Report Using

Character N-Gram-Based Features,” in ASPEC’10, 2010, pp. 366-374.
A. Yan, H. Zhong, D. Song, and L. Jia, “How do programmers fix
bugs as workarounds? an empirical study on apache projects,” EMSE,
vol. 28, no. 4, p. 96, 2023.

V. Agrawal, Y.-H. Lin, and J. Cheng, “Understanding the characteristics
of visual contents in open source issue discussions: a case study of
jupyter notebook,” in EASE’22, 2022, pp. 249-254.

Y. Huang, D. A. da Costa, F. Zhang, and Y. Zou, “An empirical study
on the issue reports with questions raised during the issue resolving
process,” EMSE, vol. 24, pp. 718-750, 2019.

D. Arya, W. Wang, J. L. Guo, and J. Cheng, “Analysis and detection
of information types of open source software issue discussions,” in
ICSE’19, 2019, pp. 454-464.

R. Marques, M. M. da Silva, and D. R. Ferreira, “Assessing agile
software development processes with process mining: A case study,” in
CBI'18, vol. 1, 2018, pp. 109-118.

T. Krismayer, C. Mayr-Dorn, J. Tuder, R. Rabiser, and P. Griinbacher,
“Using constraint mining to analyze software development processes,”
in ICSSP’19, 2019, pp. 94-103.

W. Poncin, A. Serebrenik, and M. Van Den Brand, “Process mining
software repositories,” in CSMR’11, 2011, pp. 5-14.

M. Gupta, A. Sureka, and S. Padmanabhuni, “Process mining multiple
repositories for software defect resolution from control and organiza-
tional perspective,” in MSR’14, 2014, pp. 122-131.

M. Mittal and A. Sureka, “Process mining software repositories from
student projects in an undergraduate software engineering course,” in
ICSE’14, 2014, pp. 344-353.

V. Rubin, C. W. Giinther, W. M. Van Der Aalst, E. Kindler, B. F.
Van Dongen, and W. Schifer, “Process mining framework for software
processes,” in ICSP’07, 2007, pp. 169-181.

M. Gupta and A. Sureka, “Nirikshan: Mining bug report history
for discovering process maps, inefficiencies and inconsistencies,” in
ISEC’14, 2014, pp. 1-10.

V. Saini, P. Singh, and A. Sureka, “Control-flow based anomaly detection
in the bug-fixing process of open-source projects,” in ISEC’20, 2020,
pp. 1-11.

B. Dobrzynski and J. Sosnowski, “Tracing life cycle of software bugs,”
in DepCoS-RELCOMEX’16, 2016, pp. 109-120.

J. Wang and H. Zhang, “Predicting defect numbers based on defect
state transition models,” in ESEM’12, 2012, pp. 191-200.

B. Coremans, A. L. Klomp, S. A. Rukmono, J. Kriiger, D. Fahland, and
M. R. Chaudron, “Process mining from jira issues at a large company,”
in ICSME’23, 2023, pp. 425-435.

	Introduction
	Background, Problem, and Motivation
	Issue Management during Software Evolution
	Issue Resolution within the Issue Management Process
	The Issue Resolution Process Implemented in Practice
	The Issue Resolution Process at Mozilla Firefox

	Study Methodology
	Issue Collection
	Issue Annotation
	Goals and Overview
	Annotation Tool and Unit
	Code Catalog and Coding Guidelines
	Annotation Procedure
	Annotation Results and Inter-coder Agreement

	Inferring and Analyzing Issue Resolution Stages
	Analysis of Stages Sequences and Process Inference
	Inferring Issue Resolution Patterns
	Pattern Notations
	Deriving Issue Resolution Patterns
	Pattern Derivation Results and Pattern Categorization

	Investigating Potential Use Cases of the Derived Patterns
	Finding Participants
	Participants' Background
	Response Analysis

	Results
	RQ1: Issue Resolution Stages
	implementation
	code review
	verification
	analysis and solution design
	reproduction

	RQ2: Interactions between Issue Resolution Stages
	RQ3: Issue Resolution Process
	RQ4: Issue Resolution Patterns
	Pattern Examples
	Process and Pattern Diversity
	Pattern Complexity and Resolution Effort

	RQ5: Use Cases for the Issue Resolution Patterns
	Identifying Issues with a Complex Resolution
	Identifying Issues Not Following the Expected Process
	Identifying Potentially Complex Code Components
	Improving Bots to Detect Unsolvable Issues
	Suggesting and Decomposing Meta-Issues
	Training Junior Developers

	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusions
	References

