
On the Reduction of Verbose Queries in
Text Retrieval Based Software Maintenance

Oscar Chaparro, Andrian Marcus
The University of Texas at Dallas, Richardson, TX, USA

ojchaparroa@utdallas.edu, amarcus@utdallas.edu

ABSTRACT
We argue that verbose queries used for software retrieval
contain many terms that follow specific discourse rules, yet
hinder retrieval. We report the results of an empirical study
on the effect of removing such terms from verbose queries in
the context of Text Retrieval-based concept location. In the
study, we remove terms from 424 queries, generated from
bug reports of nine open source systems. Removing the
terms leads to substantial improvement in retrieval: 73% of
the queries are improved, leading to 21.8% and 13.4% gain
in terms of MRR and MAP, respectively. Such improvement
is larger than that of many more sophisticated state-of-the-
art approaches. The results show promise and the future
challenge lies with automatically identifying the terms to be
removed from the verbose queries.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering and
engineering

Keywords
Query Reduction, Software Maintenance, Text Retrieval

1. INTRODUCTION
Researchers developed Text Retrieval (TR)-based tech-

niques to support more than 30 software engineering tasks
[2], such as, traceability link recovery or concept location
in software. Automatic TR-based approaches usually use
as input the complete text of software artifacts as queries.
For example, many automatic TR-based concept location
approaches, use the title and complete description of bug
reports as queries [15, 17, 20, 22, 23], whereas, traceability
link recovery techniques often use complete requirements or
use cases [4, 7, 8]. Such artifacts have a well defined format
[3, 5] and audiences, which impose specific discourse rules
[13]. In other words, these artifacts are not meant to be used

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 14-22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05.

DOI: http://dx.doi.org/10.1145/2889160.2892647

as queries for software artifact retrieval. For example, bug
reports usually describe the observed and expected software
behaviors, steps to reproduce the bug, code examples, etc.
[3]. Often times the bug descriptions use generic phrases,
such as, “the application crashes” or “the web page is not
loaded in the browser”. Such terms are likely to negatively
impact the performance of code retrieval.

The traditional way of handling user queries, including
verbose ones, in software engineering applications, is through
document/query preprocessing and query reformulation. Pre-
processing is a common step in the retrieval process that
includes: stop word removal, common English and program-
ming language terms removal, code identifiers splitting, stem-
ming, spellchecking, etc. [7, 15]. Often, the queries remain
verbose even after preprocessing. Query reformulation ap-
proaches have mainly focused on adding terms to queries
(a.k.a. query expansion) [9, 11], such as, synonyms, and
selecting/boosting key terms [6], rather than on removing
noisy words (a.k.a. query reduction). In this paper, we
show how the reduction of verbose queries has the poten-
tial to substantially improve the performance of TR-based
concept location.

2. EMPIRICAL STUDY
The goal of our empirical study is to compare the retrieval

accuracy achieved by the reduced queries with the one ob-
tained with the original queries. Our purpose is to determine
the effect of removing terms from queries on the performance
of a traditional TR-based concept location technique, i.e.,
using Lucene [12], to help developers locate bugs in source
code. In consequence, we formulate the following research
question:

Do reduced queries improve de accuracy of TR-based
concept location compared to queries with no modification?

2.1 Context and Planning
The context of the study is represented by 424 bug reports

marked as fixed, from nine open source systems, used in re-
cent work [17] (see Table 1). The bug reports are used as
queries to retrieve classes that need to change. Each query
is created by concatenating the title and description of a bug
report. Code documents (i.e., classes) are created from iden-
tifiers, comments and literals. Queries and code documents
are normalized using identifier splitting, special characters
removal, common English stop words and programming key-
words removal, and stemming [19]. We also remove code
snippets, identifier references, and execution traces from the
queries (using an Island Parser [18]), as this information

Table 1: Systems used in the empirical study

System
of bug # of # of terms
reports classes per querya

BookKeeper 4.1.0 40 587 14.0 (11.5)
Derby 10.9.1.0 96 3,139 21.1 (17)
Lucene 4.0 34 5,901 15.2 (12)
Mahout 0.8 30 3,260 21.0 (17.5)
OpenJPA 2.2.0 18 4,994 25.3 (23)
Pig 0.11.1 48 2,510 17.2 (14)
Solr 4.4.0 55 6,486 20.0 (16)
Tika 1.3 23 582 20.0 (17)
ZooKeeper 3.4.5 80 697 21.0 (16)

Total 424 28,156 19.4 (16)
a. Average values, and in parenthesis, median values

Table 2: Maximum retrieval performance achieved
by reduced queries in comparison with the original
queries

Queries
Avg

MRR MAP HIT@1
Effect.a

Original 159.5 (8) 31.7% 21.9% 21.7%
Reduced 103 (2) 53.5% 35.3% 41.7%

a.In parenthesis, median Effectiveness values

is likely to contain explicit references to the code, thus re-
ducing bias [14, 21]. After preprocessing, the queries still
remain verbose, as the average query length is 19.4 terms
(see Table 1).

To evaluate the performance of the TR-based approach
(i.e., Lucene), we compute a set of metrics against a gold
set, which contains the relevant code documents for each
query. Existing classes of the software systems that were
modified to fix each bug represent the relevant code docu-
ments. We manually filtered out those classes with changes
that were not intended to fix the bug described in the re-
ports. We utilize standard metrics previously used in con-
cept location research [10, 16]. We use Effectiveness, i.e.,
the best rank obtained for a query; Mean Reciprocal Rank
(MRR), a statistic that measures the aggregate quality of the
ranking of a retrieval approach and is computed as the aver-
age between the reciprocal Effectiveness of a set of queries;
Mean Average Precision (MAP), another aggregate measure
that reflects how well all the changed documents rank; and
HIT@1, the number of queries with one relevant document
retrieved in the top of the ranked list (see [17, 22] for the
metric definitions).

In order to identify the query terms to be removed we per-
form the following procedure. For a particular query q, we
obtain its baseline Effectiveness by running q with Lucene
without any modification. Then, for each term t in q, we
create a new query qt by removing t from q. We run qt and
measure the Effectiveness achieved by the query. Finally, we
mark a term t as to-remove if the reduced query qt achieves
a better (i.e., lower) Effectiveness than the baseline Effec-
tiveness. To obtain the reduced queries, we sort the marked
terms in descending order, by the magnitude of improve-
ment in Effectiveness, and remove them one by one from
the original query, starting from the top one. We measure
and report the performance of each reduced query (see [1]).
This procedure is repeated for every query in our dataset.

Figure 1: Retrieval performance when k terms are
removed from the queries

0 1 2 3 4 5 6

MRR 31.7% 41.2% 45.1% 47.2% 48.6% 49.5% 50.0%

MAP 21.9% 27.2% 29.7% 31.0% 31.8% 32.4% 32.8%

HIT@1 21.7% 30.4% 35.1% 36.6% 37.5% 38.0% 38.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

of terms removed

2.2 Results
Table 2 summarizes the results obtained for the original

and reduced queries, when all the marked terms are re-
moved. 26% of the queries were not reduced, as no term
was marked for reduction. As Table 2 reveals, most of these
(21.7% - see HITS@1) already have Effectiveness one (1), so
removing any term cannot lead to improvement. As for the
improvements, nearly 73% of the queries are improved via
the reduction, reaching up to 21.8%, 13.4% and 20% overall
gain in terms of MRR, MAP and HIT@1, respectively. We
note that the improvement is higher or comparable with the
results reported by state-of-the-art research, where multiple
sources of information are used [15, 22, 24]. The reduced
queries also achieve a two (2) median effectiveness, i.e., for
50% of the queries, the first relevant document is retrieved
in the first two positions. For the 74% of the queries where
at least one term is removed, 6.6 out of 18.2 query terms are
removed, in average (i.e., 36.3% of the queries’ length). It is
interesting to note that 1% of the queries had terms marked
for removal, yet when all of them were removed, the results
did not improve. Such cases need further investigation.

We also report the performance trend when the terms are
removed one by one from the original queries (i.e., when 0
terms are deleted). Fig. 1 shows that such trend follows a
monotonic increasing behavior, having higher value changes
when few terms are removed. The curve then slowly grows as
the number of terms removed increases. The improvement
is substantial when one term is deleted (9.5% MRR, 5.3%
MAP and 8.7 HIT@1).

3. CONCLUSION AND FUTURE WORK
Our empirical study indicates that verbose queries used

in TR-based software maintenance can be substantially im-
proved via reduction. The main challenge for future work
is automatically identifying the terms that should be re-
moved to achieve retrieval improvement. Machine learning
techniques could be used to identify such terms, based on
statistical and semantic features of the terms.

Acknowledgments
This research was supported in part by the following NSF
grants: CCF-1526118 and CCF-1514460.

4. REFERENCES
[1] Online replication package: https:

//seers.utdallas.edu/projects/query-reduction-poster.

[2] V. Arnaoudova, S. Haiduc, A. Marcus, and
G. Antoniol. The use of text retrieval and natural
language processing in software engineering. In
Proceedings of the 37th International Conference on
Software Engineering, pages 949–950, 2015.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’16), pages 308–318, 2008.

[4] M. Borg, P. Runeson, and A. Ardö. Recovering from a
decade: a systematic mapping of information retrieval
approaches to software traceability. Empirical
Software Engineering, 19(6):1565–1616, 2014.

[5] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann.
Information needs in bug reports: Improving
cooperation between developers and users. In
Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW’10), pages
301–310, 2010.

[6] G. Capobianco, A. D. Lucia, R. Oliveto,
A. Panichella, and S. Panichella. Improving ir-based
traceability recovery via noun-based indexing of
software artifacts. Journal of Software: Evolution and
Process, 25(7):743–762, 2013.

[7] A. De Lucia, A. Marcus, R. Oliveto, and
D. Poshyvanyk. Information retrieval methods for
automated traceability recovery. In J. Cleland-Huang,
O. Gotel, and A. Zisman, editors, Software and
Systems Traceability, pages 71–98. Springer, 2012.

[8] D. Diaz, G. Bavota, A. Marcus, R. Oliveto,
S. Takahashi, and A. De Lucia. Using code ownership
to improve ir-based traceability link recovery. In
Proceedings of the IEEE 21st International Conference
on Program Comprehension (ICPC’13), pages
123–132, 2013.

[9] T. Dietrich, J. Cleland-Huang, and Y. Shin. Learning
effective query transformations for enhanced
requirements trace retrieval. In Proceedings of the
IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE’13), pages
586–591, 2013.

[10] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: A taxonomy and
survey. Journal of Software: Evolution and Process,
25(1):53–95, 2012.

[11] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto,
A. De Lucia, and T. Menzies. Automatic query
reformulations for text retrieval in software
engineering. In Proceedings of the 35th IEEE/ACM
International Conference on Software Engineering
(ICSE’13), pages 842–851, 2013.

[12] E. Hatcher and O. Gospodnetic. Lucene in Action.

Manning Publications, 2004.

[13] A. J. Ko, B. A. Myers, and D. H. Chau. A linguistic
analysis of how people describe software problems in
bug reports. In Proceedings of the IEEE Conference
on Visual Languages and Human-Centric Computing
(VL/HCC’06), pages 127–134, 2006.

[14] P. S. Kochhar, Y. Tian, and D. Lo. Potential biases in
bug localization: Do they matter? In Proceedings of
the 29th ACM/IEEE International Conference on
Automated Software Engineering (ASE’14), pages
803–814, 2014.

[15] T.-D. B. Le, R. J. Oentaryo, and D. Lo. Information
retrieval and spectrum based bug localization: Better
together. In Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE’15),
pages 579–590, 2015.

[16] A. Marcus and G. Antoniol. On the use of text
retrieval techniques in software engineering. In
Proceedings of 34th IEEE/ACM International
Conference on Software Engineering (ICSE’12), 2012.

[17] L. Moreno, J. Treadway, A. Marcus, and W. Shen. On
the use of stack traces to improve text retrieval-based
bug localization. In Proceedings of the IEEE
International Conference on Software Maintenance
and Evolution (ICSME’14), pages 151–160, 2014.

[18] L. Ponzanelli, A. Mocci, and M. Lanza. Stormed:
Stack overflow ready made data. In Proceedings of the
12th Working Conference on Mining Software
Repositories (MSR’15), page to appear, 2015.

[19] M. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[20] R. Saha, M. Lease, S. Khurshid, and D. Perry.
Improving bug localization using structured
information retrieval. In Proceedings of the 28th
International Conference on Automated Software
Engineering (ASE’13), pages 345–355, 2013.

[21] Q. Wang, C. Parnin, and A. Orso. Evaluating the
usefulness of ir-based fault localization techniques. In
Proceedings of the 2015 International Symposium on
Software Testing and Analysis (ISSTA’15), pages
1–11, 2015.

[22] S. Wang and D. Lo. Version history, similar report,
and structure: Putting them together for improved
bug localization. In Proceedings of the 22nd
International Conference on Program Comprehension
(ICPC’14), pages 53–63, 2014.

[23] S. Wang, D. Lo, and J. Lawall. Compositional vector
space models for improved bug localization. In
Proceedings of the IEEE International Conference on
Software Maintenance and Evolution (ICSME’14),
pages 171–180, 2014.

[24] X. Ye, R. Bunescu, and C. Liu. Mapping bug reports
to relevant files: A ranking model, a fine-grained
benchmark, and feature evaluation. IEEE
Transactions on Software Engineering, PP(99):1–1,
2015.

