
On the Impact of Refactoring Operations
on Code Quality Metrics

Oscar Chaparro1, Gabriele Bavota2, Andrian Marcus1, Massimiliano Di Penta2

1University of Texas at Dallas, Richardson, TX 75080, USA
2University of Sannio, Via Traiano, 82100 Benevento, Italy

ojchaparroa@utdallas.edu, gbavota@unisannio.it, amarcus@utdallas.edu, dipenta@unisannio.it

Abstract—Refactorings are behavior-preserving source
code transformations. While tool support exists for
(semi)automatically identifying refactoring solutions, applying
or not a recommended refactoring is usually up to the software
developers, who have to assess the impact that the transformation
will have on their system. Evaluating the pros (e.g., the bad
smell removal) and cons (e.g., side effects of the change) of a
refactoring is far from trivial. We present RIPE (Refactoring
Impact PrEdiction), a technique that estimates the impact of
refactoring operations on source code quality metrics. RIPE
supports 12 refactoring operations and 11 metrics and it can be
used together with any refactoring recommendation tool. RIPE
was used to estimate the impact on 8,103 metric values, for 504
refactorings from 15 open source systems. 38% of the estimates
are correct, whereas the median deviation of the estimates from
the actual values is 5% (with a 31% average).

Index Terms—Refactoring Impact, Code Quality

I. INTRODUCTION

Refactoring is “the process of changing a software system
in such a way that it does not alter the external behavior of the
code yet improves its internal structure” [1]. While refactoring
can remove bad smells, it can also have important side effects
(e.g., the removal of a design pattern wanted in the system) and
introduce bugs in the code [2]. Assessing the pros and cons of
a refactoring operation, before applying it, is very challenging
for developers, since some refactorings (e.g., an Extract Class)
may require a very high number of code transformations that
may be difficult to mentally visualize. This is even more
challenging when we consider that different code properties,
measured by metrics, conflict with one another (e.g., Coupling
vs. Cohesion) and developers must pursue a trade-off [3].

We introduce in this paper RIPE (Refactoring Impact
PrEdiction), an approach that predicts the impact of 12 refac-
toring operations on 11 code metrics. RIPE implements 89
impact prediction functions that show developers the varia-
tion of code metrics before the application of a refactoring.
RIPE is meant to help developers making design decisions
and choosing between different refactoring alternatives. For
example, suppose class A is a God Class and the developer
has to decide between several options of splitting class A via
the Extract Class refactoring. Suppose class A can be split
into classes B and C, or into classes C and D, and after
using RIPE, the developer would conclude option B − C is
not the best option because class B would have a very low
cohesion. The developer would use RIPE to evaluate these

options before applying the refactoring - rather than after -
since it takes time and effort to implement them.

This paper focuses on evaluating the prediction functions
on atomic refactorings, while in the long run, RIPE will be
able to predict the impact of composite refactorings (i.e.,
sequences of related refactorings). We empirically evaluated
RIPE on a set of 504 atomic refactorings performed in 15
open source systems to estimate a total of 8,103 metric values.
RIPE precisely estimated the refactorings’ impact on metrics
in 38% of cases, while the median deviation from the actual
value was 5% (31% on average).

II. RELATED WORK

Soetens et al. [4] study the circumstances when the Cy-
clomatic Complexity metric increases, decreases, or remains
the same, by defining three estimation formulas, one per each
of the 3 refactorings studied. RIPE is different because (i)
its functions predict the changes at class level, which allows
more granular prediction; (ii) the earlier work does not aim at
providing an accurate impact estimation of refactoring on the
metric; and (iii) their formulas are limited to three refactoring
operations and a single code metric, whereas RIPE includes
12 refactoring operations and 11 metrics.

Du Bois et al. [5], [6] introduced impact tables, which spec-
ify a priori knowledge on the effect of a set of 3 refactorings
on a set of 5 coupling and cohesion metrics. RIPE accounts for
a more extensive set of refactorings and metrics, and defines
explicit functions for all the classes directly involved on each
refactoring, not only the source class, as the earlier work.

Piveta et al. [7] focused on assessing the impact of Aspect
Oriented Programming (AOP) refactorings on AOP metrics,
through mathematical functions, which aim at guiding devel-
opers in choosing the correct refactoring pattern to implement,
without performing the change. Unlike Piveta et al., our focus
is on Object-Oriented code and we support a much larger set
of refactorings and metrics.

III. RIPE (REFACTORING IMPACT PREDICTION)

RIPE includes a set of functions that predict, at class level,
the impact of 12 refactorings on 11 code quality metrics. We
include common refactoring operations [1], such as, the ones
dealing with generalization (e.g., Pull Up Method - PUM),
moving features (e.g., Move Field - MF), and composing
methods (e.g., Extract Method - EM). We also consider

common code metrics that measure code properties such as
Coupling (e.g., Response For a Class - RFC), Size (e.g., Lines
of Code - LOC), Complexity (e.g., Cyclomatic Complexity -
CYCLO), or Inheritance (e.g., Depth of Inheritance Tree -
DIT). The complete list of refactoring and metrics is available
online at http://www.cs.wayne.edu/~severe/ripe.

For each refactoring-metric pair we defined a prediction
function for the source classes involved in the refactoring and
one for the target classes. Since not every refactoring operation
impacts all metrics, the prediction functions have been defined
only when appropriate. The functions are heuristic-based and
are defined based on Fowler’s definition of each refactoring
[1], on our development experience, and on the study of many
examples of refactorings in literature and practice. In each
case, the functions are based on the most common cases of
the refactorings. The functions are defined assuming that the
refactorings are performed in isolation, i.e., no additional code
changes are performed, excluding those needed to preserve
the system external behavior. Consequently, it is not expected
100% accuracy in the cases where additional changes occur
with the refactoring.

In this section we explain in detail the functions for
Replace Method with Method Object (RMMO) and Extract
Class (EC), which are refactorings that deal with methods,
fields, and classes. These refactorings are exemplars of 2
categories dealing with: composing methods (e.g., RMMO),
and moving features between objects (e.g., EC). For each
of these operations, we discuss the functions estimating their
impact on Coupling Between Objects and Lack of Cohesion
of Methods 5, which are metrics that capture coupling and
cohesion of the code. A complete list of all the prediction
functions defined and implemented in RIPE is available online
at http://www.cs.wayne.edu/~severe/ripe.

A. Code Metrics Definition

Lack of Cohesion of Methods 5 (LCOM5) [8] measures
the level of cohesion based on the field usage by the methods
of a class. It is computed with Equation 1, where NA(c) is
the number of attributes of class c, NM(c) is the number of
methods and TMA(c) is the total number of field accesses,
with TMA(c) =

∑
i NMA(ai), i.e., the sum of the number

of methods using each field ai of class c.

LCOM5(c) =
TMA(c)/NA(c)−NM(c)

1−NM(c)
(1)

LCOM5(c) = 0 indicates class c is cohesive and higher
values indicate that class c is less cohesive.

Coupling Between Objects (CBO) measures the coupling
between classes based on class usage. Two classes are coupled
when methods declared in one class use methods or instance
variables defined by the other class [9]. The CBO for a class
c is defined as the norm of the set of classes (ccoup), which is
computed with Equation 2. The range of values of this metric
spans from zero (low coupling) to the total number of classes
of a system (high coupling).

CBO(c) = |ccoup| (2)

B. Prediction Functions for Replace Method with Method Obj.
Fowler [1] defines RMMO as a way to simplify the Extract

Method refactoring. The goal is to turn a method mk of
a source class cs into a new class ct, having the method
implemented in it, with all the local variables of the method
converted into fields. Then, the method in the new class ct
can be easily broken into multiple methods. When method
mk is using fields or other methods of the source class cs,
then the method in the new class ct uses those fields through
an instance of the source class, which is received in the
constructor of the new class. Hence, there is no need to pass
the fields used in method mk to the constructor of the new
class ct. The prediction functions below consider this scenario
and also assume that the getters and setters of the fields exist
and are used in the target class.

Impact on LCOM5. Equations 3 and 4 are the prediction
functions for the LCOM5 metric. In the case of the source
class cs, LCOM5 value is negatively affected by lk, the number
of attributes used by mk. In the case of the target class ct,
let r be the number of local variables and p the number of
parameters used in method mk. Also, let t be the number of
methods in ct using the field that references the source class,
in which case, t = 1 if the field is only referenced in the
constructor, or t = 2 if it is referenced in both methods, the
constructor and method mk.

LCOM5p(cs) =
(TMAb − lk)/NAb −NMb

1−NMb
(3)

LCOM5p(ct) =
r − t+ 2

r + p+ 1
(4)

The target class will have the constructor and the moved
method, i.e., the number of methods will be two (NM = 2),
the number of fields will be r+p+1, i.e., the number of vari-
ables plus the number of parameters plus a field referencing
the source class (NA = r+p+1), and the total field accesses
will be r+2p+t, i.e., the variables used in the method plus the
parameters used in both the constructor and the method, plus
the additional field access, defined by t (TMA = r+2p+ t).

Using Equation 1, replacing the values TMA = r+2p+ t,
NA = r+p+1 and NM = 2, and simplifying the expression,
we obtain Equation 4.

Impact on CBO. Equations 5 and 6 predict the CBO metric
value for the source and target classes, respectively. Equation
5 is reused from Du Bois and Mens [6] and we add here new
functions for the target classes, not only for source classes.
For the source class, the CBO value is negatively affected by
lk, which is the number of distinct classes used by mk and
not used by any other method of cs, and dk = 1, if the source
class is not coupled with the target class, otherwise, dk = 0.
As for the target class ct, the metric value depends on the
number of classes used by method mk. In Equation 6, ek is
the number of distinct classes used by mk, and rk = 1 if there
is any field or method usage of the source class from the target
class, otherwise rk = 0.

CBOp(cs) = CBOb(cs)− lk + dk (5)

CBOp(ct) = ek + rk (6)

C. Prediction Functions for Extract Class

EC refactoring is performed on a source class cs when it
is large and implements more than one responsibility [1]. In
such cases, a set of fields {ak} and/or methods {mh} are
moved to one (or more) newly created class ct. EC consists of
several Move Field and/or Move Methods refactorings, and the
creation of a field referencing the new class in the source class.
The following prediction functions consider the case in which,
before moving each field, the Self-Encapsulate refactoring is
performed on them. Moreover, the methods to be moved are
removed from the source class and the fields in the new class
are Self-Encapsulated as well.

Impact on CBO. Equations 7 and 8 compute the impact
on CBO. In the case of the source class cs, the metric is
positively impacted by the new field referencing the new class
and negatively impacted by d, the number of classes used by
all the moved methods {mh} and not referenced in the other
methods of class cs. In the case of the target class ct, the metric
is computed as the sum of e, the number of classes referenced
by the methods {mh}, and r, which indicates whether the new
class is coupled with the source class (r = 1) or not (r = 0).
If the target class is coupled with the source class, then it
means some method (in the target class) is referencing a field
or method of the source class.

CBOp(cs) = CBOb(cs) + 1− d (7)

CBOp(ct) = e+ r (8)

Impact on LCOM5. Equations 9 and 10 are the prediction
functions for LCOM5. Let n2 = |{mh}| be the number of
methods to be moved. For the source class, the prediction
function corresponds to Equation 1 with the predicted value
of each (sub)expression. Since n1 fields are removed and one
additional field is created, the predicted number of attributes
is defined as NAp = NAb−n1+1. The predicted number of
methods is affected by n2 methods removed and 2n1 added
methods, thus, NMp = NMb−n2+2n1. The predicted total
method accesses is defined as TMAp = TMAb −

∑
k Tk −∑

h Qh + 2n1 + t, where Tk is the number of methods of cs
accessing the field to move ak, and Qk is number of fields
of cs accessed by method mk. 2n1 methods (the getters and
setters of each field) will be accessing the field referencing
the target class and t is the number of methods of class cs
referencing any field or method to be moved.

LCOM5p(cs) =
TMAp/NAp −NMp

1−NMp
(9)

As for the target class ct, the predicted number of attributes
is NAp = n1 and the predicted number of methods is NMp =
2n1 + n2, i.e., the setter a getter of each field ak, and the
number of methods to be moved. Finally, the predicted total
field accesses is TMAp = 2n1 +

∑
h Vh, i.e., each field is

used by its getter and setter, and for each method mh, Vh is
the number of fields in {ak} accessed by the method.

LCOM5p(ct) =
(2n1 +

∑
h Vh)/(n1)− (2n1 + n2)

1− (2n1 + n2)
(10)

IV. EMPIRICAL EVALUATION

The purpose of the empirical study we conducted is to eval-
uate RIPE’s accuracy in estimating the impact of refactoring
operations on code metrics. The context consists of 15 software
systems (the list of systems and refactorings is available online
at http://www.cs.wayne.edu/~severe/ripe). The study aims at
answering the following research question:

RQ: What is RIPE’s accuracy in estimating the impact of
refactoring operations on code metrics?

To answer the RQ we need an oracle against which to
compare RIPE, specifically: (i) a set of refactorings for each
of the 12 refactoring operations supported by RIPE; and (ii)
the actual difference between pre- and post- refactoring of the
11 code metrics predicted by RIPE.

A. Refactoring Operations Collection

We collected a set of manually seeded refactorings oper-
ations (referred to as seeded refactorings) and another set
of existing ones (referred to as existing refactorings) on the
object systems. The purpose of the seeded refactorings is to
have a uniform distribution of refactoring instances across
the different kinds of refactorings, while the purpose of the
existing ones is to validate the proposed approach on data that
is based on everyday typical changes.

Seeded Refactorings Collection. We asked two Ph.D.
students to manually perform five to ten refactorings for each
of the 12 refactoring operations on a version of two software
systems (i.e., ArgoUML and aTunes) and they performed a
total of 173 refactorings (60 on aTunes and 113 on ArgoUML).
Both students have a good knowledge of refactoring and bad
smells, gained during their industry experience and graduate
courses. We did not provide the students with specific places
in the code where to implement the refactorings, but instead
asked them to randomly identify these locations such that the
following two constraints are fulfilled: (i) a class c of the
system must not be involved in more than one refactoring; (ii)
all changes needed to ensure the preservation of the external
behavior must be performed.

Existing Refactorings Collection. We also collected ex-
isting refactorings from the remaining 13 systems, creating
the existing refactorings data set. We built a tool using a
code analyzer developed in the MARKOS European project
(http://www.markosproject.eu), which is able to identify in-
stances of the 12 refactorings supported by RIPE. Given the
log information extracted from the versioning system, the code
analyzer parses the source code after each commit and extracts
a set of facts about the changes performed by the developer
in a specific commit. Since our tool is based on heuristics and
it is not 100% precise, we manually validated the refactoring
returned by it on the systems on which it was executed.

B. Evaluation Procedure

We adopted the following process to assess RIPE’s accuracy.
For each refactoring ri, we measured the 11 code metrics
supported by RIPE before and after its application (our oracle).
Then, we used RIPE to predict the post-refactoring value of

Seed. Exist. Seed. Exist. Seed. Exist. Seed. Exist. Seed. Exist. Seed. Exist. Seed. Exist. Seed. Exist. Seed. Exist. Seed. Exist. Seed. Exist. Seed. Exist.

Accur 7% x - - - - - - 73% x 93% x 93% x 80% x 80% x - - - - 71% x

Med 3% x - - - - - - 0% x 0% x 0% x 0% x 0% x - - - - 0% x

Avg 3% x - - - - - - 0% x 2% x 0% x 3% x 2% x - - - - 2% x

Accur 0% x - - - - - - 60% x 100% x 67% x 87% x 87% x - - - - 67% x

Med 2% x - - - - - - 0% x 0% x 0% x 0% x 0% x - - - - 0% x

Avg 4% x - - - - - - 3% x 0% x 3% x 0% x 0% x - - - - 2% x

Accur 50% x 20% x 53% x 80% x 23% x 80% x 70% x 33% x 33% x 100% x - - 54% x

Med 1% x 33% x 0% x 0% x 6% x 0% x 0% x 14% x 21% x 0% x - - 0% x

Avg 54% x 50% x 196% x 94% x 47% x 17% x 35% x 23% x 31% x 0% x - - 55% x

Accur - - 88% 25% 29% 75% - - 50% 13% - - - - 94% 25% 94% 25% - - - - 71% 33%

Med - - 0% 5% 14% 0% - - 1% 4% - - - - 0% 27% 0% 55% - - - - 0% 4%

Avg - - 2% 26% 28% 25% - - 1% 24% - - - - 0% 38% 0% 52% - - - - 6% 33%

Accur 30% 2% 80% 83% - - 73% 79% 43% 5% 50% 2% 50% 7% 60% 52% 67% 38% - - - - 57% 34%

Med 4% 12% 0% 0% - - 0% 0% 1% 16% 2% 13% 1% 12% 0% 0% 0% 1% - - - - 0% 6%

Avg 18% 20% 6% 5% - - 3% 7% 9% 25% 28% 27% 13% 24% 12% 12% 11% 11% - - - - 13% 16%

Accur 53% 0% 19% 0% 94% 33% - - 57% 0% 89% 0% 87% 0% 89% 83% 89% 83% - - - - 72% 25%

Med 0% 10% 9% 11% 0% 3% - - 0% 7% 0% 9% 0% 9% 0% 0% 0% 0% - - - - 0% 7%

Avg 9% 19% 12% 10% 2% 3% - - 2% 8% 1% 22% 0% 14% 1% 1% 1% 1% - - - - 3% 10%

Accur 60% 0% 82% 0% - - 77% 0% 84% 0% 84% 0% 86% 0% 91% 45% 91% 45% - - - - 82% 11%

Med 0% 7% 0% 11% - - 0% 6% 0% 5% 0% 8% 0% 8% 0% 1% 0% 1% - - - - 0% 6%

Avg 6% 7% 5% 11% - - 6% 7% 4% 8% 4% 10% 3% 9% 1% 1% 0% 1% - - - - 4% 7%

Accur - - - - 100% x - - 55% x - - - - 45% x 45% x 91% x 100% x 73% x

Med - - - - 0% x - - 0% x - - - - 2% x 2% x 0% x 0% x 0% x

Avg - - - - 0% x - - 2% x - - - - 13% x 13% x 5% x 0% x 5% x

Accur - - - - 100% x - - 67% x - - - - 58% x 50% x 100% x 100% x 79% x

Med - - - - 0% x - - 0% x - - - - 0% x 3% x 0% x 0% x 0% x

Avg - - - - 0% x - - 11% x - - - - 8% x 14% x 0% x 0% x 6% x

Accur 17% 1% 63% 10% 68% 29% 37% 9% 23% 4% 27% 14% 27% 6% 23% 18% 20% 17% - - - - 34% 12%

Med 18% 40% 0% 27% 0% 50% 8% 47% 11% 35% 45% 20% 14% 44% 14% 30% 15% 28% - - - - 11% 35%

Avg 35% 91% 20% 69% 11% 52% 22% 127% 27% 124% 79% 68% 56% 78% 19% 68% 24% 78% - - - - 33% 85%

Accur 48% 3% 38% 41% 97% 16% 79% 21% 83% 5% 97% 9% 97% 3% 97% 12% 97% 12% - - - - 81% 14%

Med 2% 19% 7% 8% 0% 27% 0% 24% 0% 18% 0% 26% 0% 19% 0% 9% 0% 6% - - - - 0% 17%

Avg 3% 46% 11% 29% 1% 67% 2% 85% 0% 41% 0% 42% 0% 39% 0% 31% 0% 28% - - - - 2% 46%

Accur 50% 11% 53% 41% - - 67% 27% 57% 8% 90% 11% 77% 11% 90% 48% 87% 49% - - - - 71% 26%

Med 1% 19% 0% 10% - - 0% 19% 0% 30% 0% 25% 0% 24% 0% 1% 0% 1% - - - - 0% 15%

Avg 4% 36% 7% 29% - - 4% 57% 2% 38% 1% 36% 9% 40% 1% 18% 1% 18% - - - - 3% 34%

Accur 43% 7% 57% 38% 75% 23% 70% 26% 58% 6% 79% 10% 75% 9% 75% 38% 74% 37% 97% x 100% x 68% 22%

Med 2% 19% 0% 10% 0% 27% 0% 17% 0% 25% 0% 22% 0% 24% 0% 2% 0% 2% 0% x 0% x 0% 14%

Avg 14% 43% 12% 32% 35% 59% 18% 66% 9% 47% 13% 39% 12% 42% 6% 26% 7% 26% 2% x 0% x 12% 41%

Ref.

Metr.

TOTAL

EC

MF

MM

PDM

RDI

RID

PUF

PUM

PDF

EM

IM

RMMO

TOTALRFC CBO DAC MPC LOC NOM CYCLO LCOM2 LCOM5 NOC DIT

Table I: RIPE’s prediction accuracy (Accur), median (Med) and average deviation (Avg) for each refactoring operation, quality
metric, and data set: seeded (Seed.) and existing (Exist.). The dashes “-” represent no change in the metric (thus, no prediction
function defined) and the exes “x” represent no data available (only for the existing refactorings).

the metrics after the application of ri, given the pre-refactoring
values. The metrics measurement and prediction have been
done with the tool we built. We assess the accuracy of RIPE
by comparing the actual changes in the code metric values
with the predicted ones. For each of the 11 considered code
metrics, Mk, we compute for each refactoring operation ri the
percentage deviation of RIPE’s change prediction:

dev%(ri,Mk) =
|actual(Mk)−predicted(Mk)|

actual(Mk)

where actual(Mk) is the actual change of the value of metric
Mk observed after applying ri, while predicted(Mk) is the
Mk change predicted by RIPE for the application of ri. We
report descriptive statistics of the dev% achieved by RIPE for
all the 12 refactoring operations and 11 metrics, as well as
the percentage of metric values correctly predicted, i.e., the
prediction accuracy (Accur). Accur is the ratio between the
number of metric values perfectly predicted (i.e., dev% = 0%)
and the total number of metric values. Also, we analyze the
average (Avg) and median (Med) of dev%.

C. Results and Discussion

In total, RIPE predicted 8,103 metric values, 2,903 for the
seeded refactorings and 5,200 for the existing ones (Table
I). As expected, the predictions for the seeded refactorings
have higher accuracy (68%) than for the existing refactorings

(22%). While the seeded refactorings have been introduced
in the system in isolation, the existing refactoring are often
accompanied by other changes performed by developers in
conjunction with the refactoring, which negatively impact
RIPE’s predictions. However, when RIPE’s prediction is not
100% accurate, it achieves a 0% median dev% (12% avg) for
seeded refactorings and 14% (41% avg) for existing ones.

In order to have an overview of RIPE’s overall performance,
we also computed the evaluation metrics on the entire data
set (i.e., seeded plus existing refactorings). We obtained a
38% accuracy (i.e., 3,102 exact metric predictions), with 5%
median (31% average) dev%. The gap between the median and
average values indicates the presence of negative outliers (i.e.,
predictions with low accuracy and high deviation).

Detailed Analysis. Table I reveals that, among the seeded
refactorings, DIT, No. of Children (NOC) and No. of Methods
(NOM) are predicted with the highest accuracy: 100%, 97%,
and 79%, respectively. These metrics quantify information at
rather coarse-grained granularity, hence the net changes are
usually small. Also, there is a little or no ambiguity in how a
refactoring can impact such metrics (e.g., there is only one way
to modify the inheritance relationship between classes). The
predictions for Data Abstraction Coupling (DAC), CYCLO,
LCOM2/5, and Message Passing Coupling (MPC) are very
accurate as well (i.e., Accur > 70%).

The rest of the metrics are predicted with an accuracy below
60%. For example, RFC has the lowest prediction accuracy
(43%), followed by CBO (57%), and LOC (58%). Table I
reveals that EC and RMMO are the refactoring operations
for which the predictions are most difficult. After manually
inspecting the refactorings in the target systems, we found
that the refactoring impact was harder to predict because the
students considered that some changes, stated in Fowler’s book
and assumed by the prediction functions, were not needed.

As for the existing refactorings, CBO and LCOM2/5 are
the metrics with the highest prediction accuracy (~38%). The
metrics with the lowest prediction accuracy are LOC, RFC,
and CYCLO (Accur around 7%). Push Down Field (PDF)
and Push Down Method (PDM) refactorings had a noticeable
negative influence on these metrics, as well as on CBO (see
Table I). A manual inspection of these refactorings revealed
that there were multiple refactorings of the same type (e.g.,
PDFs) performed on the same classes.

In the case of seeded refactorings, the operations with the
highest prediction accuracy are PDM, MF, and Replace Inher-
itance with Delegation - RID (~80%). For these refactorings
there are not many implementation alternatives, so the impact
on the metrics should be easy to predict. We investigated why
these refactoring were not 100% accurate, by analyzing the
cases with the largest prediction deviation. RIPE’s analysis
component is rather conservative in its current form, hence
it sometimes misidentified specific program components. For
example, methods being called in some class that in reality
correspond to the same method were accounted as different
methods. Nonetheless, the median and average deviation for
these refactoring is very low (0% for the median and about
5% for the average), which indicates an excellent accuracy.

Metric Avg dev% Argo. Avg metric Argo. Metr. Dev.
RFC 25% 23 6
CBO 29% 6 2
DAC 142% 2 3
LOC 21% 64 13
NOM 63% 7 4
CYCLO 48% 16 8
LCOM2 23% 0.30887 0.071
LCOM5 27% 0.38662 0.104

Table II: Average metrics deviation for ArgoUML.
Our analysis of dev% reveals that there are cases with high

accuracy, yet also high prediction deviation (e.g., NOM or
DAC). While we normalized the dev% values presented in the
paper, we must note that the metrics have values on different
scales. More than that, some measures are rather coarse
and easy to interpret (e.g., NOM), whereas others are more
fine grained and less intuitive (e.g., LCOM5). Hence, 10%
deviation, for example, may have a slightly different meaning
for different metrics. To better understand these differences
we give as example the partial deviation data for one of
the systems with seeded refactorings, i.e., ArgoUML. Table
II shows the average prediction dev% (Avg) of the metrics
for the seeded refactorings (2nd column), the average metric
values for ArgoUML (3rd column), as well as the metric value
deviation for this system (4th column). The Avg for DAC

(i.e., the number of attributes having different type than the
class they belong to) is the highest (142%). While that may
seem like a large dev%, in practice, for ArgoUML, it means
a deviation of only 3 attributes. A similar situation occurs for
NOM, which corresponds to a deviation of only 4 methods
(i.e., on average, when RIPE is not accurate, its predicted
NOM values are larger/lower than the actual value by 4).

V. CONCLUSIONS AND FUTURE WORK

Our approach, named RIPE, includes a set of atomic,
independent and reusable functions that predict the impact
of 12 refactoring operations on 11 code quality metrics, for
the classes involved in the refactoring, before this is imple-
mented. RIPE’s empirical evaluation using 504 refactorings
from 15 Java open source systems showed good prediction
performance. RIPE perfectly predicted 38% of 8,103 metric
values, with a low median deviation from the actual metric
value (i.e., 5%). Using RIPE, developers can assess refactoring
opportunities in their everyday maintenance tasks, since it
allows them to compare specific code metric changes caused
by the refactoring operations, especially when refactorings
include numerous transformations (e.g., Extract Class) and
different metrics that measure conflicting properties of the
code (e.g., Cohesion vs. Coupling).

As for future work, we will improve our prediction functions
to consider more implementation alternatives for refactorings
where RIPE’s prediction accuracy is lower. We will include
more metrics and refactoring operations as well as more
empirical studies. Finally, we plan to move towards measuring
and predicting the quality impact of sequences of refactoring
operations by composing the prediction functions.

ACKNOWLEDGMENTS

We wish to thank the Ph.D. students that participated in the
empirical study. This research was supported in part by grants
from NSF (CCF-1017263 and CCF-0845706).

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston,
MA, USA: Addison-Wesley, 1999.

[2] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When Does a Refactoring Induce Bugs? An Empirical Study,”
in Proceeding of the International Working Conference on Source Code
Analysis and Manipulation, pp. 104–113, 2012.

[3] M. Kim, T. Zimmermann, and N. Nagappan, “An Empirical Study of
Refactoring Challenges and Benefits at Microsoft,” IEEE Trans. on
Software Engineering, vol. PP, no. 99, pp. 1–1, 2014. (to appear).

[4] Q. Soetens and S. Demeyer, “Studying the Effect of Refactorings: A
Complexity Metrics Perspective,” in Seventh Int. Conf. on the Quality of
Information and Communications Technology, pp. 313–318, 2010.

[5] B. Du Bois and T. Mens, “Describing the impact of refactoring on internal
program quality,” in International Workshop on Evolution of Large-scale
Industrial Software Applications, pp. 37–48, 2003.

[6] B. Du Bois, A Study of Quality Improvements by Refactoring. PhD thesis,
Universiteit Antwerpen, 2006.

[7] E. K. Piveta, Improving The Search For Refactoring Opportunities on
Object-Oriented And Aspect-Oriented Software. PhD thesis, Universidade
Federal do Rio Grande do Sul, 2009.

[8] B. Henderson-Sellers, L. L. Constantine, and I. M. Graham, “Coupling
and cohesion (towards a valid metrics suite for object-oriented analysis
and design),” Object Oriented Systems, vol. 3, pp. 143–158, 1996.

[9] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. on Soft. Eng., vol. 20, pp. 476–493, Jun 1994.

