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ABSTRACT

Bug reports document unexpected software behaviors experienced

by users. To be effective, they should allow bug triagers to easily

understand and reproduce the potential reported bugs, by clearly de-

scribing the Observed Behavior (OB), the Steps to Reproduce (S2R),

and the Expected Behavior (EB). Unfortunately, while considered

extremely useful, reporters often miss such pieces of information in

bug reports and, to date, there is no effective way to automatically

check and enforce their presence. We manually analyzed nearly

3k bug reports to understand to what extent OB, EB, and S2R are

reported in bug reports and what discourse patterns reporters use

to describe such information. We found that (i) while most reports

contain OB (i.e., 93.5%), only 35.2% and 51.4% explicitly describe

EB and S2R, respectively; and (ii) reporters recurrently use 154 dis-

course patterns to describe such content. Based on these findings,

we designed and evaluated an automated approach to detect the

absence (or presence) of EB and S2R in bug descriptions. With its

best setting, our approach is able to detect missing EB (S2R) with

85.9% (69.2%) average precision and 93.2% (83%) average recall. Our

approach intends to improve bug descriptions quality by alerting

reporters about missing EB and S2R at reporting time.

CCS CONCEPTS

•General and reference→ Empirical studies; • Software and

its engineering→ Maintaining software;

KEYWORDS

Bug Descriptions Discourse, Automated Discourse Identification

ACM Reference format:

Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di

Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting

Missing Information in Bug Descriptions. In Proceedings of ESEC/FSE’17,

Paderborn, Germany, September 04-08, 2017, 12 pages.

https://doi.org/10.1145/3106237.3106285

1 INTRODUCTION

Bug reports are meant to collect relevant information about the

bugs that users encounter when using software. The information

provided in such reports is intended to help developers diagnose
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and remove software bugs [78]. While much of the information

in bug reports is structured, the main content of a bug report is

unstructured, that is, expressed in natural language [26, 63, 78]. Un-

structured natural language content produced by reporters includes

the description of software’s (mis)behavior (i.e., Observed Behavior

or OB), the steps to reproduce the (mis)behavior (i.e., Steps to Repro-

duce or S2R), and the software’s Expected Behavior (EB). Previous

research indicates these three pieces of information to be highly im-

portant for developers when triaging and fixing bugs [41, 78]. While

considered extremely useful, reporters do not always include OB,

EB, and S2R in their bug reports. Recently, developers from more

than one thousand open source projects signed and sent a petition

to GitHub remarking that “... issues are often filed missing crucial

information like reproduction steps ...” [1]. In addition, researchers

found that textual descriptions in bug reports are often incomplete,

superficial, ambiguous, or complex to follow [30, 41, 51, 71, 77, 78].

The lack of important information in bug reports is one of the

main reasons for non-reproduced bugs [30], unfixed bugs [77],

and additional bug triage effort [19], as developers have to spend

more time and effort understanding bug descriptions or asking for

clarifications and additional information [19, 30]. Low-quality bug

reports are also likely to gain low attention by developers [31].

As indicated by developers, absent and wrong information in bug

reports is the predominant cause for delays on bug fixing [78].

One of the main reasons for incomplete information in bug de-

scriptions is the inadequate tool support for bug reporting [1, 30, 78].

In the aforementioned GitHub petition [1], developers called for

improvements to GitHub’s technology to ensure that essential in-

formation is reported by users. This problem extends to other bug

tracking systems. Most of these systems capture unstructured natu-

ral language bug descriptions through web forms without any con-

tent verification or enforcement. Some bug tracking systems (e.g.,

Bugzilla in the Mozilla Firefox project [65]) provide semi-structured

reporting of natural language information, using predefined text

templates that explicitly ask for OB, EB, and S2R. Such a solution

is insufficient to address the problem, as it does not guarantee that

reporters will provide this information as expected.

Very little research has been done on detecting the presence/ab-

sence of OB, EB, or S2R in bug descriptions. Most of the approaches

proposed in the literature aremeant to detect other types of informa-

tion, such as source code snippets or stack traces [14, 17, 58, 60, 73].

The few that detect OB, EB, or S2R [17, 26, 78] rely on keyword

matching, such as “observed behavior" to detect OB, or basic heuris-

tics, such as enumerations/itemizations identification to detect S2R.

Unfortunately, while simple and straightforward, these approaches

are suboptimal in accurately detecting such content, as they lead to

an excessive number of undetected cases (i.e., false negatives) [26].

The goal of our research is two-fold: (i) to understand to what

extent and how reporters describe OB, EB, S2R in bug descriptions;
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and (ii) to develop and validate an approach to automatically iden-

tify if bug reports miss such contents. Our conjecture is that re-

porters use a limited vocabulary and a well-defined set of discourse

patterns when describing OB, EB, or S2R. If true, then we can auto-

matically detect the presence or absence of these patterns with high

accuracy. The converse situation would mean that the automatic

analysis of unstructured bug descriptions would be impractical.

To the best of our knowledge, no existing research validates or

invalidates our conjecture. The work on bug description analysis

has mainly focused on investigating linguistic properties of bug

report titles [39], identifying frequently asked questions [19], inves-

tigating unwanted behavior types [24], and studying the structure

of bug reports [26, 63, 78]. Other work has focused on identifying

linguistic patterns in other software engineering sources, such as

development e-mails [27] or app reviews [55]. Little is known about

the discourse that reporters use to describe software bugs.

We manually analyzed 2,912 bug reports from nine systems and

found that, while most reports contain OB (i.e., 93.5%), only 35.2%

and 51.4% explicitly describe EB and S2R, respectively. In addition,

to verify our conjecture, we analyzed sentences and paragraphs

of a subset of 1,091 bug report descriptions by using an open cod-

ing procedure [49]. We found that reporters recurrently use 154

discourse patterns to describe OB, EB, and S2R, which means that

such contents can be automatically detected. Based on our find-

ings, we developed an automated approach for detecting missing

EB and S2R in bug report descriptions (as they are more likely to

be missing), called DeMIBuD–Detecting Missing Information in

Bug Descriptions. We developed three versions of DeMIBuD based

on regular expressions, heuristics and Natural Language Process-

ing (NLP), and Machine Learning (ML). We empirically evaluated

DeMIBuD’s accuracy in detecting missing EB/S2R in a subset of

1,821 bug descriptions. The evaluation indicates that DeMIBuD,

with its best setting, detects missing EB (S2R) with 85.9% (69.2%)

average precision and 93.2% (83%) average recall. DeMIBuD can

be used either to alert submitters while writing bug reports or as a

quality assessment tool for triagers, so that they can contact the re-

porters right away to solicit the missing information while the facts

are still fresh in memory. DeMIBuD can also be used to augment

existing bug report quality models [33, 78].

In summary, the major contributions of our research are: (1) a

set of 154 patterns that capture the discourse followed by reporters

when describing OB, EB, and S2R in bug reports; (2) an automated

approach (DeMIBuD) to detect the absence/presence of EB and S2R

in bug reports; (3) a dataset of labeled bug reports that can be used

for replication purposes and future research [23].

2 THE DISCOURSE OF BUG DESCRIPTIONS

The first goal of our research is to understand how essential informa-

tion about bugs is reported. To this end, we identify the discourse

patterns that reporters use to describe OB, EB, and S2R in bug

reports. Discourse patterns are rules that capture the syntax and

semantics of the text. Figures 1, 2, and 3 are examples of OB, EB,

and S2R discourse patterns, respectively. To address such a goal,

we answer the following research questions (RQs):

RQ1: To what extent bug reports contain OB, EB, and S2R? This

RQ investigates if reporters tend to include OB, EB, and S2R. This

motivates the need for automated detection of such information.

RQ2: Do bug reporters describe OB, EB, and S2R in bug descriptions

by using a well-defined set of discourse patterns? This RQ aims at

understanding the discourse followed by reporters to describe OB,

EB, and S2R. The presence of discourse patterns is essential to

automatically identify such contents.

To answer these questions, we performed a qualitative discourse

analysis [12, 57] of a large set of bug reports from nine software

projects, based on open coding [49]. Before describing the coding

process, the coding criteria, and the coding results, we introduce a

set of assumptions and definitions useful for our study.

2.1 Definitions

We focus on bug reports, i.e., issues that describe potential software

bugs or defects. We do not code issues describing feature requests,

enhancements, questions, or tasks. In addition, our pattern discovery

task focuses on the description of bug reports (i.e., bug descriptions)

and not on titles. The reason for this is that titles rarely describe

completely OB, EB, or S2R, e.g., they can simply be noun phrases or

words referring to the reports’ topics [39]. We focus our attention

on three types of information in bug descriptions, namely, Observed

Behavior (OB), Expected Behavior (EB), and Steps to Reproduce (S2R).

We expect to find a set of discourse patterns for the sentences and

paragraphs (i.e., the units of discourse) of the bug descriptions. A

discourse pattern is a rule that structures a sentence or a paragraph

to convey either OB, EB, or S2R. This means that a pattern captures

the syntax and semantics of sentences and paragraphs.

2.2 Issue Sampling

We collected a sample set of issues from nine software projects

of different types and domains. These projects rely on different

issue (or bug) trackers to capture potential software bugs found

by users. Eclipse [11], Firefox [10], Httpd [3], and LibreOffice [9]

use Bugzilla as issue tracker; Hibernate [2] and OpenMRS [4] use

Jira; Docker [7] andWordpress-Android (a.k.a.Wordpress-A) [5] use

GitHub’s Issues; and Facebook [8] uses a proprietary issue tracking

system. These projects, except for Facebook, are open source.

To create our issue sample set for the coding task, we rely on the

issue data set collected by Davies et al. [26] for Eclipse, Facebook,

Firefox, and Httpd. This data set is composed of 1.6k issues ran-

domly sampled from their corresponding issue trackers. From this

data set and the online issue repositories of the remaining projects,

we performed random sampling, making sure to exclude issues that

were not bug reports (e.g., feature requests) by manually inspecting

the type of issue and its comments. In total, we collected 2,912 bug

reports, i.e., 324 reports per project on average (including the ones

collected by Davies et al. [26]). From these, we used 1,091 reports for

discourse pattern discovery and the remaining ones (i.e., 1,821) for

validation purposes. We refer to the former data set as the discourse

bug reports and to the latter as the validation bug reports.

2.3 Coding Procedure

We present the coding procedure that we followed to address both

RQ1 and RQ2. While we coded the presence of OB, EB, and S2R in

the discourse bug reports and validation bug reports, we only used

the discourse bug reports to infer the discourse patterns.

2.3.1 Discourse Pattern Coding. Five coders (four authors of this

paper and one additional coder) conducted the sentence and para-

graph coding task for the discourse bug reports. In order to define
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a starting coding framework, one of the coders conducted a pilot

study on a subset of 25 issues from Davies et al.’s issues [26] that

were not used in discourse bug reports. The goal of this task was to

analyze the issue descriptions, identify the sentences or paragraphs

that corresponded to OB, EB, and S2R, and infer the discourse pat-

terns from them. This task resulted in twelve preliminary discourse

patterns with specific textual examples from the issues, a set of

textual characteristics of the issues, and the initial coding criteria.

Once the pilot study was completed, this person trained the rest

of the coders in a 45-minute session that involved discussing the

results and some ambiguous sentences.

The 1,091 discourse bug reports were evenly and randomly dis-

tributed among coders, to ensure that each coder received a subset

of reports for each of the nine projects. Each person coded 218

reports except for one person who coded 219 (i.e., 25 reports per

system per person, on average). For each bug report, the coders

analyzed the bug description and marked each sentence or para-

graph as OB, EB, or S2R. A sentence/paragraph can fall into more

than one of these categories at the same time. Then, the coders

inferred a discourse pattern from each marked sentence/paragraph

and assigned a code to it. A code is a label that uniquely identifies a

discourse pattern. Note that it is possible to infer more than one

pattern from a sentence/paragraph. A catalog of inferred patterns

was shared among coders via an online spreadsheet. In this way,

all coders were aware of the patterns inferred by each coder and

were able to reuse existing patterns or add new ones to the catalog.

When one of the coders identified a new pattern, it was included in

the catalog and the other coders were notified. Each new pattern

was verified by all the coders and disagreements were solved via

open discussion. For each new pattern, the existing catalog was

inspected for similar patterns and, when appropriate, with unan-

imous agreement, similar patterns were merged into a new one

(i.e., a more general pattern) and the existing labels were updated

accordingly. This process was fully iterative, and included constant

refinement of the pattern catalog as well as discussion of ambigu-

ous cases. Every decision taken during the pattern extraction was

representative of the opinion of all coders.

To minimize subjectivity, we recruited four additional coders

(one CS masters student, two developers, and one business analyst)

and asked them to code the same 1,091 reports coded by the first

group of coders. In a 40-minute session, one member of the first

group trained the new coders on the coding procedure and criteria

(see Section 2.3.3). We randomly distributed the reports among the

new coders ensuring that each one coded a subset of issues coded

by each of the original coders. The task of the additional coders was

to mark the sentences and paragraphs that corresponded to OB,

EB, and S2R. This time, the pattern inference was not part of the

task, as the iterative and collaborative nature of the pattern coding

procedure already aimed at minimizing subjectivity. In the end,

each issue from the discourse bug reports was coded by two distinct

coders. The inter-coder agreement is discussed in Section 2.4.1.

2.3.2 Validation Set coding. For the remaining 1,821 bug reports

from our initial sample, i.e., the validation bug reports, all nine coders

were requested to follow the same coding process, without pattern

inference. Each report was coded by two different coders, i.e., on

average 202 issues were assigned to each pair of coders. The bugs

were randomly distributed so that each pair of coders received a

subset of issues from each system. Again, the coders marked the

sentences and paragraphs that corresponded to OB, EB, and S2R

(i.e., no pattern inference this time).

2.3.3 Coding Criteria. We summarize the most important crite-

ria followed by the coders (full list in our replication package [23]).

The coders were provided with examples of each criterion.

The coding focused only on natural language (NL) content writ-

ten by the reporters, as opposed to code snippets, stack traces, or

logs. However, the NL referencing this information was coded. In

addition, only explicit mentions of OB/EB/S2R were labeled. Note

that it is possible to infer EB from OB descriptions, as the former is

usually the opposite of the latter. Such cases were not labeled.

Regarding OB, uninformative sentences such as “The system does

not work" are insufficient to be considered OB. There must be a clear

description of the observed (mis)behavior of the software. Code

explanations and root causes are not considered OB. Regarding EB,

solutions or recommendations to solve the bugs are not considered

EB. In some cases, imperative sentences such as “Make Targets

not automatically filled..." may be considered EB according to the

context of the bug. Sometimes, however, these suggest tasks instead

of EB. Regarding S2R, one or more sentences (i.e., a sentence or a

paragraph) can describe steps to reproduce. Conditional sentences

such as “when I click on apache.exe it returns an error like this" may

be S2R, if they provide enough details about how to reproduce the

bug. Finally, S2R paragraphs may also contain OB and EB sentences.

2.4 Coding Results and Analysis

Before reporting and discussing the coding results, we briefly sum-

marize the inter-coder agreement measurements.

2.4.1 Inter-coder Agreement. We analyzed the reliability of the

coding process regarding the presence and absence of OB, EB, and

S2R in bug descriptions. Remember that each bug description was

coded by two coders. We measured the observed agreement be-

tween coders as well as Cohen’s Kappa (k) [25] and Krippendorff’s

alpha (α ) [40] coefficients. Our analysis reveals high inter-coder

agreement levels. Coders agreed on: the presence or absence of

OB in 91% of the cases (avg. k = 37.3%, α = 40.4%, i.e., fair agree-

ment [70]); the presence or absence of EB in 85.5% of the cases

(avg. k = 70.2%, α = 67.7%, i.e., substantial agreement [70]); and

the presence or absence of S2R in 76% of the cases (avg. k = 49.2%,

α = 51.9%, i.e., moderate agreement [70]).

Overall, 1,131 bug reports (i.e., 38.9%) had some type of disagree-

ment, solved by applying a third person scheme. We distributed

the conflicting reports among the nine coders in such a way that

a third coder (different from the original two coders) would judge

and solve the disagreements. Our analysis revealed that the main

causes for disagreement were omissions, mistakes, and, in the case

of S2R, misunderstandings, as in several cases it was not clear if

(single) conditional sentences were S2R or not.

2.4.2 RQ1: Presence of OB, EB, and S2R in Bug Reports. Table 1

reveals that, while most of the bug reports contain OB (i.e., 93.5%),

only 35.2% and 51.4% of the reports explicitly describe EB and

S2R, respectively. 22.1% of the reports contain all three types of

information (OB, EB, and S2R). These results indicate that essential
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information is missing in bug reports and motivate the need for

automated detection of such information. Firefox is the system

with the highest number of reports having EB and S2R (i.e., 67.4%

and 76.4%) and having all three types of information. We attribute

this result to the use of predefined templates explicitly asking for

this information. Wordpress-Android has the lowest number of

reports with OB. We observed that screenshots, rather than textual

descriptions, are commonly used in this project.

Table 1: Number of bug reports containing OB, EB, and S2R.

Project #OB #EB #S2R Total

Docker 314 (93.5%) 113 (33.6%) 207 (61.6%) 336

Eclipse 271 (90.9%) 101 (33.9%) 173 (58.1%) 298

Facebook 327 (96.7%) 81 (24.0%) 133 (39.3%) 338

Firefox 335 (96.5%) 234 (67.4%) 265 (76.4%) 347

Hibernate 315 (95.2%) 89 (26.9%) 150 (45.3%) 331

Httpd 350 (96.4%) 102 (28.1%) 104 (28.7%) 363

LibreOffice 322 (97.3%) 122 (36.9%) 241 (72.8%) 331

OpenMRS 275 (93.5%) 94 (32.0%) 104 (35.4%) 294

Wordpress-A 215 (78.5%) 88 (32.1%) 121 (44.2%) 274

Total 2,724 (93.5%) 1,024 (35.2%) 1,498 (51.4%) 2,912

2.4.3 RQ2: Bug Descriptions Discourse. Our open coding ap-

proach resulted in a catalog of 154 patterns that capture the dis-

course followed by reporters to describe OB, EB, and S2R. Most

of the patterns are sentence-level patterns (135) and most of the

paragraph-level patterns correspond to S2R (13 out of 19). We sum-

marize and discuss our pattern catalog and the discourse used for

each type of information in bug descriptions (the full catalog is

available in our replication package [23]).

OB discourse. We observe that many patterns in our catalog

correspond to OB (i.e., 90 or 58.4% — see Table 2). Out of these, 85

are sentence-level patterns and five are paragraph-level patterns.

Software (mis)behavior is usually described following a negative

discourse. The sixmost frequent OB patterns correspond to negative

textual content and account for 68.9% of the discourse bug reports

that contain OB. Three of these patterns are: NEG_AUX_VERB,

VERB_ERROR, and NEG_VERB. The first one is the most frequent

one, which corresponds to negative sentences containing auxiliary

verbs (see Fig. 1). The second one corresponds to sentences with

verb phrases containing error-related nouns, such as “VirtualBOx

GUI gives this error:" (from Docker 1583), and the third one, to sen-

tences with non-auxiliary negative verbs such as “Writer hangs on

opening some doc, docx or rtf files" (from LibreOffice 55917). We

also observed OB positive discourse. For instance, the COND_POS

pattern represents conditional sentences with positive predicates,

such as “When the merge was completed, I saw that the entries in the

value_coded column remained as they were originally" (from Open-

MRS TRUNK-3905). The BUT pattern corresponds to sentences

containing contrasting terms followed by affirmative predicates,

such as “You require at least 7 letters, but our name (Delupe) only con-

sists of 6" (from Facebook 13084). The top six most frequent positive

discourse patterns account for 33% of the reports describing OB.

Overall, the top six most frequent negative and the top six positive

patterns appear in 82.5% of the OB bug descriptions.

EB discourse. Reporters describe expected behavior using 31

patterns (i.e., 20.1% of our pattern catalog—see Table 2). Most of

Pattern code: S_OB_NEG_AUX_VERB

Description: negative sentence with auxiliary verbs

Rule: ([subject]) [negative aux. verb] [verb] [complement]

Definitions:

[negative aux. verb] ∈ {are not, can not, does not, did not, etc. }

Example: [The icon] [did not] [change] [to an hourglass...] (from Eclipse 150)

Figure 1: Most common OB discourse pattern.

them (i.e., 30) are sentence-level patterns. The most frequent pat-

tern is SHOULD (see Fig. 2), which represents sentences using

the modal terms “should" or “shall". These types of sentences ap-

pear in 44.2% of the reports that describe EB. Other frequent dis-

course for describing EB is represented by the EXP_BEHAVIOR,

INSTEAD_OF_EXP_BEHAVIOR, EXPECTED, and WOULD_BE pat-

terns. The former, EXP_BEHAVIOR, represents sentences with ex-

plicit EB labels, such as “Expected Results: Taken away the dialog

box..." (from Firefox 226732); INSTEAD_OF_EXP_BEHAVIOR ac-

counts for sentences using “instead of" (or similar terms), such

as “When you try to schedule a saved draft, it is published immedi-

ately instead of being scheduled for the future date you select" (from

Wordpress-Android 3913); the EXPECTED pattern represents sen-

tences using noun phrases or conjugated verbs of the word “expect",

such as “The expectation was that objects would be loaded identically

regardless of using scrollable results or using get result list from JPA."

(from Hibernate HHH-10062); and WOULD_BE corresponds to sen-

tences containing “would be + positive adjective" phrases, such as

“It’d be optimal if the UX updated to reflect the actual updated follow

state for given users/blogs" (from Wordpress-Android 447). These

five patterns appear in 86.3% of the reports describing EB.

Pattern code: S_EB_SHOULD

Description: sentence using the modals “should" or “shall" with no preceding

predicates that use negative auxiliary verbs

Rule: [subject] should/shall (not) [complement]

Example: [Apache] should [make an attempt to print the date in the language

requested by the client] (from Httpd 40431)

Figure 2: Most common EB discourse pattern.

S2R discourse. The steps to reproduce discourse is represented

by 33 patterns (see Table 2), 13 of which are paragraph-level pat-

terns. This means that reporters often use more than one sentence

to describe steps to reproduce. While the most frequent pattern

to describe S2R is paragraphs containing a labeled list of actions

(see Fig. 3—i.e., it accounts for 30.7% of the reports describing S2R),

S2R is also expressed using a single sentence. For example, the

COND_OBS pattern corresponds to conditional sentences contain-

ing non-negative OB predicates, such as “When saving a new (tran-

sient) entity ..., Hibernate will generate [at least] two INSERT state-

ments..." (From Hibernate HHH-6630). In addition, the CODE_REF

pattern describes sentences with noun phrases and adverbs of lo-

cation to refer to code, scripts, or other non-natural language in-

formation used to reproduce the observed behavior. An example

of this type of sentences is: “The following statement produces a

compilation error in JDT..." (from Eclipse 52363). The top five most

frequent S2R discourse patterns are present in 77.2% of the S2R bug

descriptions.

Unique discourse patterns. We found overlap among OB, EB,

and S2R patterns. Either some patterns are equivalent or they are

part of others across the three types of information. Specifically,

we found that the INSTEAD_OF OB pattern is equivalent to the
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Pattern code: P_SR_LABELED_LIST

Description: paragraph containing a non-empty labeled list of sentences that

indicate actions. The label is optional and indicates S2R terms. The “action sentences"

may be simple or continuous present/past sentences or imperative sentences. The

list may contain OB and EB sentences in no particular order.

Rule: ([S2R label])

[[number/bullet] [action sentence]]+

[([number/bullet]) [OB/EB sentence]]*

Definitions:

- [S2R label] ∈ {“how to reproduce", “STR", “To replicate",

“Steps to reproduce", ... }

- [number/bullet] ∈ { “1.", “1 -", “-", “*", ... }

- [action sentence] ∈ {[present/past continuous sentence],

[simple present/past sentence], [imperative sentence]}

Example: (from Firefox 215939)

[Steps to Reproduce:]

[1.] [Start Firebird.]

[2.] [C-t to open a new tab.] [The second tab is now displayed.]

[3.] [Type ’hello’.] [This text appears in the location bar.]

[4.] [Click on the header for the first tab to switch to that tab.]

[5.] [Click on the header for the second tab...]

Figure 3: Most common S2R discourse pattern.

INSTEAD_OF_EXP_BEHAVIOR EB pattern. The COND_POS and

COND_NEG OB patterns are part of two S2R paragraph-level pat-

terns and three S2R sentence-level patterns (all related to condi-

tional content). The IMPERATIVE EB pattern is part of two S2R

paragraph-level and two S2R sentence-level patterns (all related to

imperative content). In the end, 87 OB, 29 EB, and 24 S2R patterns

are unique in our catalog (see our replication package [23]).

Summary. Our discourse analysis revealed that reporters use

154 discourse patterns to describe OB, EB, and S2R; and 82% (on

average) of the instances of OB, EB, and S2R are described using

only 22 (14.3%) of the patterns.

2.4.4 Discourse Analysis across Projects. Table 2 shows how

many patterns of every kind we identified in any of the sentences/

paragraphs of the bug reports for each project. As seen in the table,

not all patterns are used in each system.

Table 2: Number of patterns used to express OB, EB, and S2R.

Project # of reports

# of patterns

Overall OB EB S2R

Docker 113 88 64 11 13

Eclipse 148 95 64 12 19

Facebook 153 102 67 16 19

Firefox 132 97 62 17 18

Hibernate 103 86 64 10 12

Httpd 133 100 72 13 15

LibreOffice 120 88 59 10 19

OpenMRS 92 70 48 11 11

Wordpress-A 91 69 44 11 14

Overall 1,085 154 90 31 33

Fig. 4 depicts the pattern distribution across projects, i.e., each

bar indicates the number of patterns that appear in a given number

of projects. Out of the 154 patterns in our catalog, 21 (i.e., 13.6%)

patterns appear in only one project each, 42 (i.e., 27.3%) appear in

two to four projects, 67 (i.e., 43.5%) appear in five to eight projects,

and 24 patterns (i.e., 15.6%) appear in all nine projects. Examples

of rare patterns that appear in one project only are: IMPOSSIBLE,

which is used to describe OB in “...it’s impossible to click the post but-

ton..." (from Facebook 8978); WHY_FIRST_PLACE, which is used to

describe EB in “...why the outgoing changes didn’t appear in the first
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Figure 4: Distribution of pattern appearance across projects.

place" (from Eclipse 41883); and COND_THEN_SEQ, which is used

to describe S2R in “If you enter..., then switch..., then switch back... "

(from Firefox 215939). Examples of frequently used patterns which

appear in all nine projects are: NEG_AUX_VERB (OB), SHOULD

(EB), and COND_OBS (S2R)—these are previously described in Sec-

tion 2.4.3.

Fig. 4 reveals that the distribution of OB patterns differs from

the distribution of EB and S2R patterns. Nearly three quarters of

the OB patterns (i.e., 66 or 73.3%) appear in more than half of the

projects (i.e., in five to nine projects). In contrast, less than a third

of the EB patterns (i.e., 10 or 32.3%) and less than half of the S2R

patterns (i.e., 15 or 45.5%) appear in more than half of the projects.

These results indicate that reporters use many patterns to describe

OB and they reuse them often across systems. Reporters use far

fewer patterns to describe EB and only a third of them are reused

frequently. About half of the S2R patterns are reused frequently

across systems.

Our previous analysis identified 22 patterns that are used in

82% of the OB/EB/S2R descriptions, on average. We deepened our

analysis to determine howmany patterns are used to achieve similar

coverage for each system in our sample set. Nearly a third of the

patterns (i.e., 49 out 154—31.8%) are used to describe OB, EB, or S2R

in at least 82% of the cases. Among the 22 patterns, twenty (10 OB,

5 EB, and 5 S2R patterns) are frequently reused in each project.

3 DEMIBUD: DETECTING MISSING

INFORMATION IN BUG DESCRIPTIONS

Our first study revealed that, while most of the bug reports (93.5%)

contain OB, only 35.2% and 51.4% of the reports explicitly describe

EB and S2R, respectively. These results motivate the need for an

automatic approach to detect the absence of this information in bug

descriptions. We focus on detecting EB and S2R, as OB is described

in nearly all bug reports. Our study also indicated that reporters

follow a relatively limited set of discourse patterns to describe EB

and S2R across systems (i.e., around 30 in each case). The existence

of these patterns confirms our original conjecture and supports our

research on automatically identifying missing EB and S2R.

We designed and evaluated three versions ofDeMIBuD that auto-

matically detect missing EB and S2R in bug descriptions: DeMIBuD-

R, based on regular expressions; DeMIBuD-H, based on heuristics

and NLP; and DeMIBuD-ML, based on machine learning. The first

two approaches are unsupervised, while the third one requires the
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use of a labeled set of bug reports explicitly reporting the ones

containing or not EB and S2R.

3.1 Regular Expressions-based DeMIBuD

DeMIBuD-R uses regular expressions to detect if a bug report con-

tains (or not) EB and S2R. The regular expressions rely on frequently

used words found in our EB and S2R discourse patterns, such as

keywords explicitly referring to EB or S2R (e.g., “expected result/be-

havior” or “steps to reproduce/recreate”), and keywords commonly

used to describe EB (i.e., modal verbs such as “should”, “could”, or

“must”, or other terms such as “instead of”). For S2R, DeMIBuD-R

also detects enumerations (e.g., 1., 2., etc.) and itemizations (e.g.,

‘*’, ‘-’, etc.). If any of the sentences or paragraphs of a bug report

matches any of the regular expressions, then DeMIBuD-R labels

the report as containing EB/S2R, otherwise, DeMIBuD-R labels it

as missing EB/S2R. DeMIBuD-R extends existing approaches to

detect EB/S2R [17, 26, 78]. The full list of regular expressions used

by DeMIBuD-R can be found in our replication package [23].

3.2 Heuristics-based DeMIBuD

DeMIBuD-H uses part-of-speech (POS) tagging and heuristics to

match sentences and paragraphs to our discourse patterns. We im-

plemented each one of the patterns in our catalog by using the

Stanford CoreNLP toolkit [47]. For example, to detect EB sentences

that follow the discourse pattern SHOULD, DeMIBuD-H first iden-

tifies the clauses of a sentence by finding coordinating conjunctions

(i.e., tokens tagged as “CC”) or punctuation characters (e.g., com-

mas), and splits the sentence using these tokens. Then, for each

clause, it identifies the modal terms “should” or “shall” by process-

ing the tokens labeled as “MD” (i.e., modal). Finally, DeMIBuD-H

checks for the absence of any predicate that uses negative auxiliary

verbs prior to the modal. This is done by identifying the adverb “not”

preceded by auxiliary verbs, i.e., the verbs
1
“do”, “have”, or “be”, or

the modals “can”, “would”, “will”, “could”, or “may”. DeMIBuD-H

also checks for the complement after the modal and for some excep-

tions (e.g., phrases, such as “should be done”). If any of the clauses

satisfy these rules, then the sentence is detected as following the

SHOULD discourse pattern and labeled as an EB sentence. Each

pattern implementation is used to classify all sentences/paragraphs

in a bug description as having or not having EB/S2R. A bug report

is labeled as containing EB/S2R if at least one sentence/paragraph

of the bug report matches any EB/S2R pattern implementation.

Otherwise, the bug report is labeled as missing EB/S2R.

3.3 Machine Learning-based DeMIBuD

DeMIBuD-ML is based on state-of-the-art approaches in automated

discourse analysis and text classification [20, 21, 35], which utilize

textual features, such as n-grams and POS tags (i.e., part of speech

tags) [35]. DeMIBuD-ML relies on two binary classifiers, one that

detects missing EB, and another one that detects missing S2R.

Textual Features.We use our discourse patterns as features of

bug descriptions for classification purposes. Our patterns capture

the structure and (to some extent) the vocabulary of the descriptions.

Each EB and S2R pattern is defined as a boolean feature indicating

1
A verb is a token labeled with one of the VBx POS tags, such as VBD or VBN (i.e.,

verb in past tense or past participle).

Table 3: Bug reportsmissing EB/S2R (validation bug reports).

Project # missing EB # missing S2R Total

Docker 145 (65.3%) 82 (36.9%) 222

Eclipse 98 (66.2%) 63 (42.6%) 148

Facebook 137 (74.9%) 113 (61.7%) 183

Firefox 78 (36.3%) 56 (26.0%) 215

Hibernate 169 (74.1%) 118 (51.8%) 228

Httpd 172 (74.8%) 173 (75.2%) 230

LibreOffice 131 (62.1%) 57 (27.0%) 211

OpenMRS 135 (67.2%) 140 (69.7%) 201

Wordpress-A 126 (68.9%) 108 (59.0%) 183

Total 1,191 (65.4%) 910 (50.0%) 1,821

the presence or absence of the pattern in any of the sentences/

paragraphs of a bug report. We use the pattern implementations of

DeMIBuD-H to produce the pattern features. EB and S2R features

are used in turn by the corresponding classifier (i.e., the one for EB

or S2R, respectively). We also usen-grams to capture the vocabulary

of bug descriptions. N -grams are contiguous sequences of n terms

in the text. We use unigrams, bigrams, and trigrams, where each

n-gram is defined as a boolean feature indicating the presence or

absence of such an n-gram in any of the sentences of a bug report.

Finally, we use POS tags to capture the type of vocabulary used

in the bug descriptions. Similar to n-grams, we use contiguous

sequences of n-POS tags in the text. We define {1, 2, 3}-POS tags

as boolean features indicating the presence or absence of a tag

combination in any of the sentences of a bug report.

Learning Model. Our current implementation of DeMIBuD-

ML uses linear Support Vector Machines (SVMs) (from SVM-Light

[34]) to classify the bug reports as missing or not missing EB and

S2R. Linear SVMs are robust state-of-the-art learning algorithms

for high-dimensional and sparse data sets, commonly used for text

classification based on n-grams [34–36]. Investigating the use of

other classifiers is subject of future work.

3.4 Empirical Evaluation Design

We conducted an empirical evaluation with the goal of determining

how accurately DeMIBuD can detect missing EB and S2R in bug

descriptions and comparing the accuracy of the different instances

of DeMIBuD. The context of our study is represented by the vali-

dation bug reports from the nine software projects used for open

coding. This data set is our gold set (see Table 3). The empirical

evaluation aims to answer the following research question:

RQ3:Which DeMIBuD strategy has the highest accuracy in

detecting missing EB and S2R content in bug descriptions?

We describe the methodology we used to answer RQ3, i.e., text

preprocessing, approach tuning, evaluation settings, and metrics.

Text Preprocessing. We removed uninformative text that is

likely to introduce noise to the detection using different text pre-

processing strategies. Specifically, we performed code removal, i.e.,

deletion of code snippets, stack traces, output logs, environment

information, etc. This was done by using regular expressions and

heuristics, defined after our observations of the text. We also per-

formed basic preprocessing, i.e., replacing URLs with the “_URL_”

meta-token, and removing special characters (e.g., punctuation),

numbers, single characters, and tokens starting with numbers. In

addition, we performed stemming [6], and stop-word removal, i.e.,
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deletion of common articles, prepositions, or adjectives, by using

an adapted version of the Lemur stop word list [54]. Our replication

package contains the preprocessed bug descriptions, the list of stop

words, and the code removal implementation [23].

When assessing the performance of DeMIBuD-R and DeMIBuD-

H, we only use code removal as the preprocessing strategy, since,

by design, these approaches need special characters (e.g., the ones

used for itemizations and enumerations), unstemmed vocabulary,

and stop words (e.g., “if”, “when”, “then”, etc.). The performance

of DeMIBuD-ML is determined by using the combination of all

preprocessing strategies mentioned above.

Tuning and Evaluation Settings. We used the discourse bug

reports to test DeMIBuD-R and DeMIBuD-H. This data set contains

positive and negative instances that allowed us to test and tune our

implementations. Since DeMIBuD detects the absence of EB/S2R,

a negative instance is a sentence/paragraph/report that contains

an explicit description of EB/S2R, whereas a positive instance is a

sentence/paragraph/report that misses such a description.

By using the discourse bug reports, we determined the patterns

that contribute most (and least) to DeMIBuD-H’s accuracy. We

followed a leave-one-out strategy for each one of the EB and S2R

patterns. Having all the patterns activated, we deactivated one pat-

tern at a time and measured DeMIBuD-H’s accuracy (i.e., the F1

score—more details below) without using such pattern. Overall, we

identified three patterns that, when deactivated, drastically deteri-

orate the accuracy of DeMIBuD-H (i.e., the F1 score drops drasti-

cally
2
). These patterns are: SHOULD for EB; and LABELED_LIST

and AFTER for S2R. Conversely, we also identified three patterns

that drastically improve the accuracy ofDeMIBuD-Hwhen they are

deactivated, namely, CAN and IMPERATIVE for EB, and CODE_REF

for S2R. These latter three patterns negatively affect DeMIBuD-H’s

performance because they occur frequently in sentences that do

not describe EB/S2R. Hence, we call these as “ambiguous patterns”.

We measuredDeMIBuD-H’s accuracy both by using all the patterns

and by omitting the ambiguous patterns.

For DeMIBuD-ML, we performed 10-fold cross validation (10CV)

using the validation bug reports. To avoid over-fitting [29], we used

70%, 20%, and 10% of the bug reports for training, parameter tuning,

and testing, respectively. This strategy ensures that all bug reports

are used for training, parameter tuning, and testing. The testing

data set was used to measure DeMIBuD-ML’s accuracy. To follow

2
For space reasons, we omit the results of this tuning approach. However, they can be

found in our replication package [23].

a realistic approach, we performed 10CV independently on the bug

reports of each project. We call this settingwithin-project evaluation.

We used stratified sampling to create the folds, thus ensuring that

the proportions of negative and positive instances are similar to the

proportions of all the reports in the corresponding project (remem-

ber that a negative instance indicates the presence of EB/S2R, while

a positive instance indicates the absence). To assess feature gener-

ality in DeMIBuD-ML, we also conducted a cross-project evaluation,

in which the bug reports of one project were used for testing, and

the reports of the remaining eight projects were used for training

and parameter tuning (approximately 80% and 20% of the reports

were used for training and parameter tuning, respectively).

In our experiments, we tuned the penalty parameter C of the

linear SVMs by using the parameter tuning data set of each fold.

Larger C values mean higher penalty on errors. We experimented

with the following parameter values: 1 × 10
−4
, 2.5 × 10

−4
, 5 × 10

−4
,

7.5 × 10
−4
, ..., 5, 7.5. We chose the best parameterC by maximizing

the F1 score of the trained SVMs to detect missing EB and S2R. We

found that the parameters that lead to the best accuracy fall in the

ranges [0.05, 0.5] and [0.0025, 0.1] for EB and S2R, respectively.

Evaluation Metrics. We use standard metrics in automated

classification to measure the accuracy of our approaches, namely,

precision, recall, and F1 score [29]. Precision is the percentage

of bug reports predicted as missing EB/S2R that are correct with

respect to the gold set (i.e., Precision = TP/(TP + FP)). Recall is
the percentage of bug reports missing EB/S2R that are correctly

predicted as missing EB/S2R (i.e., Recall = TP/(TP + FN )). F1
score is the harmonic mean of precision and recall, which gives a

combined measure of accuracy.

Intuitively, we prefer higher recall, as in a practical setting, we

want DeMIBuD to alert reporters whenever EB or S2R is missing

in their bug descriptions. Nonetheless, we also want DeMIBuD

to achieve high precision, as many false alerts would hinder its

usability. Experiments with users are needed to assess acceptable

trade-offs between recall and precision. We leave such studies for

future work. In this paper, we focus on the F1 score as an accuracy

indicator, as we did for the tuning. When two configurations yield

the same F1 score, we prefer the one with higher recall.

3.5 Results and Discussion

Wepresent and discuss the accuracy achieved by our three instances

of DeMIBuD when detecting the absence of EB and S2R using

different strategies and features (see Table 4).

Table 4: Overall within-project detection accuracy of the different instances of DeMIBuD.

Approach Strategy or Features

EB S2R

Avg. Prec. Avg. Recall Avg. F1 Avg. Prec. Avg. Recall Avg. F1

DeMIBuD-R - 86.0% 85.9% 85.9% 63.3% 92.4% 74.3%

DeMIBuD-H all patterns 96.7% 46.1% 62.2% 84.5% 31.0% 44.3%

DeMIBuD-H no ambiguous patterns 95.1% 76.6% 84.7% 81.6% 38.5% 51.2%

DeMIBuD-ML pos 73.8% 93.1% 82.0% 60.8% 75.8% 66.8%

DeMIBuD-ML n-gram 75.1% 97.6% 84.7% 66.4% 83.4% 73.4%

DeMIBuD-ML pos + n-gram 76.0% 95.1% 84.2% 65.3% 79.2% 71.1%

DeMIBuD-ML patterns 85.9% 93.2% 89.4% 63.5% 80.3% 70.7%

DeMIBuD-ML patterns + pos 77.9% 92.9% 84.6% 65.4% 76.0% 69.9%

DeMIBuD-ML patterns + n-gram 76.9% 97.0% 85.6% 69.2% 83.0% 74.9%

DeMIBuD-ML pos + patterns + n-gram 76.8% 95.8% 85.1% 67.2% 80.9% 73.0%
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3.5.1 DeMIBuD-R’s Accuracy. DeMIBuD-R achieves 85.9% avg.

recall and 86% avg. precision when detecting missing EB (see Ta-

ble 4). Based on F1, this is the second best approach across all

versions of DeMIBuD. Our analysis reveals that DeMIBuD-R fails

to detect missing EB in 168 bug reports that do not describe EB

(i.e., false negatives). This is mainly due to the inherent impreci-

sion of keyword matching via regular expressions. For example,

we found usages of modal verbs to express OB instead of EB, as in

“This problem could also be related to some sites not copying URLs...”

(from Firefox 319364), and modal verbs appearing in error messages,

e.g., “... and the error could not load the item appeared on the screen”

(from Wordpress-Android 859). We also observed that DeMIBuD-R

detects missing EB in 167 bug reports that describe EB (i.e., false

positives), as they do not match the keywords used by DeMIBuD-R.

For example, we found EB sentences phrased with “used to”, as in

“...you used to be able to add new Obs to an already existing encounter

order...” (from OpenMRS TRUNK-211).

Regarding S2R, DeMIBuD-R achieves the highest recall (93.4%)

but also one of the lowest precision values (i.e., 63.3%) across the dif-

ferent versions of DeMIBuD. DeMIBuD-R’s recall suggests that bug

reports missing S2R usually do not contain explicit S2R keywords

and/or itemizations/enumerations. Yet, in the few false negatives

produced by DeMIBuD-R (i.e., 18), we found non-S2R sentences

using S2R keywords, such as “I tried to reproduce the issue without

luck...” (from Wordpress-Android 1318), or templates that contain

S2R keywords but are filled in with non-S2R content, e.g., “Steps To

Reproduce: Unsure how to reproduce...” (Eclipse 229806). DeMIBuD-R

flagged missing S2R in 530 bug reports describing S2R (i.e., false

positives). This is somehow expected as users describe S2R using

alternative wordings to enumerations/itemizations, which are not

keyword specific. For example, users can describe S2R in a narra-

tive way: “Open the history view on a file with interesting revisions.

Click the date column to sort by date...” (from Eclipse 17774). Overall,

DeMIBuD-R ranked as the second most accurate detector across all

versions of DeMIBuD, in terms of F1 score (i.e., 74.3%). The results

indicate that DeMIBuD-R is accurate in detecting missing S2R, yet

produces a rather large number of false alarms.

3.5.2 DeMIBuD-H’s Accuracy. When all the patterns are used,

DeMIBuD-H is able to detect missing EB with 46.1% recall and

96.7% precision. When we deactivate the ambiguous EB patterns

(i.e., IMPERATIVE and CAN), DeMIBuD-H’s recall improves sub-

stantially (i.e., from 46.1% to 76.6%) at almost the same precision

(i.e., 95.1%). This large recall improvement is explained by the large

number of bug reports missing EB that contain sentences matching

the ambiguous patterns, which lead to many false negatives (i.e.,

failing to detect missing EB). We found 438 and 305 reports missing

EB that contain IMPERATIVE and CAN sentences (i.e., 36.8% and

25.6% of the bug reports that do not describe EB), respectively. We

observe that IMPERATIVE sentences are usually used to describe

S2R, e.g., “1. Create a container with volumes in docker 1.8.3” (from

Docker 18467), or ask for information to the reporter via templates,

e.g., “**Describe the results you received:**” (from Docker 27112).

CAN sentences describe other non-EB content, e.g., “the user can

only tell the difference when he recognizes...” (from Firefox 293527).

When the ambiguous EB patterns are deactivated, we observe

that the main reason for false negatives is sentences describing

non-EB content, yet following the SHOULD EB pattern. We found

conditional sentences expressing actions, e.g., “If that’s the case, we

should document this on the wiki...” (from OpenMRS TRUNK-4907);

questions using the modal “should”, e.g., “... should following tags be

unavailable while signed out?” (from Wordpress-Android 3270); and

sentences expressing other type of non-EB content, e.g., “OpenMRS

shouldn’t bomb in this situation” (from OpenMRS TRUNK-2992).

Our analysis of the 50 false positives produced by DeMIBuD-H

revealed that our pattern implementation is unable to match some

sentences. In addition, we found a handful of bug reports containing

EB sentences that are not captured by any of our EB patterns, e.g.,

“...works as expected (as in the process is not killed)” (from Docker

11503), or “With FF2, the user sees the tab transition smoothly to the

new tab with no nasty white flash” (from Firefox 393335).

Regarding S2R, when all the patterns are used, DeMIBuD-H has

the lowest recall (i.e., 31%) but the highest precision (i.e., 84.5%). We

observe 7.5% recall improvement and 2.9% precision deterioration

when DeMIBuD-H relies on all the patterns except CODE_REF (i.e.,

the ambiguous S2R pattern). We found 338 bug reports missing

S2R but containing sentences matching the CODE_REF pattern (i.e.,

37.1%). The main reasons behind the false negatives are the impre-

cision of our implementation (i.e., regarding heuristics, sentence

parsing, or code preprocessing) and the presence of ambiguous

sentences, such as “Here are the definitions of the file systems:” (from

Httpd 37077). When the CODE_REF pattern is deactivated, we ob-

serve two main reasons for false negatives, namely, the imprecision

of our implementation and ambiguous content (i.e., sentences and

paragraphs describing non-S2R content yet following other S2R

patterns). Regarding the latter, we found non-S2R paragraphs and

sentences phrased imperatively that describe solutions, e.g., “Pos-

sible solutions: ... 1. Disable Tomcat’s default ...” (from OpenMRS

TRUNK-1581); or actions that do not intend to replicate the OB, e.g.,

“See the user edit page for how the void patient...” (from OpenMRS

TRUNK-1781). Other ambiguous cases include non-S2R conditional

sentences describing high-level tasks, e.g., “I noticed that HSQLDB

is not enforcing... while trying to troubleshoot a particular...” (from

OpenMRS TRUNK-27); and sentences that convey actions expressed

in present perfect tense, present tense, or past tense, e.g., “I also

asked about this in the Hibernatate... and Steve Ebersole said that...”

(from OpenMRS TRUNK-2). These types of discourse are also used

to describe S2R and are captured by our S2R patterns. Our analysis

of false positives produced by DeMIBuD-H revealed content ambi-

guity and unusual text structure as the main reasons for hindering

precision. We found labeled lists of S2R where each step was writ-

ten as a separate paragraph (as in LibreOffice 77431); paragraphs

containing different sentences that describe S2R and other types

of information, e.g., “I’m using LibreOffice 4.3.6.2... I downloaded

4.3.7 and installed... And I knew 4.3.7 requires...” (from LibreOffice

91028); itemizations describing OB rather than S2R (as in Libre-

Office 78202); sentences not related to OB replication, e.g., “I am

seeing junk characters and I have to change the encoding setting man-

ually” (from Httpd 49387); and ambiguous sentences describing

actions “I fixed the problem by using...” (from Httpd 42731). Overall,

we observed more content ambiguity related to S2R than to EB.

This is one of the reasons for the lower accuracy of DeMIBuD-H

(and other DeMIBuD versions) when detecting missing S2R.
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DeMIBuD-H’s high precision and low recall (when detecting

missing EB and S2R) are explained by the focus of our pattern im-

plementations on identifying all different ways to describe EB and

S2R (i.e., identifying EB/S2R in most bug reports), without focusing

on filtering non-EB/S2R content that is similar to EB/S2R (i.e., it

incorrectly predicts EB/S2R in many bug reports). Compared to

DeMIBuD-R, DeMIBuD-H’s overall accuracy is lower when detect-

ing missing EB and S2R in bug descriptions (in terms of F1 score).

The two main reasons for such (in)accuracy are: (1) imprecision

of our heuristics, and (2) ambiguous content in bug descriptions.

While the former issue may be addressed by refining some of the

patterns, the latter one is more challenging. In any case, DeMIBuD-

H’s main advantage over the other versions of DeMIBuD is its

ability to produce very few false alarms.

3.5.3 DeMIBuD-ML’s Accuracy. When detecting missing EB,

DeMIBuD-ML achieves the highest recall (i.e., between 92.9% and

97.6%) at the expense of precision (i.e., between 73.8% and 85.9%).

The features used by DeMIBuD-ML that lead to the highest (i.e.,

97.6%) and lowest (i.e., 92.9%) recall are n-grams and patterns +

POS tags, respectively. The features that lead to the highest (i.e.,

85.9%) and lowest (i.e., 73.8%) precision are patterns and POS tags,

respectively. We observe that n-grams always increase recall when

combined with other features, and POS tags deteriorate recall when

combined with patterns. Pattern features always improve precision

when combined with other features (at the expense of recall, unless

they are combined with n-grams). The highest F1 score (i.e., 89.4%–

85.9% precision and 93.5% recall) is achieved by DeMIBuD-ML

using pattern features. We consider this version and configuration

of DeMIBuD as the best for detecting missing EB.

DeMIBuD-ML detects missing S2R with recall ranging between

75.8% and 83.4%. These recall values are lower than that achieved by

DeMIBuD-R. DeMIBuD-ML achieves lower precision than DeMI-

BuD-H, i.e., between 60.8% and 69.2%. However, DeMIBuD-ML

represents the best compromise, achieving the highest F1 score (i.e.,

74.9%–69.2% precision and 83% recall) when using the patterns +

n-gram features. Once again, among the different features used

by DeMIBuD-ML, we observe that individual n-grams are the fea-

tures that lead to the highest recall (i.e., 83.4%) and always improve

it when combined with other features. Conversely, POS tags are

the features that lead to the lowest recall (i.e., 75.8%) and always

deteriorate it when combined with other features. DeMIBuD-ML

based on POS tags achieves the lowest precision (i.e., 60.8%), while

n-grams lead to the highest (i.e., 66.4%) and always improve it when

combined with other features. Although individual pattern features

lead to lower precision (i.e., 63.5%), they always lead to precision

improvement when combined with other features. The highest F1

score (i.e., 74.9%–69.2% precision and 83% recall) is achieved by

DeMIBuD-ML using patterns + n-gram features. We consider this

configuration of DeMIBuD as the best for detecting missing S2R.

Explaining the effect of individual features on the results is

harder than with heuristics or regular expressions. However, we

conjecture that the positive effect of n-grams is its ability to capture

the vocabulary and (to some extent) the structure of EB/S2R and

non-EB/S2R discourse. Our patterns also capture such character-

istics; however, they further capture the discourse structure. POS

tags focus on capturing the type of vocabulary and (to some extent)

the structure, which has a negative impact on DeMIBuD-ML’s ac-

curacy. In any case, all features are insufficient to resolve content

ambiguity, especially regarding S2R. As part of our future work, we

plan to address this problem by capturing semantic properties of

the text, via semantic frames [15] or rhetorical relations [21].

Table 5: Overall cross-project accuracy of DeMIBuD-ML.

Features

EB (Avg.) S2R (Avg.)

Prec. Recall F1 Prec. Recall F1

pos 67.4% 94.3% 77.8% 60.1% 73.9% 63.8%

n-gram 77.9% 96.4% 86.0% 68.2% 86.3% 75.0%

pos + n-gram 76.5% 96.1% 85.1% 66.3% 86.5% 73.5%

patterns 87.3% 92.3% 89.5% 64.9% 89.1% 73.9%

patt. + pos 81.9% 92.2% 86.3% 63.7% 84.2% 71.5%

patt. + n-gram 86.9% 92.5% 89.5% 68.3% 87.5% 76.0%

all features 85.2% 92.6% 88.7% 69.2% 82.5% 74.4%

3.5.4 DeMIBuD-ML’s Cross-Project Accuracy. Ourmachine learn-

ing -based DeMIBuD achieves the best F1 score, but relies on super-

vised training. Obtaining training data from a project often poses

challenges, so using training data from other projects is often desir-

able. We analyze DeMIBuD-ML’s accuracy when bug reports from

different projects are used to train its underlying learning model.

We compare DeMIBuD-ML’s accuracy when using cross-project

(see Table 5) and within-project training (see Table 4).

In the case of EB, using cross-project training, we observe that

DeMIBuD-ML’s precision improves for all type of features (except

for pos)—i.e., 3% avg. improvement
3
. Conversely, DeMIBuD-ML’s

recall decreases 1.2% on average, except for pos and pos + n-grams.

In the case of S2R, we observe that DeMIBuD-ML’s precision im-

proves for some features (i.e., n-gram, pos + n-gram, patterns, and

all features combined) and deteriorates for others (i.e., pos, pat-

terns + pos, and patterns + n-gram). We observe little precision

improvement on average (i.e., 0.4%). Instead, DeMIBuD-ML’s recall

improves substantially for most features (except for pos)—i.e., 4.5%

avg. improvement. The patterns features improve precision (i.e., by

1.4%) and achieve the highest recall improvement among all fea-

tures (i.e., 8.8%). Overall, DeMIBuD-ML’s accuracy is higher when

using cross-project training than when using within-project training.

One likely explanation is that the larger training data used in the

cross-project training includes more patterns.

Remarkably, DeMIBuD-ML based on patterns + n-gram has the

best accuracy
4
for both EB and S2R (see Table 5). Its high cross-

project accuracy indicates that DeMIBuD-ML is extremely robust to

the training strategy, and can be highly useful in a practical setting

where labeled data from a new project is unavailable. This means

that we can deploy DeMIBuD-ML in different projects (to the ones

we used) without retraining and expect similar accuracy levels.

4 THREATS TO VALIDITY

Themain threat to construct validity is the subjectivity introduced in

discourse patterns extraction and in the construction of the labeled

bug reports (Section 2.3.1). To minimize subjectivity, we ensured

that each bug report was coded by two coders independently. We

assessed coding reliability by measuring the inter-rater agreement

3
The avg. improvement is computed by averaging the differences between the cross-

and within-project precision/recall values, across the different types of features.

4
While individual patterns and patterns + n-gram features lead to the same F1 score,

the latter ones are preferred because they lead to a slightly higher recall.
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(Section 2.4.1). Regarding pattern extraction, our coding procedure

was based on open coding practices [49] that aimed at minimizing

subjectivity. The five coders extracted the patterns in a strict, iter-

ative, and open manner [49], which led to continuous discussion

of ambiguous cases, refinement of our pattern catalog and coded

data, and assessment of our coding process. We also defined coding

criteria and trained the coders on them via interactive tutorials.

To strengthen the internal validity, we mitigated the effect of

different design and experimentation decisions (e.g., text prepro-

cessing) by tuning our three instances of DeMIBuD on data sets

different from the ones used to measure DeMIBuD’s accuracy.

To strengthen the external validity, we collected bug reports from

nine software projects that cover different types of systems (e.g.,

desktop, web, or mobile) and domains (e.g., web-browsing or devel-

opment). These projects are open source (except for Facebook), and

use different bug trackers. The collected bug reports cover different

types of bugs (e.g., crashes or functional [67])—the distribution of

bug types can be found in our replication package [23].

5 RELATEDWORK

Our research relates to work on analysis of textual content, charac-

terization and classification of issues, and issue quality assessment.

Analysis of Textual Content.Ourwork is based on automated

discourse analysis. We followed the methodology proposed by

Polanyi [57] for the analysis of the linguistic structure of discourse.

We built on this analysis to identify discourse patterns based on

grounded theory practices [49], e.g., open coding. This technique

has been extensively used in SE to, e.g., identify types of knowledge

in API documents [45], API privacy policy information [18, 64], or

information relevant to development activity summaries [69].

Characterization of Issues. Issue (or bug) descriptions have

been characterized from different angles and for different purposes.

Previous work (e.g., [16, 17, 26, 62, 63, 79]) focused on determining

the structure of bug reports and its importance in bug triaging.

Chilana et al. [24] investigated unwanted behavior types in bug

reports. Tan et al. [67] identified defect types from bug reports.

Breu et al. [19] determined stakeholders’ information needs from

bug reports. Ko et al. [38] analyzed bug report discussions to reveal

software design decisions. Based on bug descriptions, Guo et al. [31]

investigated which bugs get fixed. Ko et al. [37] and Rodeghero et

al. [61] studied the role of different users in bug reporting.

Other work has focused on the textual characteristics of bug

reports. Ko et al. [39] performed a linguistic analysis of bug report

titles to understand how users describe software problems. Sureka

et al. [66] analyzed the part-of-speech and distribution of words in

issue titles to find vocabulary patterns useful in predicting the bug

severity specified in bug reports. Chaparro et al. [22] and Moreno

et al. [52] measured the vocabulary agreement between duplicate

bug reports and between bug reports and source code, respectively.

Different from existing work, our focus is on identifying the OB,

EB, and S2R discourse used in bug descriptions.

Classification of Issues. Our research relates to work on issue

classification [13, 31, 68, 72, 76], which relies on machine learning

and textual features to classify issues as (for example) features

requests, enhancements, or bug reports. Similar approaches have

been proposed to classify e-mails [27], app reviews [48], forums [75],

explanations of APIs in tutorials [56], and, outside SE, discourse

elements in essays [20, 21]. The essential difference between our

(SVM-based) approach and existing software content classifiers is

the use of discourse patterns from bug descriptions. More related

to our research is Davies et al.’s work [26], which proposed the

explicit use of search terms (e.g., “observed behavior” ) to detect OB,

EB, or S2R content in bug reports. Unfortunately, this approach

produces numerous undetected cases (i.e., false negatives).

Assessment and Improvement of Issue Quality. Our work

also relates to research on issue quality assessment. Zimmerman

et al. [78] proposed an approach to predict the quality level of bug

reports. Dit et al. [28] and Linstead et al. [43] measured the semantic

coherence in bug report discussions. Hooimeijer et al. [33]measured

quality properties of bug reports (e.g., readability) to predict when

a bug report would be triaged. Zanetti et al. [74] identified valid

bug reports, as opposed to duplicate, invalid, or incomplete reports,

by relying on reporters’ collaboration information. To enhance bug

reports, Moran et al. focused on augmenting S2R in bug reports

via screenshots and GUI-component images [51], and on automat-

ically reporting potential crashes in mobile applications [50]. In

another direction, some research has focused on summarizing bug

reports [44, 46, 59] and detecting duplicate issues [22, 32, 42, 53].

Similar to these approaches, our final goal is to improve bug re-

port quality. Our strategy, however, is to determine when essential

information is absent from bug reports, and to alert users about it.

6 CONCLUSIONS AND FUTUREWORK

Our analysis of 2,912 bug reports from nine software systems re-

vealed that while most of the reports (i.e., 93.5%) describe OB, only

35.2% and 51.4% of them explicitly describe EB and S2R. These

findings motivate our effort in developing an automated technique

to detect the absence of EB and S2R in bug descriptions. In addi-

tion, from our discourse analysis of a subset of 1,091 bug report

descriptions, we found that reporters recurrently use 154 discourse

patterns to describe OB, EB, and S2R, and few of them (i.e., 22 or

14.3%) appear in most of the bug reports that contain such informa-

tion (i.e., 82% on average). These results indicate that OB, EB, and

S2R content can be automatically detected with high accuracy.

Based on the discourse patterns, we developed DeMIBuD, an

automated approach that detects missing EB and S2R in bug descrip-

tions. We implemented and evaluated three versions of DeMIBuD

based on regular expressions, heuristics and NLP, and machine

learning. Our ML-based approach (i.e., DeMIBuD-ML) proved to be

the most accurate in terms of F1 score (i.e., 89.4% for EB, and 74.9%

for S2R), yet the other versions of DeMIBuD achieve comparable

accuracy without the need for training. DeMIBuD-ML proved to

be robust with respect to within- and cross-project training, which

means that we can deploy it in different projects (to the ones we

used) without retraining and achieve high accuracy detection. Our

future work will focus on (i) studying acceptable recall/precision

trade-offs from the DeMIBuD users’ perspective, and (ii) addressing

bug content ambiguity to improve DeMIBuD’s accuracy.
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