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Abstract—In the context of mobile apps, bug report man-
agement tasks have been shown to be among the most time-
consuming and intellectually intensive software maintenance
activities. As such, researchers have developed tools to automate
the reproduction, validation, and localization of reported bugs.
However, one complex, time-consuming, and important task that
lacks automated support is the creation of test oracles for
reported functional failures that manifest through the GUI. This
is challenging task – requiring nuanced, multi-modal reasoning
about bug descriptions, affected GUI components, and the
characteristics of the related erroneous program state(s).

To explore the feasibility of automating this task, we conduct
a empirical investigation into how the multi-modal (i.e., text
and GUI-related code) reasoning capabilities of Large Language
Models (LLMs) can be used to automatically generate assertion-
based test oracles for non-crashing, functional failures described
in Android app bug reports. Building upon the findings of this
study, we construct and evaluate ANDROB2O, an automated,
LLM-based approach that, given a bug report and the GUI
screen associated with the reported failure as inputs, generates
failure-based oracles (FBOs) in the form of test assertions. The
approach first identifies the GUI elements related to the failure
and then defines assertions that aim to confirm the absence
of the failure based on the elements’ properties. To evaluate
ANDROB2O, we create the first dataset of Android bug reports
containing test cases with GUI interactions and test oracles
that reveal reported failures. The results of our evaluation on
152 failures show that ANDROB2O is able to generate FBOs
that successfully identify the failure (and hence can confirm its
absence) in 61.2% of the cases. We integrated ANDROB2O with
REBL, a failure reproduction tool, to evaluate its effectiveness
in automated generation of test cases complete with oracles for
reported failures, and obtained promising results.

I. INTRODUCTION

Due to the inherent limitations of software verification and
validation techniques, it is impossible to reveal and eliminate
every fault before a system’s release. Consequently, users
inevitably experience software failures. In mobile applications
(or apps in short), most failures manifest as GUI-based
functional issues that appear visually on the app screen
without an explicit oracle such as a crash [1, 2]. Since these
failures lack automated detection and reporting mechanisms,
users typically report them manually via bug reports [1–6].

Managing these bug reports – including reproducing, con-
firming, localizing, fixing, and preventing the reoccurrence of
the bugs – has been illustrated to be a challenging and time-
consuming set of tasks. To help alleviate the burden of bug
report management in the context of mobile apps, researchers
have proposed novel bug reporting systems [1, 3, 7, 8], fault

localization techniques [9–13], and automated techniques that
translate the reproduction steps contained in bug reports into
executable GUI interactions, which can be used to validate
the presence of a bug, and build reproduction scripts [14–
24]. While there has been great attention given to developing
techniques that support reporting and reproducing bugs, less
research has been conducted on the downstream tasks of fixing
and creating regression tests for reported bugs.

More specifically, one critical task related to testing and
bug fixing that no prior technique is capable of carrying
out is generating oracles for reported failures. While some
recent automated GUI testing techniques can generate oracles
via differential state analysis [25], they cannot create oracles
from bug reports. The lack of automated oracle generation
for reported bugs is a key gap in the current literature, as it
plays a important role in automated generation of GUI-level
regression tests [26], and automated program repair techniques
that often rely on regression tests as a feedback signal [27].

However, while the task of oracle generation is important,
it also carries with it notable challenges. First, it requires
understanding the bug description from the report, which can
be written using diverse discourse and lexicon [28]. Second, it
requires identifying the GUI elements affected by the failure
(e.g., buttons or text fields), and verifying if the properties
of such elements exhibit an erroneous state (e.g., incorrect
textual labels or element dimensions). This requires nuanced
reasoning that reconciles bug descriptions and a wide variety
of mobile app bug manifestation patterns through the GUI [2].

In this work, we are the first to investigate the feasibility
of automatically generating GUI-based test oracles for non-
crashing, functional failures described in bug reports. We refer
to the generated oracles as failure-based oracles (FBOs), as
the oracles are centered around the notion of understanding
the failure characteristics of a reported bug as it manifests
through the GUI. The key intuition of our technique is that by
first inferring the characteristics of GUI elements that exhibit
a failure, a reliable oracle can be created that is able to detect
the absence of such characteristics or properties, and hence
the absence of the related bug.

Given the complex reasoning required for the creation
of such oracles, we investigate the capabilities of a Large
Language Model (LLM) in generating FBOs for Android
app failures. We focus on an LLM-based approach as prior
work highlighted the diverse manifestations of mobile app
bugs [29], suggesting that a generalized learning approach is
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likely necessary for practical FBO generation. Additionally,
LLMs are able to understand and generate both natural lan-
guage and (GUI-related) code, and have been shown to be
effective in multiple software engineering tasks, such as code
summarization, testing, and repair [4, 30–32].

We first conduct a preliminary study using 17 bug reports
from 17 Android apps to evaluate the ability of widely
used LLM to generate FBOs. We systematically analyze its
effectiveness under various prompt configurations, measuring
its success in generating assertions that detect whether
erroneous element properties are present. Informed by the
results of this study, we design ANDROB2O, the first fully
automated approach for generating FBOs from Android bug
reports. Given a bug report and an XML representation of
a failing GUI screen (provided manually by a developer or
automatically by a reproduction tool), ANDROB2O identifies
GUI elements related to the failure and generates assertions
to confirm the absence of the failure. FBOs are implemented
using the UIAutomator API [33] and can be integrated with
test interactions produced by existing approaches [14–24] to
form robust/complete, automated test cases.

To evaluate ANDROB2O, we create a novel benchmark
called FBO4A (Failure-Based Oracles for Android) that con-
tains 152 bug reports from 24 Android apps, and allows
for the assessment of effectiveness in creating oracles. When
the failing GUI screen is manually provided, ANDROB2O
successfully generates FBOs for 61.2% of the reports, which
is twice the success rate of a baseline that directly asks
an LLM to generate FBOs from textual bug descriptions
and screen metadata. Additionally, ANDROB2O achieves a
comparable success rate (62.5%) on 16 additional bug reports
likely outside of the LLM’s training data, providing evidence
of the approach’s generalizability.

To further evaluate ANDROB2O’s performance when the
failing screen is automatically provided, we integrate our
approach with REBL [24], a state-of-the-art Android failure
reproduction tool. REBL generates GUI interactions from a
bug report’s reproduction steps and provides a mechanism
to validate proper reproduction. However, while the tool is
capable of reproducing complex bugs, it is not able to produce
a test oracle for the reported failure. In combination with
REBL, ANDROB2O successfully generates FBOs for 19 of
32 failures (59.4%) reproduced by REBL. When REBL is
supplied with additional app configuration steps, ANDROB2O
generates FBOs for 75 of 136 failures (55.1%). These results
show that ANDROB2O effectively generates FBOs to reveal
reported failures across both manually and automatically iden-
tified failing screens. Finally, to provide further evidence of
the effectiveness of the approach under different settings, we
also evaluated ANDROB2O with three additional LLMs on a
stratified sample of 35 bug reports from FBO4A and observed
consistent performance across the three models.

Based on these results, we believe that our work represents
a key step toward automating test oracle creation for non-
crashing mobile app failures, providing a foundation for more
effective and efficient bug resolution. By automatically gen-

erating FBOs, our approach has the potential to reduce the
manual effort required for supporting mobile app debugging,
regression testing, and repair at scale.

In summary, this paper makes the following contributions:
• A systematic preliminary study that investigates an LLM’s

ability to generate failure-based oracles from bug reports
describing issues appearing in Android apps.

• ANDROB2O, the first automated approach capable of
generating failure-based oracles by identifying the GUI
elements related to the failures and generating assertions
that focus on the relevant element’s properties.

• FBO4A, the first dataset and benchmark for the creation
of FBOs in Android apps, including test cases and
assertions spanning 152 bug reports from 24 Android apps.

• A comprehensive evaluation of ANDROB2O, including
its integration with a reproduction tool, showing its effec-
tiveness across diverse usage scenarios, failures, and apps.

• A publicly available artifact [34] that contains AN-
DROB2O’s source code, the FBO4A benchamrk, and re-
sults to support validation of our work and future research.

II. BACKGROUND & TERMINOLOGY

We focus on the most prevalent type of mobile app bug
reports, those describing non-crashing functional failures:
issues that affect an app’s functionality without causing crashes
and manifesting through the GUI [2]. A bug report typically
consists of four key parts. The title is a brief summary of the
failure. The steps to reproduce the failure (S2Rs) describe the
events or actions needed to trigger the failure. The observed
behavior (OB) describes the failure. The expected behavior
(EB) describes how the app should behave if the failure did
not occur. We focus on bug reports where these components
are documented in text, which is the most common modality
for reporting mobile app failures [2].

In this paper, we investigate the feasibility of automatically
creating assertion-based test oracles that validate whether the
failure described in a bug report manifests on the GUI screen
resulting from executing the S2Rs. We refer to such oracles as
failure-based oracles (FBOs). By definition, FBOs fail on the
buggy app (i.e., the assertions indicate the occurrence of the
failure) and pass on its fixed version. An FBO is composed
of one or more assertions. Each assertion is a conditional
expression that checks the properties of a subset of elements
in a GUI screen. For example, an FBO could assert that an
erroneous text label (relevant to the failure described in a
bug report) does not appear on screen. Because assertions
operate on GUI elements, an FBO needs to contain the code
necessary to retrieve the elements from the screen. Given
this, an FBO contains two parts: (i) the element(s) associated
with the assertion(s) and (ii) the assertion(s).

III. DATASET

To assess the capabilities of an LLM to generate mobile
app FBOs, we need a dataset of bug reports and associated
data, including: (i) failing screens, (ii) XML hierarchies [35],
and (iii) ground-truth FBOs. To the best of our knowledge,
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Fig. 1: Overview of the methodology for creating the FBO4A dataset.

no such dataset currently exists. As such, we construct a
new benchmark for validating FBO generation. Figure 1
provides an overview of the methodology we used to create
the benchmark, which we call FBO4A (Failure-Based
Oracles for Android). The dataset is composed of three
subsets: FBO4APS , FBO4AAE , and FBO4AUD. We
use FBO4APS to assess the performance of different LLM
prompting configurations in our preliminary study (see Section
IV), FBO4AAE to evaluate the effectiveness of our finalized
automated approach for generating FBOs (see Section VI),
and FBO4AUD to assess the our approach’s effectiveness on
unseen data (i.e., data that the LLM likely did not see during
training). Two authors worked on the creation of FBO4A.

To create FBO4APS and FBO4AAE , we leveraged two
existing datasets of reproducible Android app bug reports:
ANDROR2+[2] (180 reports) and FBAA[36] (399 reports).
These are the largest publicly available datasets containing
GUI-based crashing and non-crashing failures, constructed
following systematic procedures [2, 36].

We applied a systematic filtering process to select rel-
evant bug reports. Starting from ANDROR2+ and FBAA,
we excluded reports describing crashes (49), duplicates (5),
missing APKs [37] (4), as well as those that required complex
setup (72). Then, each author independently reproduced all
remaining reports on a clean Android emulator, using the app
version specified in the source dataset or associated report. The
authors then met to and reached full agreement on whether
or not each bug was reproduced. 179 bug reports were non-
reproducible, and many such cases stemmed from two apps
(100 reports) whose server-side changes prevented reproduc-
tion. After filtering and confirming bug reproduction, 270
reports remained (86 from ANDROR2+ and 184 from FBAA).

The two authors then categorized these 270 reports using
the failure taxonomy by introduced by Baral et al. [29], which
classifies bug reports based failure detection strategies. The
two authors independently labeled all 270 bug reports. The
Krippendorff’s Alpha for the labeling task was 0.938, indicat-
ing high reliability [38, 39]. All disagreements were resolved
through discussion until consensus was reached [40]. During
this labeling process, we filtered out 62 additional reports
whose failures could not be detected using the UIAutomator

API, which is the target API for implementing FBOs in our
work. This step resulted in 208 bug reports remaining.

Next, the two authors, each with more than four years of
Android programming experience, worked together to write
test cases with both interactions that reproduced the failures

and FBOs for the failures. The authors worked on one test
case at a time. For each test case, the authors started by
writing the test case interactions and then executed the test to
collect the XML hierarchy and the screenshot of the failure
screen (using Android OS utilities [33]). The XML hierarchy
is an XML file that contains the hierarchical structure of GUI
elements on the screen (buttons, text fields, layouts, etc.) and
their metadata (text labels, color, dimensions, etc.). Then, the
authors analyzed the element metadata and identified how
to detect the failure via assertions on such metadata through
discussion and consensus. (In six cases, the two authors had
an initial diverging opinion on how to detect the failure but
then reached consensus through discussion.) At this point, the
authors wrote the FBOs, consisting of the code to retrieve the
elements(s) and the assertion(s) that checked for the presence
of the failure. The authors used the UIAutomator API to write
the FBOs and then added it to the test. Finally, the authors
verified that the FBOs failed on the buggy version of the
app and passed on the fixed app version by running the test
cases, making adjustments if needed. The FBOs generated
through this process represent our ground-truth dataset, which
includes 169 test cases with FBOs from 27 apps, and
corresponding bug reports, buggy APKs, fixed APKs, and
XML hierarchies. We do not report inter-rater agreement on
the creation of FBOs as this is not a labeling task.

During the process of writing FBOs, we filtered out an
additional 39 reports. In 25 cases, we could not obtain the
XML hierarchy of the buggy screen (due to dynamic screen
content loaded at runtime and limitations of Android OS’
tooling), and in 14 cases, the FBOs could not be derived based
on XML hierarchy information (required by UIAutomator). We
consider that the resulting dataset is representative of Baral
et al.’s [29] failure categories detectable through the XML
hierarchy (which are most prevalent categories). Furthermore,
the dataset size is on the same order of magnitude as the source
datasets’ (ANDROR2+ and FBAA).

The authors also categorized the FBOs by analyzing their
characteristics to create the dataset for the preliminary study
(FBO4APS). The authors used inductive coding [41, 42] for
the categorization. This process led to 11 categories, reported
in Table I. The table describes the categories and the number
of FBOs in each category (FBO#). We built FBO4APS by se-
lecting 17 reports (10%) from the 169 available. To create this
dataset, we first randomly selected 11 bug reports (making sure
each report belonged to a different app) so that each category
from Table I was represented in the dataset. We then selected
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TABLE I: Failure-based oracle categories and frequency.
ID Summary Description FBO#

C01 Check that the text of an element is not the wrong one. 60
C02 Check that the wrong element is not on screen. 53
C03 Check that the a correct element is on screen. 32
C04 Check that the checked property of an element is not the wrong one. 7
C05 Check that the number of elements on screen is not the wrong one. 6
C06 Check that the position of an element on screen is not the wrong one. 4
C07 Check that the keyboard does not have the wrong property. 3
C08 Check that the position between two elements is not the wrong one. 2
C09 Check that the bounds of an element are not the wrong ones. 2
C10 Check that the enabled property of an element is not the wrong one. 1
C11 Check that the focused property of an element is not the wrong one. 1

the remaining six bug reports to best mirror the distribution of
the bug reports across the derived FBO categories in Table I.
Excluding these 17 reports, this left us with 152 bug reports
(across 24 apps) that compose the FBO4AAE dataset, used
for the final ANDROB2O approach evaluation.

To create FBO4AUD, we first identified bug reports for
GitHub-hosted apps using the methodology defined by AN-
DROR2+ [2]. We ensured that the collected reports were
created after the cutoff date (December 2023) of the LLM
that we considered in our preliminary study (Section IV) and
the evaluation of our approach (Section VI). This resulted in a
set of 2,023 bug reports. Following the methodology described
earlier in this section, two authors started reproducing the bug
reports describing non-crashing functional failures (processing
bug reports randomly) until they obtained 16 bug reports
(from 6 additional apps) and corresponding FBOs. The 16
FBO4AUD bug reports correspond to 10% of FBO4AAE

(159 reports) and represent an unseen “test set”.
It required four person months to build FBO4A—further

details can be found in our artifact [34].

IV. PRELIMINARY STUDY

Our preliminary study investigates the effectiveness of dif-
ferent LLM prompt configurations to automatically generate
FBOs. The goal is to understand how these configurations per-
form and gather insights for building an approach for FBO cre-
ation. We investigated the following research question (RQ):

RQ1: How effective are different LLM prompt configurations
at automatically generating FBOs?

A. Methodology

We systematically investigated the effectiveness of different
text-based prompt configurations for creating FBOs as
related work found that most bug reports for Android
apps are text-based [2]. We chose GPT-4 Turbo (version
gpt-4-0125-preview [43]) as the LLM for the study as it was
the most recent model that had the most recent knowledge
cutoff in the GPT-4 family when we started the study in
February 2024 [44].

The prompt configurations use: (i) the XML hierarchy of
the app screen that shows the failure, (ii) different content
elements of a bug report (title, S2Rs, OB, and EB), and
(iii) different prompting strategies. We consider configurations
based on the full bug report (full BR) and based only on the

OB. We experimented only with the OB because it is the
main element that describes the failure. Given that we aim
for our approach to be automated and end-to-end, to identify
the sentences related to the OB, we used BEE [45], a state-
of-the-art automated tool for the task. We do not experiment
with only the EB as prior work has found that this information
is often missing in bug reports [28].

We start from two base prompt configurations (the first
based on the full BR and the second based on the OB) and
investigate configurations that extend these two with prompt
strategies that are: 1) applicable to our problem domain, 2)
popular for context learning [46–48, 48–50], and 3) effec-
tive as shown in prior work on bug reporting [20, 22]. The
strategies we considered are: zero-shot chain of thought (ZS-
CoT) [48], one-shot [51], chain-of-thought (CoT) [49], and
chaining [50]. ZS-CoT prompting, which asks an LLM to
perform step-by-step reasoning, has been shown effective in
several domains [48]. One-shot prompting can lead to better
overall performance by providing examples of questions and
expected results in the prompt [51]. CoT can be combined
with few-shot prompting to illustrate the thought process
behind a certain example so that the LLM can learn to
solve a given problem [49]. Chaining can lead to a better
overall performance by decomposing a prompt for a task into
multiple prompts [50]. We also investigated the combination of
multiple strategies where appropriate. Table II reports all the
Prompt Configurations (PCs) considered in our study. Each
configuration uses the XML hierarchy associated with the
failure screen (manually provided in this preliminary study)
and the relevant content from the bug report (either the full
BR or OB). We now detail the configurations by discussing
the instantiations of the different prompting strategies in our
context. Due to space limitations, we include a summarized
template only for the base strategy. Detailed information on
all prompts are available in our artifact [34].

1) Base: This configuration uses (i) the XML hierarchy
of the failure screen and (ii) the relevant bug report content.
PC01-Template reports the template when the base prompt is
used with the full bug report (PC01 in Table II).
PC01-Template: (Full Bug Report, Base)
[XML Hierarchy]
Given the previous XML hierarchy containing a failure in a mobile
app screen and the following bug report:
[Full Bug Report]
Write one or more assertions using UIAutomator that identify the
failure in the XML hierarchy.

2) ZS-CoT: This configuration extends the base by asking
the LLM to perform step-by-step reasoning through the
sentence: “Explain each step of your reasoning”.

3) One-shot: We systematically investigate the
effectiveness of one-shot prompting. For each one-shot
configuration, we evaluate all prompt instances with our
dataset of 17 bug reports. In each instance, we use one bug
report from FBO4APS and its ground truth FBO as the
example for the prompts that generate FBOs for the remaining
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16 bug reports. All instances use a different bug report from
FBO4APS as the example. Every one-shot configuration leads
to the investigation of at least 17×16 = 272 prompts. We did
not consider a systematic analysis of a two-shot-based con-
figuration as the time cost to manually analyze all the results
is high (see Section IV-B). In summary, a one-shot prompt
configuration uses (i) the XML hierarchy of the example bug
report’s failure screen, (ii) the relevant content of the example
report, (iii) the manually created FBO for the example, (iv)
the XML hierarchy of the failure screen under analysis, and
(v) the relevant content of the bug report under analysis.

4) CoT: We combine CoT with one-shot prompting by ex-
tending a one-shot prompt with the thought process of how we
derived the code of the FBO associated with the example. Two
authors wrote the thought process for each example together.

5) Chaining: We use chaining to decompose the task of
creating an FBO into two steps. First, the LLM identifies
the GUI element(s) related to the failure. Then, it generates
assertions for those elements. This strategy involves two
prompts. The first prompt asks the LLM to find the XML
code for the affected elements. The second prompt asks
the LLM to generate assertions based on UIAutomator code
that can locate the LLM-identified elements on the XML
hierarchy. Since chaining requires two prompts per bug
report, it doubles the total number of prompts. For example,
PC05 uses 17× 2 = 34 prompts.

We executed the prompts associated with the configurations
and the bug reports in FBO4APS on the LLM (GPT-4 Turbo).
Although we set GPT-4’s temperature to zero, to limit output
randomness, it is still possible that the LLM provides a
different answer when the same prompt is executed multiple
times. For this reason, we executed each prompt three times
and considered an FBO correctly generated only if it matched
our ground truth FBO all three times (see section IV-B for
details on the evaluation metrics we used). This setting led
to executing 10,404 prompts and the analysis of 6,936 FBOs.
We decided to limit the number of repetitions to three due to
the high number of FBOs that need to be analyzed. Due to
the cost of the analysis, we also focus the preliminary study
on suitable/expected inputs (i.e., provided failing screens). In
Section VI we assess the quality of our derived approach on
non-failing screens when integrated with a reproduction tool.

B. Metrics

To measure the effectiveness of the prompt configurations,
we compared the generated FBOs with our ground-truth
FBOs and computed four metrics for each configuration:
accuracy (A), precision (P), recall (R), and F1 score (F1).

To compute the metrics, we executed the tests with the gen-
erated FBOs and performed manual inspections. We executed
the tests with generated oracles on both the buggy and the fixed
versions of the app. Manual checks were performed to identify
spurious FBOs that do not semantically match the ground truth
but fail on the buggy version and incidentally pass on the fixed
version due to concurrent changes that are unrelated to the
failure. This situation can happen for FBOs that check that a

correct element should be on screen, but it is not (C03). These
oracles estimate the element that should be on screen and that
could be the one associated with the concurrent change.

For each test, the authors inspected the identified GUI
elements and assertions’ generated by the LLM and assessed
whether the FBO was correct. An FBO is correct if it fails on
the buggy version of the app, passes on the fixed version, and
semantically matches the ground truth elements and assertions
(i.e., a syntactic match is not necessary). This was done
because, for example, an assertion that reveals a failure can
be created from different GUI element properties. The authors
used the generated FBO code, ground truth FBO code, the
bug report text, the XML hierarchy, and the failure screen to
determine the correctness of FBOs’ elements and assertions. In
this task, we judged semantic oracle equivalence by looking at
the elements and the assertions involved in the oracles. For two
oracles to be judged semantically equivalent, they must operate
on the same elements and must resolve to the same check
logically, but do not need to have identical implementations.
We considered FBOs that selected the same element through
different properties to be equivalent. Generated FBOs that are
more specific than the ground-truth FBOs were also considered
equivalent. For example, generated FBOs that checked that
an element existed and that they had a specific text were
considered equivalent to ground-truth FBOs that only checked
that the element existed if both functioned equivalently.

During the analysis, the authors labeled each FBO as
successfully-generated, incorrectly-generated, or not-usable. A
successfully-generated FBO semantically matches the ground
truth FBO, fails on the buggy app (i.e., it identifies the failure),
and passes on the fixed app. An incorrectly-generated FBO
does not match the ground truth but it fails on the buggy app
(this can happen when a generated assertion fails but it is not
related to the reported failure). A not-usable FBO does not
contain any generated code by the LLM, has uncompilable
code, or contains code passing on the buggy app.

Initially, two authors independently analyzed a shared set of
FBOs comprising 10% of the generated set (6,936) to assess
the potential subjectiveness of the inspections. During this
initial analysis, the two authors had an agreement of 0.924,
in terms of Cohen’s Kappa [52], signaling very high inter-
rater reliability. Disagreements were solved via discussion and
consensus between the authors. Due to the high reliability,
the two authors analyzed the remaining 90% by splitting and
analyzing the FBOs independently.

If an FBO was successfully-generated in all of the three
runs associated with a specific FBO generation task and it was
consistent (i.e., the generated code matched across the three
runs), we consider the FBO generation task as a true positive
(TP) because it is possible to reliably provide a correct FBO
to a developer. If an FBO was incorrectly-generated in all
of the three runs, we consider the FBO generation task as a
false positive (FP) as the information provided to the developer
is consistently incorrect. The remaining cases/combinations
(which include not-usable FBOs) are considered false neg-
atives (FN) as no consistent FBO can be provided to the
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TABLE II: Preliminary study results.
ID configuration A P R F1

PC01

Full
BR

Base 17.5 50.0 21.4 30.0
PC02 ZS-CoT 5.9 50.0 6.3 11.1
PC03 One-shot (BR15) 37.5 66.7 46.2 54.5
PC04 One-shot+CoT (BR16) 43.8 63.6 58.3 60.9
PC05 Chaining 23.5 36.4 40.0 38.1
PC06 Chaining+ZS-CoT 47.1 72.7 57.1 64.0
PC07 Chaining+One-shot (BR16) 37.5 54.5 54.5 54.5
PC08 Chaining+One-shot+CoT (BR14) 31.3 55.6 41.7 47.6

PC09

OB

Base 5.9 25.0 7.1 11.1
PC10 ZS-CoT 5.9 50.0 6.3 11.1
PC11 One-shot (BR10) 31.3 83.3 33.3 47.6
PC12 One-shot+CoT (BR17) 31.3 71.4 35.7 47.6
PC13 Chaining 11.8 15.4 33.3 21.1
PC14 Chaining+ZS-CoT 11.8 18.2 25.0 21.1
PC15 Chaining+One-shot (BR11) 31.3 50.0 45.5 47.6
PC16 Chaining+One-shot+CoT (BR01) 31.3 50.0 45.4 47.6

developer given the failure screen information. We decided to
map the terms successfully-generated, incorrectly-generated,
and not-usable to the traditional TP, FP, and FN metrics to
best measure and represent the outcome of the FBO generation
task with respect to the available ground truth.

We compute A, P, R, and F1 using TPs, FPs, FNs, and
related formulas [53]. In our context, given a certain number
of TPs, having a higher P than R is important as FPs may
prompt the developers to use FBOs that do not detect the
failure, while FNs are not as problematic because developers
would anyway need to manually create FBOs. We consider
that using the A, P, R, and F1 metrics are appropriate to
measure the effectiveness of the configurations because, by
definition, they capture configuration usefulness and usage
overhead from a developer’s viewpoint.

C. Results

1) RQ1: How effective are different LLM prompt
configurations at automatically generating FBOs? Table II
reports the results for each prompt configuration. For one-shot
configurations, we report the results for the best-performing
configuration setting (which we systematically explored
through our methodology). The setting is a specific bug report
used as the example in the prompt. We report results in this
way as we are interested in the best possible approach for
generating FBOs. For instance, the best setting for PC04
uses BR16 [54] as the prompt example.

The configuration that performs best is PC06 (boldfaced
in Table II), which achieves the highest accuracy (47.1%),
precision (72.7%), and F1 score (64.0%). PC06 combines
chaining with ZS-CoT and has eight TPs, three FPs, and six
FNs. The second best-performing configuration is PC04 with
seven TPs, four FPs, and five FNs (the sum is equal to 16
as we excluded the one-shot example bug report from the
evaluation of the configuration). Considering all TPs across
all configurations, we also observed that PC06 includes all
the TPs obtained by the other configurations.

By inspecting the FBOs generated by PC06 and PC04, we
also identified that PC06 correctly generated 12 element com-
ponents while PC04 only generated nine. This result further
highlights the higher potential of PC06 in generating FBOs as

it is able to more accurately identify the elements affected by
failures. When inspecting the FBOs generated by PC06 we
observed that three FBOs had assertions that did not compile
due to hallucinations, that is, the LLM created FBOs that used
methods that did not exist in the UIAutomator API. Notably,
PC06 does not include any prompt examples and we observed
cases where this strategy was effective. For example, in two of
three cases where PC06 correctly identified the relevant GUI
elements but PC04 did not, we observed that the elements
selected by PC04 were not present in the XML hierarchy and
were copies of elements of the prompt examples. This is likely
due to the vague failure description in the bug reports. We
believe that at least in these cases, PC06 correctly identifies
the GUI elements because it forces the LLM to not simply take
the example information but to process the XML hierarchy to
select the most likely GUI element associated with the failure.

Overall, considering that the results show that PC06 has the
highest F1 score, a low number of FPs (which we believe to
be preferable over a low number of FNs as FPs would demand
developer’s time to be filtered out), and the highest accuracy
in finding the elements affected by failures, we identified that
PC06 is the best configuration for generating FBOs.

RQ1 answer: The best performing prompt configuration
(PC06) is based on the full bug report and combines prompt
chaining with zero-shot chain-of-thought prompting.

V. APPROACH

Informed by the results of our preliminary study, we define
ANDROB2O, an approach that automatically generates FBOs
for validating reported non-crashing, functional failures in
Android apps. Figure 2 provides an overview of the approach.
ANDROB2O takes as input the bug report text and the
XML hierarchy of the failing screen, which can be provided
manually by a developer or automatically by an automated
bug reproduction tool (e.g., [24]). Based on these inputs,
ANDROB2O is able to automatically produce an FBOs as
output, which by definition fail on the provided buggy screen
as they detect the failure. ANDROB2O executes in four phases:
1 element prompt creation, 2 element code generation, 3

assertion prompt creation, and 4 failure-based oracle gener-
ation. ANDROB2O is based on the PC06 configuration from
our preliminary study, which was the best performing method.

The element prompt creation phase 1 produces an element
prompt to identify the element component of the FBO. The
prompt asks the LLM to identify the XML node of the
element(s) affected by the failure from the XML hierarchy
and the bug report. The prompt also includes a description
of the expected output format. Informed by the preliminary
study results, ANDROB2O runs the prompt three times and
collects the answers (element prompt results). This parameter
is customizable and we set three as its default value, as
our preliminary study showed this to be a balanced trade-off
between the stability of multiple predictions (given LLMs’
proclivity for non-determinism) and computational cost. The
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Fig. 2: Overview of the ANDROB2O approach.

approach proceeds to the next phase only when the LLM
returns the same XML element across the runs.

The element code generation phase 2 generates the code
for selecting the element(s) from the GUI hierarchy using
the UIAutomator API. This phase generates code for selecting
the element(s) using the properties that uniquely identify the
element(s) in the hierarchy. ANDROB2O prioritizes properties
that provide textual information about an element (e.g., an
element’s text or content description) over other properties.
We made this choice as an element’s text can provide semantic
information about the element and the element code is used
in the assertion prompt, which characterizes the next phase of
the technique. If the element cannot be uniquely identified in
the hierarchy, ANDROB2O stops and does not generate the
FBO. If the XML returned by the element prompt contains
a tree of elements (e.g., in the case of a list element), this
phase generates code that selects the root of the tree. If the
LLM returns an XML element that is not present in the XML
hierarchy, ANDROB2O generates code that identifies the ele-
ment based on its text or content description (if available). We
do not consider this result as erroneous as the LLM might be
trying to create an XML element that should be on screen but
actually is not (case C03 in Table I). We allow for disabling
this aspect of the technique through a configuration parameter,
which only affects the generation of oracles of type C03.

ANDROB2O does not use the LLM to generate the code of
the element locators. It uses the LLM only to determine which
GUI element(s) in the XML Hierarchy correspond to the
element(s) associated with the reported failure. Establishing
this correspondence requires advanced reasoning of different
elements in the screen, mapping them to various information of
the bug report (in particular, the OB). From the LLM-identified
elements, ANDROB2O generates an element locator program-
matically: in essence, the algorithm traverses the hierarchy
and matches properties that uniquely identify an element.

The assertion prompt creation phase 3 produces the as-
sertion prompt, which generates the assertion(s) that detect the
failure under analysis. The prompt asks the LLM to generate
the assertion(s) that checks the properties of the selected GUI
element from the previous phase, according to the failure de-
scribed in the bug report and the XML hierarchy. As in phase
1 , ANDROB2O runs the assertion prompt three times. This is

also a customizable parameter, using three as the default value,
for similar reasons as stated earlier. We consider the generated
code to be valid if it matches across runs. To avoid FBOs that
do not compile due to hallucinations (which we observed in
the manual inspections of our preliminary study), we include
text in the assertion prompt that aims at limiting the presence

of those issues: “when operating on variables in the provided
code your response needs to use UIAutomator methods from
the following list: [UI Automator Method List]”.

Finally, the failure-based oracle generation phase 4 pro-
cesses the assertion prompt results and provides the FBO
as output. The approach extracts the code from the prompt,
checks whether the code compiles, and if that is the case,
ANDROB2O combines the element code and the assertion
code into the FBO, which is the final output of the approach.
ANDROB2O focuses only on generating the oracle component
of a test, as the app interactions in the test can be either
directly or indirectly (with small modifications) generated by
reproduction tools (e.g., [15]) or manually by developers.

VI. ANDROB2O’S EVALUATION

We evaluate the effectiveness of ANDROB2O by answering
the following research questions (RQs):
RQ2: How effective is ANDROB2O in creating FBOs?
RQ3: How effective is ANDROB2O on unseen data?
RQ4: How effective is ANDROB2O when integrated with an
automated bug reproduction tool?
RQ5: How robust is ANDROB2O under different LLMs?

A. Methodology

RQ2 and RQ3 assess ANDROB2O ’s effectiveness in gen-
erating FBOs from bug reports and manually provided failure
screens, simulating scenarios where developers supply screens
after reproducing failures. We also compare ANDROB2O to
two baselines derived from our preliminary study: PC01
(using the full bug report) and PC04 (using BR16 as the
prompt example). PC01 represents the simplest strategy, while
PC04 was the second-best configuration in preliminary results.

Experiments use GPT-4 Turbo gpt-4-0125-preview with
temperature zero, as in Section IV, running each prompt
three times (as ANDROB2O does internally). We evaluate
ANDROB2O and baselines on FBO4AAE (152 failures) and
FBO4AUD (16 failures), using FBO4AAE for main evalua-
tion and FBO4AUD for generalization.

RQ4 evaluates ANDROB2O combined with automated fail-
ure reproduction. We integrate ANDROB2O with REBL [24],
which uses GPT-based reasoning to reproduce failures from
bug reports by iteratively predicting and executing GUI ac-
tions, checking for reproduction, and generating reproduction
traces, but does not produce assertions.

Before integration, we replicated REBL’s original results
using GPT-4 Turbo gpt-4-0125-preview to match versions.
We extended REBL to save XML hierarchies and screenshots
of failure screens, which serve as input to ANDROB2O.
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Screenshots were manually validated to confirm reproduction
correctness. After integration, we re-executed REBL to verify
consistency and correctness of the collected data.

We ran both REBL+ANDROB2O and S+REBL+
ANDROB2O, the latter adding manually supplied setup
actions—GUI interactions required to configure the app prior
to the first S2R, but not described in the bug report. This
evaluates ANDROB2O in semi-automated, human-assisted
scenarios. Two authors independently identified and reviewed
setup actions following [2], identifying 3.6 and 3 setup actions
per bug report in FBO4AAE and FBO4AUD, respectively
(FBO4AAE and FBO4AUD require 9.7 and 9.9 total setup
actions on average).

RQ5 evaluates the robustness of ANDROB2O when used
with different LLMs. In this RQ, we evaluated ANDROB2O
using GPT-4 Turbo and two additional LLMs: GPT-4o [55]
(version gpt-4o-2024-11-20) and LLaMA 4 Maverick [56].
We selected GPT-4o as it is a newer model from OpenAI
as compared to GPT-4 Turbo and it is optimized for code
generation and reasoning [55]. We use LLaMA 4 Maverick
as it is open-source and can perform complex reasoning
tasks [57]. We provide bug reports and XML hierarchies to
ANDROB2O with the PC01 and PC04 baselines (as done in
RQ2 and RQ3) to assess whether their relative performance
is consistent across the different models.

Due to the cost of manually validating every FBO generated
by the LLMs (as done in Sections IV and VI), we performed
this experiment on a sample of 35 bug reports from the 169
reports in FBO4APS and FBO4AAE combined. We first par-
titioned the 169 reports as successfully (98) and unsuccessfully
(71) handled by ANDROB2O. We then performed stratified
sampling to include at least 20% of the reports in each partition
and one bug report from each FBO category (see Table I).

B. Metrics

To answer the RQs, we use the same metrics used in our
preliminary study: accuracy (A), precision (P), recall (R),
and F1 score (F1). For RQ2, RQ3, and RQ5, we use the
same definitions for true positives (TPs), false positives (FPs),
and false negatives (FNs) as in our preliminary study (see
Section IV-B)–the three RQs and the preliminary study are
based on the same context: manually provided failing screens.

For RQ4, we refine the definitions of TPs, FPs, and FNs
to account for the integration with REBL (i.e., when failure
screens are provided automatically). The refinement is needed
as REBL can produce false positives by itself, that is, REBL
can report that it reproduced a failure but actually it did not.
When REBL identifies that it reproduced a failure, the tool
marks the failure as being reproduced, and we use the acronym
MR (Marked as Reproduced) to refer to this case. Otherwise,
we label the failure as NMR (Not Marked as Reproduced)—
for this case, ANDROB2O will not receive any input screens
to work with so it cannot generate FBOs. If an MR failure
was actually reproduced (i.e., the resulting screen shows the
failure), we consider this case as a ReBL true positive (RTP);
otherwise, we label the failure as a ReBL false positive (RFP).

TABLE III: Evaluation results for ANDROB2O (with manually
provided failing screens) and the baselines on FBO4AAE and
FBO4AUD across failure check categories.

FBO4AAE FBO4AUD

C01 C02 C03 C04 C05 C06 C07 C08 C09 Tot Tot
# of failures 55 50 30 5 5 3 2 1 1 152 16

PC01
(Baseline)

A 30.9 32.0 20.0 40.0 20.0 0 0 100 0 28.3 26.7
P 37.8 42.1 21.4 50.0 25.0 0 0 100 0 34.7 28.6
R 63.0 57.1 75.0 66.7 50.0 0 N/A 100 N/A 60.6 66.7
F1 47.2 48.5 33.3 57.1 33.3 0 0 100 0 44.1 40.0

PC04
(Baseline)

A 45.5 38.0 13.3 20.0 20.0 0 0 100 100 34.2 25.0
P 61.0 46.3 15.4 33.3 25.0 0 0 100 100 42.6 40.0
R 64.1 67.9 50.0 33.3 50.0 N/A N/A 100 100 63.4 40.0
F1 62.5 55.1 23.5 33.3 33.3 0 0 100 100 51.0 40.0

AndroFC

A 72.7 66.0 43.3 60.0 40.0 0 0 100 100 61.2 62.5
P 83.3 78.6 54.2 60.0 50.0 0 0 100 100 72.7 71.4
R 85.1 80.5 68.4 100 66.7 0 N/A 100 100 79.5 83.3
F1 84.2 79.5 60.5 75.0 57.1 0 0 100 100 75.9 76.9

In the case of ReBL true positives (RTPs), when the resulting
screen shows the failure, ANDROB2O can successfully gen-
erate an FBO (TP), incorrectly generate an FBO (FP1), or not
generate an FBO (FN). In the case of a REBL false positive
(RFP), when the resulting screen does not show the failure,
ANDROB2O can incorrectly generate an FBO (FP2) or not
generate an FBO, i.e., a true negative (TN). Table IV illustrates
how the refined definitions relate to REBL results. Two authors
analyzed and labeled the REBL+ANDROB2O results using
the same methodology used in the preliminary study.

C. Results

1) RQ2: How effective is ANDROB2O in creating FBOs?
Table III (under FBO4AAE) reports A, P, R, and F1 for
ANDROB2O and the baselines, itemized by FBO category.
Categories C10 and C11 are excluded as they were used in
the preliminary study. Overall, ANDROB2O achieves 61.2%
A, 72.7% P, 79.5% R, and 75.9% F1, successfully generating
FBOs for over half (93/152) of the bug reports, with 35 false
positives. Compared to the baselines, ANDROB2O generates
over twice as many FBOs while producing fewer FPs (70
for PC04, 81 for PC01). In the element selection step,
ANDROB2O correctly identifies elements in 65.8% of cases,
compared to 38.2% (PC01) and 43.4% (PC04). By category,
ANDROB2O performs best on C01, with 72.7% A, 83.3% P,
85.1% R, and 84.2% F1—the largest category—highlighting
its practical potential. ANDROB2O also successfully handles
C03, despite missing elements in the corresponding XML
hierarchies for 30 reports. This can be attributed to the LLM’s
ability to infer missing elements directly from the bug report
description. The only two categories that no methods were
able to successfully create FBOs for were C06 and C07. For
C07 (keyboard failures), creation of FBOs involved the use of
methods outside of the UIAutomator API to retrieve keyboard
properties, which is out of scope for ANDROB2O. For C06
(failures related to the location of elements on the screen
through coordinate vlaues), ANDROB2O was able to select the
correct elements but it was never able to identify the precise
location values to create a valid FBO. Finally, looking at
the reasons why our approach failed to create the assertions,
we identified that there were no cases of hallucinations,
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TABLE IV: Evaluation results for ANDROB2O on FBO4AAE

and FBO4AUD when used in combination with REBL.
Dataset REBL+ANDROB2O S+REBL+ANDROB2O

REBL ANDROB2O S+REBL ANDROB2O

FBO4AAE
MR

RTP 32
TP 19

MR
RTP 136

TP 75
FP1 2 FP1 4
FN 11 FN 57

RFP 17 FP2 5 RFP 6 FP2 1
TN 12 TN 5

NMR 120 - NMR 27 -

FBO4AUD
MR

RTP 5
TP 5

MR
RTP 14

TP 11
FP1 0 FP1 0
FN 0 FN 3

RFP 0 FP2 0 RFP 0 FP2 0
TN 0 TN 0

NMR 12 - NMR 3 -

highlighting the usefulness of the improvements included in
ANDROB2O based on the preliminary study results.

RQ2 answer: ANDROB2O generates FBOs in 61.2% of
the cases and outperforms baselines in accuracy, precision,
recall, and F1 score.

2) RQ3: How effective is ANDROB2O on unseen data? The
section of Table III under FBO4AUD reports the results for
this RQ. Our approach was able to create FBOs for 10 out
of 16 bug reports (A of 62.5%) and achieves a P, R, and
F1 of 71.4%, 83.3%, and 76.9%, respectively. ANDROB2O
significantly outperforms the baselines by having the highest
number of successfully generated FBOs (10 for ANDROB2O
vs. four for PC01 and four for PC04) and the lowest number
of FPs (four for ANDROB2O vs. 10 for PC01, and six
for PC04). Overall, ANDROB2O is the best approach and
performs well on unseen data.

RQ3 answer: ANDROB2O correctly generated 10 out of
16 FBOs for likely unseen reports by the used LLM, outper-
forming the baselines, thus providing positive preliminary
evidence of ANDROB2O’s generalizability.

3) RQ4: How effective is ANDROB2O when integrated
with an automated bug reproduction tool? Table IV re-
ports the results associated with the tools’ integration under
the REBL+ANDROB2O header and their integration supple-
mented with setup steps under the S+REBL+ANDROB2O
header, for the FBO4AAE and FBO4AUD datasets.

The results for REBL+ANDROB2O on FBO4AAE show
that REBL marked 49 bug reports as reproduced (MR),
with 32 true positives (RTPs) and 17 false positives (RFPs).
Among the 49 XML hierarchies provided to ANDROB2O,
it generated 19 FBOs (TPs), seven FPs (two FP1s and
five FP2s), and failed in 11 cases (FNs). For the 17 non-
reproduced failures, ANDROB2O correctly refrained from
generating FBOs in 12 cases (TNs). The resulting A, P, R,
and F1 were 63.3%, 73.1%, 63.3%, and 67.9%, respectively.
On FBO4AUD, REBL reproduced five failures (RTPs), with
ANDROB2O generating FBOs for all.

With setup steps (S+REBL+ANDROB2O), REBL marked
136 bug reports as reproduced (MR), with 136 RTPs and 6
RFPs. Among these, ANDROB2O produced 75 TPs, five FPs

(four FP1s, one FP2), 57 FNs, and five TNs, yielding A, P, R,
and F1 of 56.3%, 93.8%, 56.8%, and 70.7%, respectively. On
FBO4AUD, REBL reproduced 14 failures, with ANDROB2O
generating 11 TPs and 4 FNs.

Manual analysis of all FPs revealed that the LLM asserted
the presence of elements mentioned in the bug reports but
unrelated to the failures. This may be mitigated by filtering
content (e.g., S2Rs) from bug reports during reproduction.
Notably, ANDROB2O declined to generate FBOs in 17 of 23
cases (sum of TNs across RFPs) where REBL reproduced
failures that were not actually present. This suggests potential
for ANDROB2O to provide feedback to reproduction tools like
REBL by recognizing when a failure is absent on a screen.

Overall, the results provide preliminary evidence that AN-
DROB2O is also effective when used with a reproduction
tool, i.e., when a (presumably) failing screen is provided
automatically as input to ANDROB2O.

RQ4 answer: ANDROB2O generated 19 FBOs out of 32
correctly reported failure screens provided by an automated
failure reproduction tool. When the reproduction tool is
supplied with setup steps, ANDROB2O generates 75 FBOs
out of 136 correctly reported failure screens. This result
together with the low number of incorrectly generated FBOs
and ANDROB2O’s ability to not generate FBOs on invalid
screens show preliminary evidence of the ANDROB2O’s
effectiveness when combined with a reproduction tool.

4) RQ5: How robust is ANDROB2O under different LLMs?
The results of the experiment are reported in Table V. For
ANDROB2O and the baselines, the three models performed
similarly and the best approach was still ANDROB2O. GPT-
4o was the best performing model and performed at or slightly
above the other models (with modest absolute improve-
ments). Notably, ANDROB2O achieved the highest accuracy
when paired with GPT-4o (A=61.8%, P=87.5%, R=67.7%,
F1=76.4%), followed by GPT-4 Turbo and LLaMA 4 Maverick
with same scores (A=52.9%, P=78.3%, R=62.1%, F1=69.3%).
For the baselines, GPT-4o and LLaMA 4 Maverick either
matched or slightly improved upon GPT-4 Turbo. However,
ANDROB2O, with any of the LLMs, outperforms the base-
lines by a significant margin. These findings suggest that
ANDROB2O’s accuracy is consistent across models.

RQ5 answer: ANDROB2O’s performance across LLMs is
consistent and substantially higher than the baselines’.

VII. DISCUSSION

Qualitative analysis. Several patterns emerged in both the
successes and failures of ANDROB2O. One of the most persis-
tent challenges was C03, where missing elements in the buggy
XML hierarchy made it essentially impossible for the model
to select them during the FBO construction step. Occasionally,
however, ANDROB2O successfully handled C03 cases when
the element selection step proposed non-existent elements
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TABLE V: Performance across LLMs.
Method Metric GPT-4 Turbo GPT-4o LLaMA 4

PC01

Accuracy 27.3 35.3 35.3
Precision 71.4 85.7 85.7

Recall 33.3 37.5 37.5
F1 45.5 52.2 52.2

PC04

Accuracy 39.4 47.1 47.1
Precision 73.7 84.2 84.2

Recall 48.3 51.6 51.6
F1 58.3 64.0 64.0

ANDROB2O

Accuracy 52.9 61.8 52.9
Precision 78.3 87.5 78.3

Recall 62.1 67.7 62.1
F1 69.3 76.4 69.3

that correctly reflected what should have been present in a
non-buggy app. These successes typically occurred when the
bug report explicitly described the missing element, often
specifying its expected text.

In addition to C03, ANDROB2O struggled in cases where
detection depended on variable attributes such as screen
position, particularly for scroll positioning failures. Another
recurring issue was the models’ inability to handle non-English
text; in such cases, the LLMs frequently substituted English
translations rather than using the correct localized strings. This
problem was consistent across all three models.

While the poor performance of C03 was slightly exacer-
bated by the two-step process, the performance gains of AN-
DROB2O outweighed these limitations. ANDROB2O achieved
nearly double the element selection performance of PC01 and
over a 50% improvement compared to PC04.

There were two large contributors to this improvement.
First, ANDROB2O handled cases requiring reasoning over
multiple elements more effectively—whether counting ele-
ments, comparing multiple selections, or checking for the
presence of several items. Second, the two-step design stopped
the LLMs’ tendency to incorrectly generate GUI interactions
together with assertions as part of FBOs, which prevented
failure detection by changing the app state during test case
execution. By providing a more structured framework, the two-
step approach only generated assertions as expected.

Looking forward, several extensions may address remaining
failures. For C03, providing historical XML hierarchies may
help infer missing elements. Specifying the target language
during prompting may improve non-English handling. For
variable attributes like scroll position, supplying user input
traces and their intended effects may improve reasoning about
dynamic GUI changes.
Category-specific FBO generation. In this work, we iden-
tified 11 categories of FBOs. Although we studied a general
approach for generating FBOs applicable to any failure, we ob-
served that there is the potential for an FBO-specific approach
for failures of some categories. For example, for the category
of FBOs that check for the position of an element on the
screen (C06), we observed that prompts with an example from
this category performed better than using examples from other
categories. Another interesting situation happens for FBOs that
need to assert that right element (which is not on screen)

should be on screen (C03). For this category, we observed
cases in which the LLM is able to generate proper assertions
but the element used for the assertions is not the correct one.
In these cases, our approach could be supplemented with code
from previous versions of the app to account for cases in which
the failure was introduced through regression. Future work
could investigate automated methods that jointly categorize,
then generate FBOs using category-specific approaches.
Using more artifacts. In our work, we did not consider reports
whose failures require asserting on properties not available
in the XML hierarchy (e.g., the color of a GUI element).
We believe that our approach could be enhanced by using
more detailed information about the GUI and its elements
provided in an augmented version of the XML hierarchy or
other artifacts, to be able to identify and create more types
of FBOs. For example, the color of a GUI element could be
detected and provided in the hierarchy to help determine if
a failure has occurred. Future work in this direction could
investigate the trade-off between having more detailed artifacts
and a limited context window in the LLM. Additionally, using
GUI information from the current and previous versions of the
app could also help generate FBOs by providing the LLM with
more contextual information about differences/regressions.
Integration with automated failure reproduction tools. Our
integration with REBL is a promising first step of potentially
many. In particular, we observed that REBL produces false
positives (i.e., failures marked as reproduced that actually
are not) that could be filtered out by ANDROB2O as our
approach does not generate an FBO in those cases. We
believe that ANDROB2O could be adapted or extended to
work with automated failure reproduction tools to guide
reproduction as a feedback mechanism for tools to decide
whether to continue or stop failure reproduction.

VIII. LIMITATIONS & THREATS TO VALIDITY

Limitations. For oracles of type C02, which represents
oracles that check that the wrong element is not on screen,
the FBO generated by ANDROB2O attempts to search for the
GUI element in the GUI hierarchy by checking whether or not
there is one that matches the property value(s) suggested by the
LLM. This type of oracle could miss failures if it is improperly
applied to a screen other than the failing screen (which
also does not contain the component) during test execution.
However, this scenario is unlikely. While app changes or non-
determinism could change the test behavior such that it does
not arrive at the proper failure screen, the test is likely to fail
before triggering the oracle due to the non-execution of GUI
actions leading to the failure screen. This type of oracle could
be strengthened in future work by also including the name of
the screen on which it needs to be applied as part of the oracle.

External validity. Our results might not generalize to
other bug reports. To mitigate this, we built our dataset using
the two largest collections of reproducible bug reports. Our
evaluation includes 152 bug reports covering various failures
across 27 apps from different domains. A limitation of our
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preliminary study is that it relies on only 17 bug reports
from failure screens, and we ran prompts three times. This
was necessary due to the expensive manual analysis of over
six thousand configuration results. Although we performed
an evaluation on data that we believe was not seen by the
model considered, the model might have seen similar bug
reports and apps, affecting the results associated with this
part of the evaluation. However, the 16 cases follow a similar
distribution of oracle categories to the 152 reports used in
the approach evaluation and are diverse in terms of bug
types and apps. This diversity reduces threats to the external
validity of this set of unseen cases. It should be noted that
developing this dataset required substantial manual effort to
(i) reliably reproduce bugs, (ii) construct the ground truth, and
(iii) validate the oracles produced by the approach and the
baselines. We plan to consider a large dataset in future work.

Internal and construct validity. Our results may be
affected by errors in our analysis scripts or approach
implementation. To reduce this risk, we thoroughly tested our
code and manually reviewed the results. Additionally, since
some findings rely on qualitative analysis, differences in rater
interpretation could be a factor. However, when applicable, we
measured inter-rater reliability, which was consistently high.

IX. RELATED WORK

Automated Bug Reproduction. Existing approaches focus on
reproducing crashing failures by extracting S2Rs from bug
reports, parsing steps, matching them to GUI elements, and ex-
ecuting corresponding GUI-level events [14–23]. These tech-
niques rely on heuristics [14–16], neural models [17, 18], and
LLMs [19, 20]. Additional strategies leverage stack traces [14,
58], search-based app exploration [58], reinforcement learn-
ing [21, 23], and LLM-based reasoning [19, 20, 22, 23].

REBL [24] addresses the problem of failure reproduction by
using an LLM paired with reinforcement learning to explore
the app and identify sequences of user actions that trigger
failures. Its goal is to reach the failure state based on crash
reports or stack traces; however, it does not generate test
oracles to validate the failure, instead it uses a stopping
mechanism based on LLM feedback. In contrast, ANDROB2O
focuses on oracle generation, synthesizing test assertions from
bug reports and UI hierarchies for failure validation. While
the two approaches address different stages of the debugging
process, they are complementary and, as we show in our
results, could be integrated together for improved performance.

Most LLM-based methods target mobile app crashes, with
some adapting to libraries [19, 20, 58, 59]. LIBRO [19, 20] uses
LLMs to generate scripts for library failure reproduction, but
these include assertions only for libraries, not failures in GUIs.
Our work extends prior work by automatically generating
oracles for non-crashing functional failures. To our knowledge,
ANDROB2O is the first to generate test oracles for mobile app
failures reported in bug reports.
Test Oracle Automation. Test oracle generation has been
studied across domains [60–63], leveraging diverse tech-
niques such as formal specification [64], static analysis [65],

fuzzing [25], and computer vision [66, 67]. Mobile app-
specific oracle generation has focused on GUI display is-
sues [66–69], code-based failure detection [70], and setting-
related defects [71]. However, these approaches do not gener-
ate oracles from bug reports.

Zaeem et al. [72] and Baral et al. [29] classified mobile
app failure oracles and proposed techniques for detecting
invariant violations. Our failure categorization builds on Baral
et al.’s taxonomy. Liu et al. [73] introduced GPTDroid, using
iterative LLM-based Q&A for app interaction, while Yoon et
al. [74] developed LLM agents to generate test scenarios. As
opposed to these works, we are the first to explore LLM-driven
assertion-based test oracle generation for verifying functional
mobile app failures reported in bug reports.

X. CONCLUSION

We explored the feasibility of automatically generating
test oracles for validating non-crashing, functional failures
described in Android app bug reports. Due to the variability
of the manifestation of such failures and their descriptions,
we first empirically study the capabilities of an LLM for
the task, and then develop a technique, ANDROB2O, for the
fully automated generation of failure-based oracles from bug
reports. An empirical evaluation of ANDROB2O on our newly
derived benchmark (FBO4A) illustrates that the approach can
effectively generate correct failure-revealing assertions both
when failure screens are manually and automatically provided.
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