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Abstract—Software developers rely on essential textual infor-
mation from bug reports (such as Observed Behavior, Expected
Behavior, and Steps to Reproduce) to triage and fix software bugs.
Unfortunately, while relevant and useful, this information is often
missing, incomplete, superficial, ambiguous, or complex to follow.
Low-quality content in bug reports causes delay and extra effort
on bug triage and fixing. Current technology and research are
insufficient to support users and developers on providing high-
quality content in bug reports. Our research is intended to fill
in this gap, as it aims at improving: (1) the quality of natural
language content in bug reports, and (2) the accuracy of Text
Retrieval (TR)-based bug localization and duplicate detection.
To achieve such goals, our research will identify, enforce, and
leverage the discourse that reporters use to describe software
bugs.

Index Terms—Discourse Analysis, Bug Reporting, Bug Local-
ization, Duplicate Bug Report Detection

I. PROBLEM AND RESEARCH STATEMENT

Bug reports are meant to collect relevant information about
the bugs that users find when using software. The information
provided in such reports is intended to help developers on
diagnosing and removing software bugs [1]. While bug reports
contain structured bug data such as operating system, system
version or attachments (e.g., stack traces, files, and code),
they mostly contain unstructured bug information in natural
language form [1], [2], [3]. Unstructured natural language
content produced by reporters includes the description of
software (mis)behavior (i.e., Observed Behavior or OB), the
steps to reproduce the (mis)behavior (i.e., Steps to Reproduce
or S2R), and the normal software behavior (i.e., Expected
Behavior or EB). Developers identify such content among the
most useful information when triaging and fixing bugs [1].

Unfortunately, while considered useful, OB, EB, and S2R
content is not always found in bug reports, and when it is, its
quality is often low. In fact, our preliminary analysis of nearly
3K bug reports from nine software systems indicates that,
while most of the bug reports contain OB (i.e., 93.5%), only
35.2% and 51.4% of the reports explicitly describe EB and
S2R, respectively. (see section II-A). In addition, numerous
researchers found that textual descriptions in bug reports
are often incomplete, superficial, ambiguous, or complex to
follow (i.e., bug descriptions contain low-quality content) [1],
[4], [5], [6]. The problem is also acknowledged by software
engineering professionals. Recently, developers from more
than a thousand open source projects signed and sent a petition

to GitHub remarking that “issues are often filed missing crucial
information like reproduction steps and version tested” [7].

Low-quality content in bug reports impacts negatively soft-
ware users and developers in many ways. Low-quality content
is one of the main reasons for non-reproduced bugs [6],
non-fixed bugs [5], and additional bug triage effort [8], as
developers have to spend more time and effort understanding
bug descriptions or asking for clarifications and additional
information [6], [8]. Low-quality bug reports are also likely
to gain low attention by developers [9]. In addition, they
lead to low-quality queries that cause Text Retrieval (TR)-
based approaches for bug localization [10], [11] and bug
duplicate detection [12] to have low accuracy. As indicated
by developers, absent and wrong information in bug reports
are the main causes for delay on bug fixing [1].

One the main reasons for low-quality content in bug reports
is insufficient tool support for bug reporting [1], [6], [7]. In
the aforementioned GitHub petition [7], developers call for
improvements to GitHub’s technology to ensure that essential
information is reported by users. This problem extends to
other bug tracking systems. Most of these systems capture
unstructured natural language bug descriptions using web
forms without any content verification or enforcement. A
handful of bug trackers (for particular projects, e.g., Bugzilla in
the Mozilla Firefox project) provide semi-structured reporting
of natural language information, in the form of predefined
text templates that explicitly ask for OB, EB, and S2R. This
solution is insufficient to address the problem as it does
not guarantee that users will provide high-quality content if
provided at all.

Very little research has been done to support users on bug
reporting and improve the natural language content in bug
reports. Zimmerman et al. [1] propose an approach that pre-
dicts the quality level of bug reports. However, this approach
does not give actionable recommendations to users on how to
improve their bug descriptions. Moran et al. [4] developed a
technique to augment the steps to reproduce in bug reports via
screenshots and GUI-component images. This approach does
not focus on improving the textual content of bug descriptions.
More recently, the same authors proposed an approach that
finds, reproduces, and reports potential crashes in mobile
applications without any user intervention [13]. However, this
approach is not intended to support users when they textually
describe software bugs. Despite these few attempts to support
users on bug reporting, the fact remains that bug reports have



low-quality textual content and there is limited tool support
on bug reporting to improve their quality.

In this dissertation, we aim at improving the textual content
of bug reports by (1) enforcing the presence of OB, EB, and
S2R, and (2) recommending discourse elements to describe
such content in bug reports. To accomplish this goal, we will
design, implement, and evaluate novel techniques that will
leverage existent natural language discourse in bug reports
and techniques in Natural Language Processing (NLP) and
Machine Learning (ML). By identifying, enforcing, and lever-
aging Observed Behavior, Expected Behavior, and Steps to
Reproduce discourse, bug reports will have higher quality,
and TR-based bug localization and duplicate detection will
improve. The remaining sections describe in detail our research
plan and anticipated contributions.

II. PROPOSED RESEARCH

The goal of our research is twofold: improve the quality
of natural language content in bug reports, and improve the
accuracy of TR-based bug localization and duplicate detection.
We will achieve our goals by identifying, enforcing, and
leveraging the Observed Behavior (OB), Expected Behavior
(EB), and Steps to Reproduce (S2R) discourse used in bug
descriptions.

Our research goals impose a set of research challenges that
we plan to overcome in this dissertation:

A. Determining the OB, EB, and S2R discourse that re-
porters use when describing software bugs.

B. Automatically identifying and enforcing such discourse
in new bug reports.

C. Recommending discourse elements (e.g., terms or sen-
tences) to reporters to improve OB, EB, and S2R de-
scriptions in bug reports.

D. Improving TR-based bug localization and duplicate de-
tection approaches using the OB, EB, and S2R discourse
used in bug reports.

The next sections describe in detail our research plan and
preliminary results.

A. Determining the Discourse Used in Bug Descriptions

The first major challenge of this research is determining
and understanding the discourse used by reporters to describe
OB, EB, and S2R in bug reports. Our hypothesis is that users
follow a restricted discourse to describe their problems in bug
reports, hence it can be leveraged to improve many tasks on
bug triage and bug fixing. To test our hypothesis, we conducted
an empirical study using a grounded theory-based approach
to discover discourse patterns that capture the syntax and
semantics of sentences and paragraphs in bug descriptions.

We collected a random sample of 2,912 bug reports from
nine software projects from different types and domains1.
These projects use different issue trackers (e.g., Jira or
GitHub). We extracted the text from the bug reports (i.e., title

1Docker, Eclipse, Facebook, Firefox, Hibernate, Httpd, LibreOffice, Open-
MRS, and Wordpress-Android.

and description), used heuristics to automatically parse the
text into paragraphs and sentences, and split the data into two
data sets. The first data set, composed of 1,091 bug reports,
was used to extract the discourse patterns, and the second
data set, composed of the remaining 1,821 bug reports, was
used for validation purposes. Once the data was collected
and pre-processed, the next step was to code the textual
content to discover OB, EB, and S2R discourse patterns.
A discourse pattern is a rule that structures a sentence or
paragraph to convey either OB, EB, or S2R2. Following a
grounded theory methodology, five Ph.D. students manually
tagged the sentences/paragraphs that capture OB, EB, or S2R
with codes that represent discourse patterns. The process
included creating new codes or reusing existing ones to tag
each sentence/paragraph that encoded at least one of the three
types of information. The coding process was fully iterative
and included validation among coders of those cases when it
was not clear what pattern a particular phrase followed.

The coding process produced a set of 154 discourse patterns.
Most of these correspond to sentence-level patterns (i.e., 135),
and OB patterns (i.e., 90). A large proportion of the identified
S2R patterns are paragraph-level (i.e., 13 out 33), which
is expected as sequences of sentences are more suitable to
describe steps to reproduce. The number of EB and S2R
patterns (i.e., 31 and 33, respectively) is relatively low com-
pared to the number of OB patterns. This means that reporters
use narrow discourse to describe the expected behavior and
steps to reproduce. In the case of OB, users tend to use
wider and more variable (yet narrow) discourse to describe
different software misbehavior, compared to expected behavior
and steps to reproduce. Our analysis also revealed that while
most of the bug reports in our data set contain OB (i.e.,
2,724 bug reports - 93.5%), only 1,024 descriptions contain
EB (i.e., 35.2%), and 1,498 contain S2R (i.e., 51.4%). The
results provide evidence of the lack of essential information
in bug reports, fact that contributes to low-quality content in
bug reports. The results of our study confirm our hypothesis:
the discourse that reporters use to describe software bugs is
restricted to a well-defined set of discourse patterns.

Different from our research, existing work has mainly
focused on analyzing linguistic properties of bug report titles
[14], identifying frequently asked questions [8], and studying
the structure of bug reports [1], [2], [3]. Other work has
focused on identifying linguistic patterns from development
conversations in e-mails [15]. None of these works identify
the OB, EB, and S2R discourse used in bug descriptions.

B. Detecting Missing Information in Bug Reports

Our research plan is intended to provide actionable feedback
to software users when they describe software bugs. One way
to do so is by detecting and enforcing OB, EB, and S2R
information in bug reports. Given the narrow discourse used to
describe such information, our hypothesis is that it is possible

2For example, the OB pattern “[subj] [neg aux verb] [verb] [compl]”
corresponds to negative sentences with auxiliary verbs such as “[The icon]
[did not] [change] [to an hourglass]”.



to accurately predict the presence (or absence) of OB, EB, and
S2R in bug reports. In other words, we can alert reporters when
they miss such information when writing bug descriptions.

We designed two approaches that predict the absence of EB
and S2R (as bug reports are more prone to miss such infor-
mation). Our first approach is heuristic-based and relies on
automated part-of-speech and syntactic dependencies parsing
to detect if a bug report matches any of the identified discourse
patterns. We implemented each discourse pattern using the
Stanford CoreNLP toolkit at sentence- and paragraph-level.
Our approach flags a new bug report as containing (or not) EB
or S2R if the report contains any (or no) sentence or paragraph
that matches any of the corresponding discourse patterns. Our
second approach is Machine Learning-based which relies on
different textual features. We trained and tested two Support
Vector Machines (SVMs) for predicting the absence of EB and
S2R, respectively. We used three sets of features to train the
SVMs, namely, POS tags, n-grams (i.e., {1, 2, 3}-grams), and
the individual discourse patterns (using the implementation
from the heuristics-based approach).

We conducted an empirical evaluation to determine the
predictive accuracy of our approaches. Our discourse study
produced the ground truth data set, i.e., bug reports correctly
labeled as containing (or not) EB or S2R. We executed our
heuristics-based approach on the 1,821 bug reports that were
not used to extract the discourse patterns, and we trained/tested
both SVMs using 10-fold cross validation on the same data.
We assessed the performance of the SVMs by using each set
of features (i.e., POS tags, n-grams, and discourse patterns)
and their combination. We report the performance of the
most accurate approach for both EB and S2R. The heuristics-
based approach is the most accurate for predicting EB, as it
achieves 84.4% precision and 78.7% recall. The SVM based
on all features (including the identified discourse patterns) is
the most accurate for predicting S2R, as it achieves 74.3%
precision and 80.1% recall. These results provide evidence
to our hypothesis: it is possible to accurately predict the
absence of EB and S2R in bug reports. Future work will
focus on comparing our approaches with other techniques
(e.g., language models) and conducting empirical studies with
end-users to determine their usefulness.

Our research relates to work on bug report classification
[9], [16], [17], which relies on machine learning and textual
features to classify new bug reports as features requests,
enhancements, or bug descriptions. Similar approaches have
been proposed to classify e-mails [15], app reviews [18] and
forums [19]. The essential difference between our (SVM-
based) approaches and existing software content classifiers is
the use of discourse patterns from bug descriptions. Closer to
the problem we are solving, Davies et al. [2] propose to use
explicit search terms (e.g., “observed behavior”) to find OB,
EB, or S2R content in bug reports. Unfortunately, while sim-
ple and straightforward, this approach produces an excessive
number of false negatives. Finally, similar to our heuristics-
based approach, Sorbo et al. [15] use linguistic heuristics to
detect various content in software e-mail conversations.

C. Recommending Common Bug Discourse Elements

The next challenge that we plan to address in this research
is detecting unusual discourse in bug descriptions and rec-
ommending terminology that reflects common discourse to
describe OB, EB, and S2R. Our goal is to give granular
feedback, at sentence/paragraph level, to reporters when they
describe software bugs. We will rely on the discourse patterns
identified and how frequently they are found in our bug reports
corpus. We will design and evaluate an approach that will use
transformation rules from least- to most-common discourse
patterns. Our approach will be based on the decomposition
of the identified discourse patterns into atomic discourse ele-
ments. The transformation rules will define mappings between
components from infrequent to frequent discourse patterns.
Alternatively, atomic elements of discourse can serve to deter-
mine the matching degree of a sentence to a discourse pattern.
For example, if a sentence matches four out of five elements
for a particular pattern (i.e., the sentence matches 80% of the
pattern), then our approach will suggest terms to match the
remaining discourse element.

We will conduct empirical studies to determine the rec-
ommendation accuracy and usefulness of our approach. We
will develop a tool implementing our approach, which will
be deployed in open source projects. We will observe users’
response and behavior out tool’s predictions and recommenda-
tions. Our tool will record usage information such as clicks,
term selections, and omissions to our recommendations, as
well as, user input such as rewrites to our recommendations.
We will use surveys to get feedback from the users about the
usefulness of our tool and the quality of the final bug reports.
We will also use metrics to estimate the readability and other
properties of the resulting descriptions [1].

The closest related work to our research is Moran et al.’s
approach [4], which relies on imperative templates to automat-
ically generate lists of GUI actions (i.e., steps to reproduce) in
mobile applications whenever the approach finds application
crashes. Different from our focus, other research has been done
to summarize bug reports conversations [20], [21], [22]. To
the best of our knowledge, no previous work has focused on
detecting uncommon discourse in bug reports and suggesting
common wording to describe OB, EB, and S2R.

D. Improving Text Retrieval-based Bug Localization and Du-
plicate Detection

Our final research challenge is improving TR-based bug
localization and duplicate detection. TR-based approaches rely
on the vocabulary agreement and textual similarity between the
queries, created from the full textual content of bug reports,
and the source code [23] or past bug reports [12]. One of the
main problems of these approaches is the high variability of
their accuracy to different quality levels of the input queries
[10], [11]. Our earlier work [10] revealed that it is possible to
achieve substantial accuracy improvement on TR-based bug
localization by removing only one term from the queries.
Motivated by this finding, our hypothesis is that specific
content from bug reports (used to create the queries) will



improve TR-based bug localization and duplicate detection.
For instance, since bug reports likely describe the reported
problem in the observed behavior content, we can design a
duplicate detector that uses the text corresponding to observed
behavior as queries. Our goal is defining, implementing,
and evaluating an approach that combines different types of
content that exhibit specific discourse patterns, to improve the
accuracy of TR-based bug localization and duplicate detection.
We will conduct standard empirical evaluations with existing
and new data, and well-known evaluation metrics [10], [24].

Previous work in TR-based bug localization and duplicate
detection has focused on using the whole text of bug reports
as queries [10], [24]. Some works have focused on using
specific terms from the bug reports, such as nouns [25]. Other
works have focused on encoding bug report textual content
using word embedding [26] or n-grams [27]. To best of our
knowledge, this is the first proposal on exploiting different
types of textual information and discourse in bug reports to
improve TR-based bug localization and duplicate detection.

III. ANTICIPATED CONTRIBUTIONS

Our research proposal is intended to improve the quality
of bug reports content and the accuracy of TR-based bug
localization and duplicate detection. Our proposed solutions
will provide actionable feedback to software users when
describing the Observed Behavior, Expected Behavior, and
Steps to Reproduce in bug reports. This information and the
discourse used in bug reports will be leveraged to further
support developers on localizing the code that needs to be
changed in response to bugs and on detecting duplicate bug
reports to accelerate bug triage. Our contributions include a set
of the novel techniques that will support software stakeholders
on bug reporting, localization, and duplicate detection. These
techniques will be implemented as usable tools that will be
delivered to the community as open source software. We
expect to produce software data sets containing bug reports,
source code, and information inferred from these sources,
which will be open to the community for verifiability and
further research in this area. The actionable nature of our
solutions will allow users to report OB, EB, and S2R content
that is clear, explicit, less ambiguous, and following common
discourse to describe bugs. Our solutions will also lead to more
accurate and reliable bug localization and duplicate detection,
by leveraging different bug report content and discourse, i.e.,
sources of information currently ignored by existing research
in these areas [10].
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