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Abstract—This paper introduces LadyBug, a GitHub bot that
automatically localizes bugs for Android apps by combining UI
interaction information with text retrieval. LadyBug connects to
an Android app’s GitHub repository, and is triggered when a bug
is reported in the corresponding issue tracker. Developers can then
record a reproduction trace for the bug on a device or emulator
and upload the trace to LadyBug via the GitHub issue tracker.
This enables LadyBug to utilize both the text from the original
bug description, and UI information from the reproduction trace
to accurately retrieve a ranked list of files from the project that
most likely contain the reported bug.

We empirically evaluated LadyBug using an automated testing
pipeline and benchmark called RedWing that contains 80 fully-
localized and reproducible bug reports from 39 Android apps. Our
results illustrate that LadyBug outperforms text-retrieval-based
baselines and that the utilization of Ul information leads to a
substantial increase in localization accuracy. LadyBug is an open-
source tool, available at https://github.com/LadyBugML/ladybug.

A video showing the capabilities of Ladybug can be viewed
here: hittps://youtu.be/hI3tzbRKOCw

1. INTRODUCTION

The management of bug reports is a time-consuming process
for developers [1,2]. One of the most difficult bug report
management tasks is localizing a failure described in a bug
report to the code of the corresponding project. This requires
reasoning between the natural language description of a given
bug and the various programming languages with which a
project is written. This task is further complicated by the often
inadequate or incomplete information in bug reports [3,4].

Researchers have proposed various techniques to automate
the bug localization process. However, a large body of this prior
work tends to formulate this problem as a text retrieval (TR) [5]
problem, wherein a bug report is treated as a query and
different granularities of source code (files, classes, methods,
etc.) are ranked and presented to the programmer based on
their likelihood of containing the described bug.

The primary assumption of TR-based bug localization is that
bug reports and the corresponding source code will share terms;
however, there exists a semantic gap between the information
present in bug reports and the information available in source
code [6]. Previous research proposed different techniques to
mitigate this semantic gap in existing TR-based bug localization
techniques. For instance, researchers have introduced techniques
to preprocess the text in bug reports or source code, while other

techniques focus on query reformulation utilizing information
from various resources [7]. Other lines of research focused on
boosting the ranking of buggy code elements using execution
information (e.g., stack traces [8]), code dependencies (e.g.,
static code analysis [9]), or app version history information
(e.g., mining from GitHub repositories [8]).

In this paper, we propose a novel tool for bug localization
of Android applications called LadyBug, which ranks buggy
source code files using the bug descriptions from reports and
a new, largely underexplored source — information from an
app’s graphical user interface (GUI). The key intuition that
underlies LadyBug is that manually or automatically collected
bug reproduction traces which capture GUI-level interactions
for recreating a bug can be utilized to help refine the localization
process (i.e., filtering out files unlikely to contain the bug
while boosting the rankings of files that are more likely to
contain the bug.) As such LadyBug uses GUI interaction data
in conjunction with a neural text embedding approach (i.e.,
UniXCoder [10]), to generate a ranked list of files based on
the likelihood of containing bugs.

We constructed LadyBug as a GitHub bot that can be easily
added to GitHub repositories of Android applications and
used as an automated assistant for bug localization. LadyBug’s
GitHub bot architecture consists of three key components: (i) a
repository connector, built on top of the ProBot [11] framework,
which allows for Ladybug to post/receive information to/from
GitHub issues, (ii) a backend that indexes a given repository
and implements the text retrieval engine and (iii) MetaMorph,
a desktop application which allows a developer to easily record
reproduction traces of a described bug. LadyBug can also
be used in conjunction with recent automated reproduction
tools [12] which automates the localization task end-to-end.

We empirically evaluated LadyBug using a benchmark
called RedWing that contains 80 bug reports from 39 Android
applications compared to a text retrieval baseline. Our results
illustrate that (i) using GUI information improves the accuracy
of file-level bug localization for Android apps, and (ii) LadyBug
is able to outperform a text-only baseline. LadyBug is an open-
source tool [13], and is compatible with any Android app.
Further details about LadyBug’s algorithms and an expanded
evaluation can be found in its original research paper [14].
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II. LabpyBuac: A GUI Buc LocaLizatioN TooL FOR ANDROID
APPLICATIONS

LadyBug is a GitHub bot that automates bug localization
by analyzing Java source code and Native Android GUI
interactions, reporting results directly within GitHub issue
threads. LadyBug workflow is structured into three primary
phases, illustrated in Figure 1. The first is the Repository
Initialization phase (highlighted in green), where the Ladybug
bot is installed on the target GitHub repository and granted
the necessary permissions to monitor repository activities.
Second, during the Bug Reproduction phase (highlighted in
blue), the MetaMorph desktop application assists a developer
with recording and replaying a reproduction trace of a given
bug, generating an execution trace capturing detailed GUI
interactions. Lastly, the Issue Reporting phase (highlighted in
orange) involves developers submitting new GitHub issues to
trigger the bug localization process, with an option to include
the previously recorded execution trace to aid localization.

A. Repository Initialization

The first thing that a developer will need to do is add the
Ladybug bot to their GitHub repository through the GitHub
front-end (see Figure 1-@). After adding LadyBug to a
given repository, LadyBug will create a new issue giving the
developer a welcome message and incremental updates on
the initialization process. When all these steps are completed,
a confirmation message will be posted to the issue thread,
indicating that LadyBug is ready for further use.

B. Bug Reproduction

When the MetaMorph application is opened (Figure 1-2)),
the developer will be tasked with providing system paths to the
Android emulator’s files, as well as system paths to the Android
application. After the developer has completed providing the
information requested, they are asked to open the application

Happy coding!

w of the LadyBug GitHub Bot

inside of their emulator and press "Start Capture". Then, the
developer will retrace the steps described in the original bug
report, performing actions until the bug occurs in the app on the
emulated device — and then hit "Stop Capture". Afterwards, the
developer will supply the necessary information MetaMorph
needs to retrace the steps the developer took in the bug report,
and click on "Start Trace Replayer" (Figure 1-@)). After this is
done, MetaMorph writes this information into an execution.json
file, which contains the necessary GUI information that
LadyBug needs to perform GUI-enhanced bug localization.

C. Issue Reporting

With all the necessary GUI information, the developer can
create a new GitHub issue with the trace and bug report
(Figure 1-(@)). LadyBug will respond to the issue with status
messages updating the user on the bug localization process.
After localizing the bug, the LadyBug bot will reply with the
ranked list of potential buggy files (Figure 1-3)).

III. LApYBuUG’S ARCHITECTURE & IMPLEMENTATION

Ladybug is comprised of three main components shown in
Figure 2: (i) the MetaMorph desktop application for Mac/Win-
dows (ii) the GitHub connector that facilitates communication
between the Localization engine and GitHub, and (iii) the
backend server that implements the bug localization engine.

A. The MetaMorph Bug Reproduction Tool

While LadyBug can be used in conjunction with automated
tools that reproduce bugs on an Android device given a bug
report [12], these tools are not perfect, and some developers
may prefer to reproduce bugs manually. As such, LadyBug
is packaged with MetaMorph, a Mac and Windows Desktop
application that facilitates the recording of a reproduction trace
from an Android device or emulator. MetaMorph has two
main components, a recorder and a replayer. The recorder
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Fig. 2: Ladybug’s Architecture

makes use of the getevent utility, included as a part of the
Android kernel, that is capable of capturing fine-grained touch
information with millisecond-level accuracy and the Android
screencap utility to record both a trace and video of a given
bug. Then the replayer takes as input the getevent trace, and
automatically replays it on the device, this time capturing fine-
grained GUI information of each widget that the user interacted
with to reproduce the bug using the Android uiautomator
framework. The replayer exports a json file that contains all
of the GUI interaction information needed by LadyBug.

B. ProBot GitHub Repository Connector

LadyBug’s Repository connector is built on the Probot
framework, which offers a high-level abstraction for developing
GitHub Apps using Node.js and the Octokit library. Probot
listens for webhook events—such as repository installations and
issue creations—and routes them through an internal handler,
allowing the app to respond programmatically via GitHub’s
REST API. LadyBug uses this infrastructure to authenticate as
a GitHub App, monitor repository events, and interface directly
with GitHub issues. The backend logic, written in JavaScript,
handles routing, repository tracking, and progress updates.

When LadyBug is first installed on a repository, it records the
repository identifier ("owner/repo") and the latest commit SHA,
then creates a welcome issue to initiate setup. This SHA and
the repository’s source code are stored in the LadyBug database
in the backend server, and embeddings are computed using the
UniXCoder model in preparation for retrieval of source code
files pending an incoming issue. We chose to use the UniXCoder
model as it was one of the better performing models reported
in the original technical paper [14]. However, LadyBug is
extensible to any text-embedding format, including from Large
Language Models (LLMs). When a user opens a new GitHub
issue to report a bug, LadyBug validates the request and posts
an initial comment to confirm that the report has been received.
If the report includes a reproduction trace, it is parsed and
sent to the backend along with the issue content and repository
metadata. Before proceeding, LadyBug verifies whether the
commit SHA in the report matches the stored version. If it
does not, the initialization phase is re-triggered to ensure the
GitHub source code files and computed embeddings are current.
The updated issue data is then compared against the stored

embeddings to generate a ranked list of likely buggy files. The
final ranked output is posted as a comment to the GitHub issue.

C. Localization Engine

LadyBug’s localization engine is a Flask server fully written
in Python that handles bug localization. It listens for two
requests sent from Probot: initialization and report. Probot
sends an ‘initialization’ request when LadyBug is added to a
repository and a ‘report’ request whenever a GitHub Issue is
created on the target repository.

Upon an ‘initialization’ request, LadyBug, using its Probot
credentials, clones the repository’s default branch. LadyBug
filters the repository to retain only Java source files—any files
or directories not matching the .java extension are discarded.
Each remaining Java files go through preprocessing for uniform
representation and their respective embeddings are stored
in LadyBug’s embedding database. LadyBug performs the
following preprocessing steps: (i) Sanitization: Strips comments,
imports, and special characters not relevant to semantics. (ii)
Tokenization: Breaks the source text into syntactic tokens
(identifiers, keywords, literals). (iii) Normalization: Removes
language-specific stop tokens (e.g., punctuation, boilerplate
keywords) and applies lemmatization to identifiers and literals.
(iv) Segmentation: Splits long files into semantically coherent
segments if they exceed 500 tokens.

When the localization engine receives a ‘report’ request,
LadyBug will begin by extracting relevant GUI information
from the attached execution.json file. Using regex, resource-
ids of individual GUI components are stored and classified
as Screen Component terms. Activity/Fragment names are
stored and classified as GUI Screen terms. Screen Component
terms are appended to the end of the bug report and then
used for Query Reformulation. After this, a corpus of source
code file embeddings is built using a brute-force approach: If
the source code file contained any Screen Component Term,
Filtering is performed to remove files not related to the relevant
screens. Lastly, Boosting is performed by boosting source code
files that contain GUI Screen terms to the top of the ranked
list, preserving relative order. This configuration of Filtering,
Boosting, and Query Reformulation were derived from the best
performing configuration in LadyBug’s expanded evaluation
in it’s technical paper [14].



IV. EvaLuaTiON

We conducted an empirical study to understand the impact of
using GUI interaction information on text-retrieval-based bug
localization. We formulated the following research question:

RQ: Does the use of GUI Interaction information improve
text-retrieval-based bug localization for Android apps?

A. Data

To answer RQ, we developed Redwing, an automated
testing suite designed specifically to assess the effectiveness
of LadyBug’s localization methods, and to ensure that we
were able to replicate the results of the larger empirical study
performed in LadyBug’s technical paper [14]. We used the
same set of 80 reproducible bug reports from 39 different open-
source Android applications used in LadyBug’s technical paper.
Each bug report includes the description of the bug, metadata
for the bug, and the recorded steps/scenarios for reproducing the
bug. For a full description of the data collection methodology,
please see the technical paper [14].

B. Methodology

Redwing leverages the core bug localization pipeline, adapt-
ing it to systematically process a predefined dataset using
known buggy files as ground truth. By comparing the pipeline’s
predicted outcomes against these established ground truths, Red-
wing calculates several widely recognized evaluation metrics,
including (i) Hits@XK: indicates the frequency with which the
correct buggy file appears within the top K results. A higher
value suggests that the system consistently narrows down bugs
to a manageable subset of files. (ii) Mean Reciprocal Rank
(MRR): Measures how quickly the first buggy file is identified.
A higher score (closer to 1) indicates better performance,
meaning fewer irrelevant files to review before locating the
correct one. (iii) Mean Average Precision (MAP): Evaluates the
overall ranking accuracy of all buggy files within the results.
Higher MAP scores demonstrate the system’s precision in
consistently placing the correct files near the top of the list.
(iv) Effectiveness (E): Represents the rank position of the first
identified buggy file, where lower ranks are preferable. This
metric directly reflects the practical efficiency, indicating how
many files developers must review before pinpointing the bug.

The Redwing testing suite integrates essential components
from both the initialization and reporting phases of the main
localization pipeline, resulting in a cohesive and streamlined
evaluation process. This consolidation eliminates performance
bottlenecks typically associated with external dependencies,
such as API calls, data streaming, and manual user inputs, thus
ensuring efficient and reproducible testing. As a command-
line interface (CLI) tool, Redwing provides users flexibility
and ease of use, allowing users to specify various parameters,
including the dataset file path, localization type (with GUI
data, without GUI data, or a comparative mode to calculate the
relative improvement), and the number of asynchronous test
iterations to execute. This modular and user-friendly design
supports comprehensive and customizable experimentation.

TABLE I: Metrics for GUI-augmented vs. text-only (No GUI)
data.

Augmentation H@1 | H@5| H@10 | MAP | MRR | Effectiveness

UniXCoder-GUI 0.30 | 0.74 | 0.81 | 0.39 | 0.44 13.81
UniXCoder-No GUI'| 0.20 | 0.61 | 0.68 | 0.31 | 0.36 16.41
C. Results

In Table I presented above, it is evident that incorporating
text-based retrieval techniques as an augmentation to the GUI-
based data consistently enhances retrieval performance across
all evaluated values of k in the Hits@k metric (H@K). Notably,
our primary focus was on the Hits@ 10 metric, as this represents
a manageable number of files for a developer to examine [7, 15].
By integrating text-based retrieval with GUI data, we observed
a substantial improvement in the Hits@10 score, achieving
a relative increase of 16.2%. These results suggest that the
complementary nature of textual information in enriching
the semantic understanding of GUI representations facilitates
more accurate and relevant retrieval outcomes. Additionally,
these results replicate the results for the same configuration of
LadyBug in its corresponding technical paper, ensuring that
our implementation of the localization in our LadyBug GitHub
bot, matches that of the original algorithms developed in the
technical paper [14].

In addition, augmenting the GUI data with additional
retrieval signals has led to noticeable improvements in both
the MAP and MRR metrics. Specifically, the rise in MAP
suggests a greater overall precision across multiple queries. At
the same time, the higher MRR values reflect a more consistent
placement of the correct file near the top of the ranked list.
In terms of effectiveness, we also see that with GUI data, the
mean efficacy decreases. This suggests that using GUI data,
we can more accurately rank files based on their relevance
to the bug. These findings demonstrate that using GUI data
contributes to a more effective retrieval process by reducing
the prominence of irrelevant files at the top of the list.

V. RELATED WORK

Text-Retrieval-based Bug Localization (TRBL) techniques
use text similarity between code and bug reports to identify
potentially buggy code artifacts. A relevance score determines
how likely code is to contain bugs. TRBL techniques fall into
three main categories: classical, DL, and combined.

Classical IR techniques employ algorithms including the Un-
igram Model (UM), Cluster Based Document Model (CBDM),
Vector Space Model (VSM), Latent Semantic Indexing (LSI),
and Latent Dirichlet Allocation (LDA).

DL approaches utilize neural network architectures including
Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), Transformers, and hybrid models that
combine these architectures.

Other approaches combine IR and DL techniques [16].

To improve bug localization accuracy by bridging the gap
between bug reports and source code, researchers incorporate
additional information sources including similar bug reports
[17], code structure [18], version history [19], stack traces [15],
and part-of-speech data [20].



LadyBug is novel compared to such prior work as we
incorporate GUI interaction data from Android apps to bridge
the lexical gap between bug reports and source code, thereby
improving buggy file retrieval.

Prior work has employed various augmentation strategies
to improve the ranking of buggy code artifacts in TRBL, in-
cluding boosting, filtering, and query (re)formulation. Boosting
increases the relevance scores of artifacts to rank buggy ones
higher [21], while filtering removes irrelevant artifacts from
the search space or initial results [22]. Query (re)formulation
modifies queries to better capture relevant information through
expansion (adding terms) [23], replacement (substituting the
query) [24], and reduction (removing unhelpful terms) [25].
Building on this work, we assess the impact of incorporating
GUI interaction data through boosting, filtering, query expan-
sion, and replacement, and plan to explore its integration with
query reduction in future work.

LadyBug employs boosting, filtering, and query expansion
as augmentation techniques with a new source of data, namely,
GUI interaction data. Our adaption of these techniques to GUI
interaction data in Android apps is novel.

VI. FINAL REMARKS & FUTURE WORK

Ladybug is a tool that helps Android developers accurately
localize bugs in their source code by combining text retrieval
with boosting and filtering strategies utilizing GUI interaction
data. By leveraging language model to encode both source files
and user-reported bug descriptions, and by extracting resource-
id and view-hierarchy terms from replayed interaction traces, La-
dybug generates a ranked list of candidate files that more likely
to be buggy than traditional techniques. In the future, we plan
on expanding the amount of embedding models used to create
source code and bug report embeddings. This would ensure that
both code and natural-language inputs benefit from the latest ad-
vances in representation learning. We also intend to enrich Lady-
bug’s user-facing output: (e.g., code fix suggestions, bug expla-
nations). We will also enhance the design of LadyBug to accept
the MetaMorph results at any time while an issue remains open.
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