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ABSTRACT
We argue that verbose queries used for software retrieval
contain many terms that follow specific discourse rules, yet
hinder retrieval. We report the results of an empirical study
on the effect of removing such terms from verbose queries in
the context of Text Retrieval-based concept location. In the
study, we remove terms from 424 queries, generated from
bug reports of nine open source systems. Removing the
terms leads to substantial improvement in retrieval: 73% of
the queries are improved, leading to 21.8% and 13.4% gain
in terms of MRR and MAP, respectively. Such improvement
is larger than that of many more sophisticated state-of-the-
art approaches. The results show promise and the future
challenge lies with automatically identifying the terms to be
removed from the verbose queries.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering and
engineering

Keywords
Query Reduction, Software Maintenance, Text Retrieval

1. INTRODUCTION
Researchers developed Text Retrieval (TR)-based tech-

niques to support more than 30 software engineering tasks
[2], such as, traceability link recovery or concept location
in software. Automatic TR-based approaches usually use
as input the complete text of software artifacts as queries.
For example, many automatic TR-based concept location
approaches, use the title and complete description of bug
reports as queries [15, 17, 20, 22, 23], whereas, traceability
link recovery techniques often use complete requirements or
use cases [4, 7, 8]. Such artifacts have a well defined format
[3, 5] and audiences, which impose specific discourse rules
[13]. In other words, these artifacts are not meant to be used
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as queries for software artifact retrieval. For example, bug
reports usually describe the observed and expected software
behaviors, steps to reproduce the bug, code examples, etc.
[3]. Often times the bug descriptions use generic phrases,
such as, “the application crashes” or “the web page is not
loaded in the browser”. Such terms are likely to negatively
impact the performance of code retrieval.

The traditional way of handling user queries, including
verbose ones, in software engineering applications, is through
document/query preprocessing and query reformulation. Pre-
processing is a common step in the retrieval process that
includes: stop word removal, common English and program-
ming language terms removal, code identifiers splitting, stem-
ming, spellchecking, etc. [7, 15]. Often, the queries remain
verbose even after preprocessing. Query reformulation ap-
proaches have mainly focused on adding terms to queries
(a.k.a. query expansion) [9, 11], such as, synonyms, and
selecting/boosting key terms [6], rather than on removing
noisy words (a.k.a. query reduction). In this paper, we
show how the reduction of verbose queries has the poten-
tial to substantially improve the performance of TR-based
concept location.

2. EMPIRICAL STUDY
The goal of our empirical study is to compare the retrieval

accuracy achieved by the reduced queries with the one ob-
tained with the original queries. Our purpose is to determine
the effect of removing terms from queries on the performance
of a traditional TR-based concept location technique, i.e.,
using Lucene [12], to help developers locate bugs in source
code. In consequence, we formulate the following research
question:

Do reduced queries improve de accuracy of TR-based
concept location compared to queries with no modification?

2.1 Context and Planning
The context of the study is represented by 424 bug reports

marked as fixed, from nine open source systems, used in re-
cent work [17] (see Table 1). The bug reports are used as
queries to retrieve classes that need to change. Each query
is created by concatenating the title and description of a bug
report. Code documents (i.e., classes) are created from iden-
tifiers, comments and literals. Queries and code documents
are normalized using identifier splitting, special characters
removal, common English stop words and programming key-
words removal, and stemming [19]. We also remove code
snippets, identifier references, and execution traces from the
queries (using an Island Parser [18]), as this information



Table 1: Systems used in the empirical study

System
# of bug # of # of terms
reports classes per querya

BookKeeper 4.1.0 40 587 14.0 (11.5)
Derby 10.9.1.0 96 3,139 21.1 (17)
Lucene 4.0 34 5,901 15.2 (12)
Mahout 0.8 30 3,260 21.0 (17.5)
OpenJPA 2.2.0 18 4,994 25.3 (23)
Pig 0.11.1 48 2,510 17.2 (14)
Solr 4.4.0 55 6,486 20.0 (16)
Tika 1.3 23 582 20.0 (17)
ZooKeeper 3.4.5 80 697 21.0 (16)

Total 424 28,156 19.4 (16)
a. Average values, and in parenthesis, median values

Table 2: Maximum retrieval performance achieved
by reduced queries in comparison with the original
queries

Queries
Avg

MRR MAP HIT@1
Effect.a

Original 159.5 (8) 31.7% 21.9% 21.7%
Reduced 103 (2) 53.5% 35.3% 41.7%

a.In parenthesis, median Effectiveness values

is likely to contain explicit references to the code, thus re-
ducing bias [14, 21]. After preprocessing, the queries still
remain verbose, as the average query length is 19.4 terms
(see Table 1).

To evaluate the performance of the TR-based approach
(i.e., Lucene), we compute a set of metrics against a gold
set, which contains the relevant code documents for each
query. Existing classes of the software systems that were
modified to fix each bug represent the relevant code docu-
ments. We manually filtered out those classes with changes
that were not intended to fix the bug described in the re-
ports. We utilize standard metrics previously used in con-
cept location research [10, 16]. We use Effectiveness, i.e.,
the best rank obtained for a query; Mean Reciprocal Rank
(MRR), a statistic that measures the aggregate quality of the
ranking of a retrieval approach and is computed as the aver-
age between the reciprocal Effectiveness of a set of queries;
Mean Average Precision (MAP), another aggregate measure
that reflects how well all the changed documents rank; and
HIT@1, the number of queries with one relevant document
retrieved in the top of the ranked list (see [17, 22] for the
metric definitions).

In order to identify the query terms to be removed we per-
form the following procedure. For a particular query q, we
obtain its baseline Effectiveness by running q with Lucene
without any modification. Then, for each term t in q, we
create a new query qt by removing t from q. We run qt and
measure the Effectiveness achieved by the query. Finally, we
mark a term t as to-remove if the reduced query qt achieves
a better (i.e., lower) Effectiveness than the baseline Effec-
tiveness. To obtain the reduced queries, we sort the marked
terms in descending order, by the magnitude of improve-
ment in Effectiveness, and remove them one by one from
the original query, starting from the top one. We measure
and report the performance of each reduced query (see [1]).
This procedure is repeated for every query in our dataset.

Figure 1: Retrieval performance when k terms are
removed from the queries

0 1 2 3 4 5 6

MRR 31.7% 41.2% 45.1% 47.2% 48.6% 49.5% 50.0%

MAP 21.9% 27.2% 29.7% 31.0% 31.8% 32.4% 32.8%

HIT@1 21.7% 30.4% 35.1% 36.6% 37.5% 38.0% 38.0%
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2.2 Results
Table 2 summarizes the results obtained for the original

and reduced queries, when all the marked terms are re-
moved. 26% of the queries were not reduced, as no term
was marked for reduction. As Table 2 reveals, most of these
(21.7% - see HITS@1) already have Effectiveness one (1), so
removing any term cannot lead to improvement. As for the
improvements, nearly 73% of the queries are improved via
the reduction, reaching up to 21.8%, 13.4% and 20% overall
gain in terms of MRR, MAP and HIT@1, respectively. We
note that the improvement is higher or comparable with the
results reported by state-of-the-art research, where multiple
sources of information are used [15, 22, 24]. The reduced
queries also achieve a two (2) median effectiveness, i.e., for
50% of the queries, the first relevant document is retrieved
in the first two positions. For the 74% of the queries where
at least one term is removed, 6.6 out of 18.2 query terms are
removed, in average (i.e., 36.3% of the queries’ length). It is
interesting to note that 1% of the queries had terms marked
for removal, yet when all of them were removed, the results
did not improve. Such cases need further investigation.

We also report the performance trend when the terms are
removed one by one from the original queries (i.e., when 0
terms are deleted). Fig. 1 shows that such trend follows a
monotonic increasing behavior, having higher value changes
when few terms are removed. The curve then slowly grows as
the number of terms removed increases. The improvement
is substantial when one term is deleted (9.5% MRR, 5.3%
MAP and 8.7 HIT@1).

3. CONCLUSION AND FUTURE WORK
Our empirical study indicates that verbose queries used

in TR-based software maintenance can be substantially im-
proved via reduction. The main challenge for future work
is automatically identifying the terms that should be re-
moved to achieve retrieval improvement. Machine learning
techniques could be used to identify such terms, based on
statistical and semantic features of the terms.
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