
Using Observed Behavior to Reformulate Queries
during Text Retrieval-based Bug Localization

Oscar Chaparro, Juan Manuel Florez, Andrian Marcus
The University of Texas at Dallas, Richardson, TX, USA

{ojchaparroa, jflorez, amarcus}@utdallas.edu

Abstract—Text Retrieval (TR)-based approaches for bug lo-
calization rely on formulating an initial query based on a bug
report. Often, the query does not return the buggy software
artifacts at or near the top of the list (i.e., it is a low-quality
query). In such cases, the query needs reformulation. Existing
research on supporting developers in the reformulation of queries
focuses mostly on leveraging relevance feedback from the user or
expanding the original query with additional information (e.g.,
adding synonyms). In many cases, the problem with such low-
quality queries is the presence of irrelevant terms (i.e., noise)
and previous research has shown that removing such terms from
the queries leads to substantial improvement in code retrieval.
Unfortunately, the current state of research lacks methods to
identify the irrelevant terms. Our research aims at addressing this
problem and our conjecture is that reducing a low-quality query
to only the terms describing the Observed Behavior (OB) can
improve TR-based bug localization. To verify our conjecture, we
conducted an empirical study using bug data from 21 open source
systems to reformulate 451 low-quality queries. We compare the
accuracy achieved by four TR-based bug localization approaches
at three code granularities (i.e., files, classes, and methods), when
using the complete bug reports as queries versus a reduced
version corresponding to the OB only. The results show that
the reformulated queries improve TR-based bug localization for
all approaches by 147.4% and 116.6% on average, in terms of
MRR and MAP, respectively. We conclude that using the OB
descriptions is a simple and effective technique to reformulate
low-quality queries during TR-based bug localization.

Index Terms—Observed Behavior, Query Reformulation, Bug
Localization, Text Retrieval

I. INTRODUCTION

Automated Text Retrieval (TR) has been widely used
by researchers to develop techniques to support developers
during bug localization [31, 40–42, 47, 49, 52, 56–63]. These
techniques are instances of TR-based concept/feature location
in source code [20, 38] and TR-based traceability link recovery
[16], and tackle bug localization as a document retrieval prob-
lem. TR-based bug localization approaches rely on formulating
an initial query based on a bug report (i.e., its title/summary
and description). Often, the query does not return the buggy
code artifacts at the top of the list (e.g., in the top-10 results).
In such cases, the query is considered of low-quality and
needs reformulation [25, 39]. Existing research on supporting
developers in the reformulation of low-quality queries focuses
mostly on leveraging relevance feedback from the user [21],
pseudo-relevance feedback based on previous search results
[25], or using additional information to replace or expand
the query (e.g., adding synonyms) [37, 45, 51]. However, in

many cases, the problem with such queries is the presence
of irrelevant terms (i.e., noise) and previous studies [11] have
shown that removing these terms from the queries (i.e., query
reduction) leads to substantial improvement in code retrieval.
Unfortunately, the current state of research lacks methods to
identify the irrelevant terms.

Our research aims at addressing this problem by leveraging
the type of natural language information used in bug reports.
Existing research [10, 14, 64] found that one of the main types
of natural language content in bug reports is the Observed
Behavior (OB). OB describes the current (mis)behavior of
the software, which is generally deemed to be incorrect or
unexpected. A recent study found that users frequently report
the OB in bug descriptions (i.e., in ~93% of the cases) [10],
which underlines its important role in describing a software
bug. Based on these findings and our experience in bug report
analysis and TR-based bug localization, we conjecture that
the description of the OB has fewer noisy terms than the rest
of the bug report, hence reducing a low-quality query to the
terms describing the OB can improve TR-based bug localiza-
tion. The usage scenario we envision here is straightforward.
Developers use the entire content of a bug report as a query
(i.e., both title/summary and description), and optionally other
information leveraged by the TR-based technique they use –
this is the typical scenario in TR-based bug localization [3, 20].
If the buggy code document is not identified in the top part of
the returned results, then the developer selects the OB from
the bug report and uses it as the new query.

This paper presents an empirical study aimed at verifying
our conjecture. Based on existing data sets in TR-based bug
localization and software testing research [28, 40, 59, 63], we
sampled a set of bug reports and relevant change data from
78 versions of 21 open source systems. These bug reports
result in low-quality queries, that is, they return the first
buggy code document below the top-10 of the ranked list
of source code documents [25]. We manually analyzed these
low-quality bug reports and observed that 451 contain OB.
We compare the accuracy achieved by four TR-based bug
localization approaches (i.e., BugLocator [63], BRTracer [59],
Lobster [40], and Lucene [26]) at three code granularities
(i.e., files, classes, and methods) when using the complete
bug reports as queries versus a reduced version corresponding
to the OB only. The results show that the reduced queries
improve TR-based bug localization for all four approaches
and all granularities by 147.4% (MRR) and 116.6% (MAP),

on average. The results support our conjecture, which means
that developers can reformulate a low-quality query by simply
selecting the part that describes the OB and expect better
retrieval results.

The main contributions of this paper are the following: (1)
empirical evidence that using OB descriptions to reformulate
low-quality queries improves the accuracy of four TR-based
bug localization approaches; this simple and efficient query
reformulation method requires no additional information to
the bug description; and (2) a data set of labeled bug reports
and queries that can be used for replication purposes and for
future research in TR-based bug localization [9].

II. BACKGROUND AND RELATED WORK

In this section, we briefly describe the main TR-based bug
localization (TRBL) approaches and we discuss existing work
on query reformulation in the context of source code retrieval.

A. TR-based Bug Localization

TRBL techniques are specific instances of TR-based con-
cept/feature location in source code [20, 38] and TR-based
traceability link recovery [16], which formulate bug local-
ization as a document retrieval problem. A bug report is
used as query to search a document space built from source
code artifacts of a software system and retrieve a list of
code documents (e.g., files, classes, functions, or methods)
relevant to the query. The relevance of a source code document
to a query is determined by the textual similarity between
them: the higher the textual similarity the more likely the
document is to contain the bug. The targeted code documents
are the ones that contain the bug described in the bug report.
What differentiates TR-based bug localization from the more
general code retrieval approaches is the use of bug reports as
queries. TRBL techniques often use additional information,
related to the current bug report, to adjust the ranking of
the relevant code documents. Additional information leveraged
by existing TRBL techniques includes: code version his-
tory [52, 57, 58, 62], similar bug reports [15, 49, 57–59, 62, 63],
stack traces [40, 58, 59, 62], code structure [2, 49, 57, 58, 62],
or combinations of the above [49, 57–59, 62].

We focus the discussion in this section on approaches
designed specifically for bug retrieval (i.e., they use infor-
mation from or related to bug reports), rather than more
generic concept/feature location and traceability link recovery
approaches, which could also be used for bug localization. All
TRBL approaches follow a common process, consisting of:

1) Building a corpus using the source code of the software.
2) Indexing the corpus using a TR model.
3) Formulating an initial query based on the bug report.
4) Ranking the documents with respect to the query, based

on the TR model used and additional information related
to the bug report.

5) Inspecting the retrieved documents. If the buggy code
document is found, the process ends.

6) Reformulating the query if the buggy code is not identi-
fied, and resuming the process at step 4.

Previous research in concept/feature location and traceabil-
ity link recovery focused on improving all the six steps of this
process and TRBL techniques utilize much of that research.
The main research efforts in TRBL focused primarily on step
4, especially by leveraging additional information related to
the bug reports, as mentioned above.

Software history information is used by TRBL approaches
to boost code artifacts with high defect/change probability
based on code change records (e.g., version control records).
The code artifacts boosted are those found in change-sets that
were intended to fix bugs. The boost amount can depend on
different factors, e.g., the number of times a code artifact has
been fixed [52, 58, 62] or how long ago this happened [52, 57].

Bug fix history is also used to complement textual similarity.
A set of previously fixed bug reports is kept, each one with
its corresponding fix-set: the set of code documents that were
modified in order to fix the bug. A query (i.e., the current
bug report) is compared to each previously-fixed bug report.
The documents in each fix-set are boosted according to some
criteria, e.g., the textual similarity of the fixed bug with the
query [15, 49, 57–59, 62, 63].

Bug reports sometimes contain stack traces, which are also
used to alter the text-based ranking. Some TRBL approaches
work on the assumption that the buggy code artifacts could be
directly referenced by these traces, and use regular expressions
to identify referenced classes/files [40, 58, 59, 62]. The set of
suspicious classes/files is expanded by identifying artifacts
(in)directly referenced in the code of the ones found in the
stack trace. These relationships can be found by using the
system’s call graph [40] or the files’ import statements [59, 62].

Some approaches exploit query and document structure by
simply splitting the query into two parts (bug report title
and description) and the document in four (classes, methods,
variables, and comments). Besides the score calculated from
the full text of both the query and the document, additional
scores are calculated from the similarities between each of the
two query components and each of the document components
(8 additional scores in total), and then all scores are added
together. This assigns a greater weight to terms appearing in
multiple fields of a document, increasing their discriminating
power for retrieval [2, 49, 57, 58, 62].

Unlike this rich body of existing work in improving TRBL,
our focus is on helping developers reformulating a low-quality
query when needed (i.e., step 6 in the above process).

B. Query Reformulation in TRBL and Code Retrieval

Existing research highlighted the challenges that developers
face when (re)formulating queries for code retrieval [4, 13,
54]. On one hand, TRBL approaches mitigate the problems
associated with formulating an initial query by utilizing the
bug report [11]. On the other hand, existing research provides
little or no guidance on what parts of the bug reports to use
when reformulating a low-quality query [29].

Four general query reformulation strategies are found in the
literature, namely, query expansion [6], query replacement [23,
24], term selection [29, 46], and query reduction [34]. Query

expansion consists in adding alternative terms (or phrases) to a
query; query replacement changes (part of) a query with a new
set of terms; term selection selects a set of terms from a query
as a new query; and query reduction focuses on removing
query terms.

Most existing research on query reformulation in code re-
trieval (including TRBL) has focused on query expansion. The
methods to determine the alternative terms include relevance
feedback from developers [21]; pseudo-relevance feedback
[25, 53], which leverages the lexicon of the previous top code
documents retrieved; the use of English or software ontologies
(e.g., WordNet) [51], which contain related terms to the ones
in a query (e.g., synonyms); or co-occurring term information
from various software sources, such as source code, Stack
Overflow (SO) questions, or regulatory documents [17, 37, 45].
Similar techniques have been applied in the context of code
search, where the initial queries are reformulated based on
thesauri (e.g., lexical databases from SO) [22, 32, 33], pseudo-
relevance feedback from SO results [43], co-occurrence and
frequency of query terms with previous results and source
code [27, 48], and textual similarity between the query and
Application Programming Interfaces (APIs) [35].

Query replacement has been utilized mostly for traceability
link recovery [23], where the terms from similar web and
domain-specific documents to the query are leveraged to select
a set of candidate terms to replace the initial query. Another
query replacement method is by learning frequent terms from
existing requirement-regulation trace corpora, and use them as
the new query [24].

Little research has focused on term selection. Kevic et al.
[29] recommended the top three terms in a change request that
have the highest predictive power to retrieve the relevant code
documents (i.e., in top-10 of the list). Their findings suggest
that terms that appear in both the summary and description
of change requests are good candidates to be used as query
[29]. In another work, Rahman et al. [46] leveraged term
co-occurrences and syntactic dependencies to select the most
important terms in a change request as a query. Related to
term selection, other research focused on weighing terms (from
the query) that occur in method names and calls [5] or terms
corresponding to source code file names [18].

Regarding query reduction, recent research has shown that
removing noisy terms from the query (i.e., from bug reports)
leads to substantial retrieval improvement in TR-based bug
localization [11]. The few works that include some kind of
query reduction rely on heuristics to remove the noisy terms.
Specifically, Rahman et al. [45] discarded the terms different
from nouns or those occurring in more than 25% of the code
documents, since they are likely to be non-discriminating.
Haiduc et al. [25] followed a similar strategy.

Both term selection and query reduction strategies result in
reduced queries. Our OB-based query reformulation strategy
implies term selection, as we are selecting and retaining part of
the initial query in the reformulated query. On the other hand,
we do not argue that all the terms we select are most relevant,
but rather we conjecture that the terms we do not select are less

relevant, hence we also do some form of query reduction (i.e.,
noisy terms are being removed). To the best of our knowledge,
this is the first work that investigates how the type of textual
content from bug descriptions used as queries can improve
TR-based bug localization via query reformulation.

III. EMPIRICAL STUDY DESIGN

We performed an empirical study to verify our conjecture.
We followed an evaluation process commonly used in TR-
based concept/bug/feature location research [3, 20], using four
data sets from previous bug localization and software testing
work. We detail the design of the study in this section. The
results of the evaluation are discussed in Section IV.

A. Context and Research Question

The goal of our empirical evaluation is to determine whether
or not low-quality queries reduced to the terms describing OB
improve the accuracy of TRBL approaches. The context of our
study is represented by 78 versions of 21 open-source projects
written in Java, which vary in size and domain. The data used
in our study was extracted from four existing data sets, namely,
Just et al.’s Defects4J testing data set (a.k.a. D4J) [28], Mills
et al.’s data set on query quality assessment (a.k.a. QQ) [39],
Moreno et al.’s bug localization data set (a.k.a. LB) [40], and
Wong et al.’s bug localization data set (a.k.a. BRT) [59].

D4J is a collection of real bugs from five open source
systems1, that includes test cases, the buggy source code, and
bug fixes [28]. This data set was created for software testing
research. We adapted it to the TRBL context. Specifically, we
collected the buggy code methods that were changed to fix the
bugs and the bug reports that describe each bug. D4J does not
provide the bug reports directly. We manually inspected the
commit messages (available in the D4J data) corresponding
to the bug fixes to extract the IDs of the bug reports, which
were used to collect the bug reports from each system’s issue
tracker. Unfortunately, for some bugs and systems, we were
not able to trace their respective bug reports. In the end, we
collected the bug reports of 124 bugs from three systems (i.e.,
Lang, Math, and Joda-Time).

The remaining (original) data sets (i.e., the LB, QQ, and
BRT data sets) were used in existing TRBL research. The
LB data set is composed of 974 bugs and their corresponding
TRBL data (i.e., the bug reports, buggy source code, fixed
code artifacts) from 17 versions of 14 open source projects.
We decided to discard the data corresponding to the mu-
Commander system because the original issues are no longer
available. We used 815 bug reports with TRBL data from this
data set in total. The QQ data is composed of 278 bugs and
their corresponding TRBL data from 15 versions of 12 open
source projects2. This data set includes all the needed TRBL
data, except the original bug reports used to create the queries.

1We used Defects4J v1.0.1, which originally contained five systems. This
data is available at https://github.com/rjust/defects4j/releases

2The authors of the QQ data set shared with us an updated version of it.
Therefore, the number of versions and systems are slightly different to the
ones reported in the authors’ publication [39].

Based on the provided queries and preprocessing heuristics we
mined the bug trackers of the corresponding systems and were
able to trace the bug reports of 241 QQ bugs, which correspond
to 13 versions of 11 software projects. The BRT data set
is composed of 3,459 bugs and their corresponding TRBL
data from 3 open source systems. We decided to discard the
data from the AspectJ system, as we observed inconsistencies
about the ground truth files (i.e., the fixed code artifacts) for
68.5% of the queries. For example, the files changed to fix
the bug from AspectJ 1419563 include the following ones:
“.../PR141956/base/A.java”, “.../PR141956/base/C.java”, and
“.../PR141956/inc1/C.java”. These are new files added to the
system and used to test the bug fix (according to the commit
metadata4). The files are not meant to be in the buggy version
of the system, yet they were found in the system’s source
code provided in BRT. In the end, we used 3,173 bugs from
the Eclipse and SWT projects. The four data sets used in our
study have different granularities, namely, method-level for
D4J and QQ, class-level for LB, and file-level for BRT.

Overall, we collected 4,353 bugs and their corresponding
bug reports, the changed files for each bug report (used to
fix the respective bug), and the source code of the software
systems, for 78 versions of 21 open-source projects. We
created a software document corpus from the code of each
software version (i.e., one corpus per version), according to
the granularity of each data set (i.e., methods, classes, or
files). The corpus was created by extracting the identifiers,
comments, and string literals. The documents in the corpus and
the queries were normalized by using standard preprocessing:
identifier splitting (based on the camel case and underscore
formats), special characters removal, common English stop
words and Java keywords removal, and stemming [44].

For each bug report, we created an initial query, by concate-
nating the bug report’s title and description. Other studies in
TRBL have also used the full text of the bug report to formu-
late the query [40, 59, 63]. In this study, we define low-quality
queries as queries that return the first buggy code document
below the top-10 of the ranked list of retrieved documents. The
rank threshold is derived from previous empirical evaluations
of TRBL, which assess the performance of TRBL techniques
on the top-10 results of the list [59, 63]. Similar thresholds
have been used in the context of query quality assessment [25].
In order to identify the low-quality queries in our data set, we
relied on the document rankings generated by Lucene (see
Section III-D) for all 4,353 initial queries. For each query, we
measured the rank of the first buggy code document retrieved.
We retained the queries with such a rank greater than 10 and
excluded the ones that did not lead to any relevant documents
retrieved since they do not benefit from term removal. This
process resulted in 1,592 low-quality queries (i.e., 1,190 BRT,
139 QQ, 36 D4J, and 227 LB queries). The entire data set
used in our study can be found in our replication package [9].

3https://tinyurl.com/kte4lqt
4The commit (5f6a6b12c5) is available at: https://tinyurl.com/kvqrh3j

In the context of our study, we formulate the following
research question:

RQ: Do low-quality queries reduced to the terms describing
OB improve the accuracy of TR-based bug localization?

B. Observed Behavior Identification

In order to answer our research question, the terms cor-
responding to the OB were identified for the bug reports that
resulted in low-quality queries. The number of bug reports was
manageable for manual analysis in all data sets except for BRT,
because of the high number of Eclipse bug reports (i.e., 1,174).
Therefore, we randomly sampled 142 bug reports from the
Eclipse project, and selected all the bug reports from the other
systems and data sets. A total of 560 bug reports that resulted
in low-quality queries were selected from the four data sets for
OB identification. Two people (a.k.a. coders – both authors of
this paper) conducted sentence-level qualitative coding [50]
on all 560 bug reports. The starting coding framework was
defined by one of the coders by studying 25 issues from
Davies et al.’s work [14]. The goal of this task was to analyze
the issue descriptions in order to identify the sentences that
corresponded to the OB. This task resulted in the initial coding
criteria. Once the pilot study was completed, this person
trained the other coder in a 45-minute session that involved
discussing the coding results and some ambiguous sentences.

We summarize some of the most important coding criteria
(the full list can be found in our replication package [9]). The
coding focused only on natural language content written by the
reporters, as opposed to code snippets, stack traces, or logs.
However, the natural language referencing this information
may indicate OB. Such cases were allowed for coding. An
example of this case is: “When I click the button, I get the fol-
lowing error: ...”. Uninformative sentences such as “The menu
does not work” are insufficient to be considered OB. There
must be a clear description of the observed (mis)behavior of
the software, e.g., “The menu doesn’t open when I click the
button”. Also, explanations of attached code to the bug reports
or about the system’s internal code are not considered OB.

To facilitate the coding process, we built an automated tool
that splits the text into sentences and paragraphs. The tool
uses the Stanford CoreNLP toolkit [36] and heuristics (e.g.,
punctuation). To minimize subjectivity, each bug report was
coded by both coders. For each bug report, the coders analyzed
the report text and marked the sentences corresponding to OB.
The coding process also discarded the issues that were not
actual bug reports, but feature requests or enhancements (i.e.,
98 reports). In the end, 462 bug reports from our four data
sets were inspected and coded (see Table I). Overall, the OB
identification step required significant manual effort. However,
in an actual usage scenario, a developer only needs to select
the OB terms from a single bug report, which takes seconds.

We analyzed the reliability of the coding process performed
by the two coders regarding the presence and absence of
OB in the 462 bug reports. We measured the inter-coder
agreement at sentence level using three well-known metrics,

Table I: Statistics of each data set.
Data Code # of # of coded # of bug reports # of low-quality
set granularity systemsa bug reports containing OB reduced queries
D4J Method 3 (52) 36 35 (97.2%) 35
QQ Method 11 (13) 103 100 (97.1%) 100
LB Class 13 (16) 199 197 (99.0%) 196

BRT File 2 (2) 130 125 (96.2%) 125
Overall* 21 (78) 462 452 (97.8%) 451

* Overall numbers without repetitions, a in parenthesis, # of system versions.

namely, the Observed agreement, Cohen’s kappa (k) [12], and
Krippendorff’s alpha (α) [30]. Overall, each of two coders
inspected 10,902 sentences from the bug reports, and decided
whether or not they described Observed Behavior (see Table
II). Our analysis reveals high inter-coder agreement levels.
The coders agreed on 10,526 sentences (i.e., 96.6% observed
agreement). The kappa and alpha measures range from 73.9%
and 84.3% across the four data sets, which account for
80.3% overall agreement (i.e., substantial agreement [55]).
The coders obtained almost perfect agreement on the BRT data
set and substantial agreement for the remaining ones [55].

Table II: Inter-coder agreement measurements.
Data Total # of # of sentences Observed Cohen’s Krippendorff’s
set sentences agreed on agreement kappa (k) alpha (α)
D4J 426 394 92.5% 73.9%* 73.9%*

QQ 1,670 1,588 95.1% 78.0%* 78.0%*

LB 5,340 5,157 96.6% 79.5%* 79.5%*

BRT 3,466 3,387 97.7% 84.3%** 84.3%**

Overall 10,902 10,526 96.6% 80.3%* 80.3%*

* substantial, and ** almost perfect agreement [55].

Overall, 229 bug reports (i.e., 49.6%) had some type of
disagreement. To solve the disagreements, we selected 16
bug reports that presented the highest number of disagree-
ments. Both coders examined each conflicting sentence in
these reports and determined, through discussion and mutual
agreement, the correct label for the sentences (i.e., either OB
or non-OB). This activity generated a common framework to
solve the disagreements in the next step. The remaining 213
bug reports were evenly distributed between the two coders,
and each one solved the disagreements of their corresponding
reports individually. If a coder had a doubt about the correct
label of a conflicting sentence, both coders would discuss
and solve each case. In the process, the coders recorded the
causes for each disagreement. We found that the main causes
were omissions of actual OB sentences (found in 50.7% of
the reports), sentences that were too high-level or vague to
be considered as OB (found in 20.0% of the reports), and
sentences describing code snippets or the system’s internal
code rather than OB (found in 7.8% of the reports).

C. Query Reduction Strategy

After the coding was completed and conflicts were resolved,
reformulated queries were generated from the coded bug
reports. Our analysis of the 462 coded bug reports reveals that
97.8% (i.e., 452) of reports contain explicit OB sentences (see
Table I). This proportion is in line with the ones measured in
other bug reports data sets [7, 14]. From the 452 bug reports
containing OB, we created 451 reduced queries5, by using

5After preprocessing, the query from the PIG-1935 report was voided.

only the terms from the sentences that were coded as OB.

D. TR-based Bug Localization Approaches

We selected four TRBL approaches to run the initial and re-
duced queries, namely Lucene [26], Lobster [40], BugLocator
[63], and BRTracer [59]. The goal is to assess if the OB-
based query reduction technique is influenced by the TBRL
approach.

Lucene [26] is a retrieval technique implemented in the
open source library of the same name [1], which combines
the standard information retrieval Boolean model and the
Vector Space Model (VSM) to compute the similarity between
a query and a document. Lucene is a technique that relies
only on textual information to retrieve the relevant (buggy)
documents at any granularity. Therefore, we used this approach
on all four data sets.

Lobster [40] is a TRBL technique that leverages stack traces
found in bug reports. It boosts the classes that appear in these
traces and also their related classes by using the system’s call
graph. Lobster works at class-level granularity, therefore, we
used it only on the LB data set. It is important to note that this
approach only makes a difference on bug reports that actually
contain stack traces. Hence, we measured its accuracy using
a subset of low-quality queries in the LB data set. We used
the original implementation of Lobster, which was provided
by its authors [40].

BugLocator [63] is a TRBL approach that combines infor-
mation from bug fix history and file length to boost certain
corpus documents. This approach uses a record of previously-
fixed bug reports to boost the files that were fixed as a result,
according to the textual similarity of these reports to the
query. Additionally, it boosts all corpus source files based on
their length (i.e., number of terms). BugLocator works a file-
level granularity, therefore, we used it only on the BRT data
set. We used our own implementation of BugLocator in this
study, based on the description provided in its corresponding
publication [63].

BRTracer [59] is an extension of BugLocator, which uses
stack trace information from bug reports and source file seg-
mentation to boost source code files retrieved by BugLocator.
Similar to Lobster, this technique boosts the source code files
that appear in the traces, and other files (or classes) that are
used in their internal code. In addition, the files are segmented
into smaller documents, and the highest textual similarity
between the segments and the query is used as the similarity of
the whole file. We used our own implementation of BRTracer,
which was used on the BRT dataset.

We evaluated our implementations of BugLocator and BR-
Tracer6 on the data sets provided by their respective authors.
On average, for BRTracer, the absolute differences of our
results from those reported by the authors are 2.6%/1.0%
for MRR/MAP (see Section III-E). For Buglocator, such
differences are 4.4%/3.7% for MRR/MAP. We attribute these

6We implemented these approaches because their original code was not
available at the time of conducting this study.

differences to variations in the exact preprocessing that we
used versus the one applied by the authors (since the code
corpus in the original data set does not come preprocessed).
Hence, we do not expect large variations in the results when
using the authors’ implementation. We did not adapt these ap-
proaches to work at different corpus granularities, as it would
have required major modifications to the original methods,
resulting essentially in new TRBL approaches. Such changes
are beyond the scope of our research since we are concerned
with the impact of using the OB as queries on TRBL.

E. Accuracy Metrics

We compare the performance of the reduced queries against
the initial queries using standard measures previously used
in TR-based bug and feature location research [3, 20]. We
perform the comparison only in the cases where a query could
be successfully reduced (i.e., the 451 queries) since otherwise,
our approach would have no effect.

Effectiveness refers to the best rank obtained by any of the
documents relevant to a query. We also compute the difference
of effectiveness between the reduced and initial queries (a.k.a.
rank difference).

Mean Reciprocal Rank (MRR) is a statistic that measures
the quality of the ranking of a retrieval approach in a search
task by capturing how close to the top of the result list a
relevant (i.e., buggy) document to a query q is retrieved. MRR
is given by the average of the reciprocal effectiveness of a set
of queries Q:

MRR(Q) =
1

|Q|
∑
q∈Q

1

effectiveness(q)

The higher the MRR value, the higher the ranking quality
of the bug localization approach will be. MRR is an aggregate
measure of how high the first relevant document ranks.

Mean Average Precision (MAP) is a measure of the
accuracy of a retrieval approach based on the average precision
of each query q in the set Q. Given Rq , the set of documents
relevant to query q, the average precision is computed as the
average of the precision values at the resulting rank of each
document. MAP is the mean of the average precision of the
set of queries Q, defined as follows:

MAP(Q) =
1

|Q|
∑
q∈Q

1

|Rq|
∑
r∈Rq

precision(rank(r))

MAP reflects how well all the changed (i.e., buggy) docu-
ments rank, in aggregate.

In order to understand in more details improvements or
deteriorations in rankings, we need a finer-grained analysis
and we also compute the followings metrics:

Number of queries improved and deteriorated. In our
case, a query is improved if the effectiveness (i.e., the rank of
the first relevant document) of the reduced query is lower than
the effectiveness of the initial query. A query is deteriorated
if the effectiveness of the reduced query is higher than the
effectiveness of the initial query. Otherwise, a query has no
effect, i.e., the effectiveness before and after applying the query

reduction is the same. Ideally, we want a higher number of
improved queries than deteriorated queries.

Improvement and deterioration magnitude. It measures
the relative magnitude of improvement or deterioration, which
is computed as (rb − ra)/rb, i.e., the change percentage of
the rank of the first buggy artifact (i.e., effectiveness) when
using the reduced queries. We report the mean and median
magnitude of improvement and deterioration. Ideally, we want
the magnitude of improvement to be larger than the magnitude
of deterioration. However, when comparing these magnitudes,
one must proceed with caution. For example, if an initial query
has effectiveness 20 and the reduced query improves it to
10, then the improvement magnitude is 50%. On the other
hand, if the baseline effectiveness is 10 and the reduced query
deteriorates it to 20, then the magnitude of the deterioration
is 100%. Note that in both cases the absolute difference in
effectiveness is the same (i.e., 10).

Quality of a query. Comparing the magnitude of im-
provement and deterioration reveals only one aspect of the
differences between two reformulation approaches. For exam-
ple, assume that approach A achieves 75% improvement and
approach B achieves 50% improvement, on average. It is easy
to conclude that A is better than B. Now, let us assume that
A improves queries that, on average, ranked at 400, so now
they rank, on average, at 100, whereas B improves queries
ranked at 40, on average, and now they are ranked at 20.
One can conclude that A does not help much in practice
(i.e., the relevant documents are still ranked too far from the
top of the list), whereas B has a significant positive impact.
MAP partially addresses this issue, but it still provides no
indication in which part of the ranking the improvements or
deteriorations occur.

In order to analyze this aspect, we define four categories of
query quality, depending on the queries’ effectiveness when
utilized by a TR-based bug localization approach. A query
is considered high-quality (i.e., Q10) if its effectiveness is
between 1 and 10, and low-quality if its effectiveness is greater
than 10 (i.e., Q10+). We define three groups of low-quality
queries. A query belongs to group Q20 if its effectiveness
is between 11 and 20 (i.e., low quality). If the effectiveness
is between 21 and 30, then the query is labeled Q30 (i.e.,
lower quality). Otherwise, when the effectiveness of the query
is higher than 30, the query is labeled Q30+ (i.e., lowest
quality). Similar categories were defined in prior work on
query reformulation [25]. Ideally, our goal is to convert low-
quality queries into high-quality ones. At the same time, we
want to avoid further deteriorating queries belonging to the
Q20 group, while we are less concerned if Q30 and Q30+

queries get deteriorated. We report and analyze the number of
queries that improve/deteriorate across categories (e.g., from
Q30+ to Q10, or from Q20 to Q30).

IV. RESULTS AND DISCUSSION

We present and discuss the results produced by the initial
and reduced low-quality queries using the four TRBL ap-
proaches on their corresponding data sets.

Table III: Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP) of the initial and reduced queries.

Data set TR-based # of MRR MAP
approach queriesa Initial queries Reduced queries Improv. Initial queries Reduced queries Improv.

D4J Lucene 30 (5) 2.7% 5.2% 94.9% 2.8% 5.3% 87.5%
QQ Lucene 93 (7) 2.2% 6.4% 187.9% 2.0% 4.5% 127.5%

LB Lucene 188 (8) 3.1% 12.9% 312.4% 2.8% 10.1% 258.6%
Lobster 35 (1) 2.6% 10.7% 304.5% 2.2% 7.4% 235.5%

BRT
Lucene 123 (2) 2.8% 4.5% 61.3% 2.4% 4.1% 68.4%

BugLocator 96 (2) 2.4% 3.2% 34.9% 2.0% 2.5% 20.3%
BRTracer 89 (2) 2.2% 3.0% 36.0% 1.9% 2.2% 18.5%
Average 2.6% 6.6% 147.4% 2.3% 5.2% 116.6%

a. In parenthesis, number of (reduced) queries that did not retrieve the corresponding buggy code documents.

A. Overall TR-based Bug Localization Accuracy

Table III summarizes the results (in terms of MRR and
MAP) obtained for each data set and TRBL approach, by
utilizing the initial and reduced queries. The number of queries
used varies across different TRBL approaches in the LB and
BRT data sets. The reason for these differences is that different
approaches lead to different sets of low-quality queries. This
means that, after using the hybrid approaches (i.e., Lobster,
BugLocator, and BRTracer), some queries remain as low-
quality queries, while others become high-quality and, there-
fore, are not included in the analysis for each approach.

Table III reveals that the reduced queries improve the base-
line MRR and MAP values by different magnitudes depending
on the approach and data set. The reduced queries improve
the MRR values by 34.9% to 312.4%, and the MAP values
by 18.5% to 258.6%, across all approaches and data sets.
Analyzing the results across data sets, we observe that the
highest improvement is for the LB data set, whereas the
lowest improvement magnitude is achieved for the BRT data
set. Remember that D4J and QQ are method-level granularity,
LB is class-level, and BRT is file-level. Granularity-wise,
for Java systems, we can consider class- and file-level to
be somewhat similar. The different performance for Lucene
across the LB/BRT data sets indicates that likely the cor-
pus granularity does not seriously impact our reformulation
technique. Approach-wise, BugLocator and BRTracer see the
smallest improvement, while Lobster and Lucene see the most
improvements. This indicates that BRTracer and BugLocator
are less sensitive to noisy queries than Lucene and Lobster, yet
OB-based query reduction still leads to significant improve-
ments. Summarizing across different approaches and data sets,
we found that, on average, the reduced queries improve the
accuracy of TRBL by 147.4% and 116.6%, in terms of MRR
and MAP, respectively. One can notice that the absolute MRR
and MAP values for all the queries are low, which is to be
expected given that all these are low-quality queries.

B. Accuracy across Query Categories

In order to understand where the MRR/MAP overall im-
provement comes from (i.e., see Table III), we computed the
TRBL accuracy across the categories defined in Section III-E
for the initial queries and their reduced version. Table IV
shows the relative magnitude of MRR and MAP improvements
for the Q20, Q30, and Q30+ initial queries, respectively.

On average, we found that the OB-based query reduction
strategy obtains the largest improvement magnitude for the

lowest quality queries (i.e., Q30+ queries; 229.4%/193% avg.
MRR/MAP improvement). The lower quality queries (i.e., Q30

queries) see somewhat less improvement (i.e., 150%/129.9%
avg. MRR/MAP). Finally, the better among the low-quality
queries (i.e., Q20 queries) see the lowest magnitude improve-
ment (i.e., 100.7%/64.5% avg. MRR/MAP). We conclude that
the OB-based query reduction technique appears to work best
with the lowest quality queries, yet it achieves significant
improvements across all categories of low-quality queries.

Table IV: Mean Reciprocal Rank (MRR) and Mean Average
Precision (MAP) of the initial Q20, Q30, and Q30+ queries
and their corresponding reduced queries.

Query category
Average MRR Average MAP

Initial Reduced Improv. Initial Reduced Improv.queries queries queries queries
Q20 queries 7.0% 14.2% 100.7% 6.1% 9.9% 64.5%
Q30 queries 3.9% 10.0% 150.0% 3.5% 8.3% 129.9%
Q30+ queries 1.0% 3.6% 229.4% 1.0% 3.0% 193.0%

C. Trade-offs between Improved and Deteriorated Queries

As with any query reformulation technique, the improve-
ment of some queries comes at the cost in the quality of others.
The goal of any reformulation technique is to improve more
queries than it deteriorates and the magnitude of improvement
to be higher than the deterioration. While the MRR/MAP val-
ues indicate that this is the case with our approach, we perform
a finer grained analysis in terms of the number of queries
improved/deteriorated, and the average/median magnitude of
improvement/deterioration, to understand the trade-offs.

Table V reveals that our reduction method improves some
low-quality queries while deteriorating others across all data
sets. The number of improved queries is higher than the num-
ber of deteriorated queries for the QQ and LB data sets. These
numbers explain the high MRR and MAP values on these data
sets, especially when using Lobster, where 25 queries (i.e.,
71.4%) are improved and only 8 are deteriorated (i.e., 22.9%).
The opposite situation is observed for the D4J and BRT data
sets. The number of deteriorated queries is slightly higher than
the number of improved queries, except when BRTracer is
used, which leads to the same number of queries improved
and deteriorated. We need to analyze the magnitude of the im-
provement/deterioration since the MRR/MAP improvements
in these data sets indicate overall improvement. We observe
that the average/median magnitude of deterioration is higher
than the magnitude of improvement for all approaches and

Table V: Number of queries improved, deteriorated and unchanged, average (median) magnitude of improvement and
deterioration, and average (median) rank difference when reducing the initial queries.

Data set TRBL Improved queries Deteriorated queries Unchanged queries
approach #a Avg. magn.b Avg. rank diff.b #a Avg. magn.b Avg. rank diff.b #a

D4J Lucene 11 (36.7%) 51.2% (64.6%) 44.5 (38.0) 16 (53.3%) -222.1% (-155.4%) -145.5 (-46.0) 3 (10.0%)
QQ Lucene 50 (53.8%) 52.6% (53.9%) 675.0 (66.5) 34 (36.6%) -353.4% (-66.1%) -528.4 (-65.0) 9 (9.7%)

LB Lucene 100 (53.2%) 61.7% (64.8%) 94.0 (29.0) 71 (37.8%) -305.8% (-127.3%) -133.1 (-47.0) 17 (9.0%)
Lobster 25 (71.4%) 49.9% (45.8%) 86.1 (17.0) 8 (22.9%) -46.3% (-38.4%) -93.3 (-48.5) 2 (5.7%)

BRT
Lucene 54 (43.9%) 50.6% (50.4%) 425.2 (30.0) 61 (49.6%) -680.3% (-143.2%) -497.5 (-88.0) 8 (6.5%)

Bug Locator 45 (46.9%) 40.6% (38.5%) 241.4 (37.0) 46 (47.9%) -452.7% (-112.1%) -407.2 (-85.5) 5 (5.2%)
BRTracer 42 (47.2%) 39.9% (37.8%) 266.2 (39.0) 42 (47.2%) -317.5% (-80.6%) -386.5 (-85.5) 5 (5.6%)

Average 46.7 (50.4%) 49.5% (50.8%) 261.8 (36.6) 39.7 (42.2%) -339.7% (-103.3%) -313.1 (-66.5) 7.0 (7.4%)
In parenthesis: a. percentage values, b. median values.

data sets, except for Lobster on LB. The same situation is
observed for the average/median rank difference between the
initial and reduced queries. Summarizing across approaches
and data sets, we found that the reduced queries achieve 49.5%
(50.8%) average (median) improvement, i.e., 261.8 (36.6) avg.
(median) positions improved, with a significant deterioration
cost: 339.7% in average (103.3% median), i.e., 313.1 (66.5)
avg. (median) positions deteriorated. To better understand
these numbers, consider a query whose buggy code artifact
ranks at position 20. Then, 49.5% (or 50.8%) improvement
means that the artifact is re-ranked to position 10. On the other
hand, 339.7% (or 103.3%) deterioration means that the artifact
is re-ranked on position 88 (or 41). We require additional
analysis to explain the overall MRR/MAP improvement, which
we perform in the following subsection.

D. Queries Improved and Deteriorated between Categories

As we mentioned before, it matters what kind of queries get
improved or deteriorated. For example, in an extreme case,
we would prefer a reformulation approach that improves a
single low-quality query from position 50 to 5, at the cost
of deteriorating 100 queries from position 400 to 500 (i.e.,
arguably, they are equally bad). Conversely, we would avoid an
approach that improves 100 low-quality queries from position
500 to 400, yet it deteriorates one from 5 to 50. The metrics
discussed above do not capture such cases. Generally, improv-
ing or deteriorating Q30+ or Q30 queries while maintaining
them in the same Q30+ and Q30 categories matters less
from a practical point of view (i.e., really low-quality queries
remain equally low-quality), whereas improving queries across
categories matters most (e.g., from Q30 to Q10 – low-quality
queries become high-quality).

Table VI shows how many of the low-quality queries im-
proved/deteriorated stayed within the same category and how
many changed category. To be consistent with the acronyms
in the table, we define a notation for the transitions between
categories. When a Q20 query is improved and becomes high-
quality (i.e., Q10), we denote it as Q20→10. When a Q20 query
is deteriorated and becomes Q30, we denote it as Q20→30. If a
Q20 query is improved or deteriorated but it does not change
its category, we denote is as Q20→20.

In our analysis, we focus on the following aspects:
• The best cases are when low-quality queries become high-

quality (i.e., Q20→10, Q30→10, or Q30+→10). Q30+→10 is
the best-case scenario.

• The cases when a query improves to Q20 (i.e., Q30→20,
Q30+→20, or Q20→20) are also desirable, although poten-
tially less practical (i.e., they are still low-quality queries).

• The remaining cases when there is improvement (i.e.,
Q30+→30, Q30→30 and Q30+→30+) are the least practical
forms of improvement.

• Regarding deterioration, the worst-case scenario is when
a Q20 query becomes Q30+ (i.e., Q

20→30+). These cases
should be minimized.

• The cases when a Q20 query becomes Q30 or deteriorate
within the same category (i.e., Q20→30 or Q20→20) should
be also minimized, although, they are not as severe as the
previous ones.

• The remaining cases when there is deterioration (i.e.,
Q30→30+, Q30→30, or Q30+→30+) are the least problematic
among the deterioration cases (i.e., really low-quality
queries become somewhat worse).

Table VI shows that our reduction strategy is able to improve
low-quality queries into high-quality (i.e., Q∗→10) for all
approaches and data sets. In the case of the LB data set,
the number of queries that become high-quality is substantial.
When Lucene and Lobster are used, 25% (i.e., 47) and 28.6%
(i.e., 10) of the queries become high-quality, respectively.
For the remaining approaches and data sets, such numbers
are lower, i.e., between 6.7% and 13.3% of the queries.
It is worth noting that when Lucene is used on LB data,
our reduction strategy is able to improve 24 (i.e., 12.8%)
Q30+ queries into high-quality (i.e., Q30+→10 – the best-
case scenario). Fewer Q30+→10 queries were obtained for the
remaining approaches and data sets (i.e., 1 or 2 queries).
Summarizing across techniques and data sets, we found that,
on average per approach and data set, our reduction strategy
improves 14.8% low-quality queries into high-quality. This
means that 14.8% of the low-quality queries are reduced and
now ranked in the top-10 of the results list.

As mentioned before, the queries that improve into Q20

(i.e., Q∗→20) are also desirable. Table VI shows that the
proportions of Q∗→20 queries fall between 3.3% and 11.5%
across approaches and data sets, with Lucene on D4J and QQ
being the approach that achieves the lowest proportions (i.e.,
3.3% and 4.3%, respectively). On average, 8.9% low-quality
queries were ranked higher, between positions 11 and 20, by
our reduction strategy. We aggregate the number of queries that
become high-quality and the ones that improve into Q20 (i.e.,
Q∗→{10,20}). These queries are the ones that most contribute to

Table VI: Number of queries of each transition between high- (Q10) and low-quality (Q10+) queries.

Data
set

TRBL
approach

Improved queries
Cross-category queries Within-category queries

Q∗→20
a Q∗→{10,20}

a

Q20→10 Q30→10 Q30+→10 Q30→20 Q30+→20 Q30+→30 Q∗→10
a Q20→20 Q30→30 Q30+→30+

D4J Lucene 1 1 2 0 1 1 4 (13.3%) 0 0 5 1 (3.3%) 5 (16.7%)
QQ Lucene 8 2 1 1 3 3 11 (11.8%) 0 2 30 4 (4.3%) 15 (16.1%)

LB Lucene 11 12 24 6 11 6 47 (25.0%) 3 6 21 20 (10.6%) 67 (35.6%)
Lobster 5 3 2 1 3 0 10 (28.6%) 0 1 10 4 (11.4%) 14 (40.0%)

BRT
Lucene 8 2 2 1 6 2 12 (9.8%) 5 3 25 12 (9.8%) 24 (19.5%)

BugLoc. 6 0 2 3 3 0 8 (8.3%) 5 1 25 11 (11.5%) 19 (19.8%)
BRTracer 4 0 2 3 2 0 6 (6.7%) 5 1 25 10 (11.2%) 16 (18.0%)

Average 6.1 2.9 5.0 2.1 4.1 1.7 14 (14.8%) 2.6 2.0 20.1 8.9 (8.9%) 22.9 (23.7%)
In parenthesis, a. percentage values with respect to the total number of queries that retrieved a buggy code artifact.

Data set TRBL
approach

Deteriorated queries
Cross-category queries Within-category queries

Q20→{30,20}
a Q20→∗aQ20→30 Q20→30+

a Q30→30+ Q20→20 Q30→30 Q30+→30+

D4J Lucene 0 4 (13.3%) 1 0 0 11 0 (0.0%) 4 (13.3%)
QQ Lucene 2 1 (1.1%) 4 3 2 22 5 (5.4%) 6 (6.5%)

LB Lucene 4 13 (6.9%) 10 4 0 40 8 (4.3%) 21 (11.2%)
Lobster 1 0 (0.0%) 0 0 0 7 1 (2.9%) 1 (2.9%)

BRT
Lucene 4 9 (7.3%) 8 3 0 37 7 (5.7%) 16 (13.0%)

BugLocator 1 3 (3.1%) 8 1 0 33 2 (2.1%) 5 (5.2%)
BRTracer 1 4 (4.5%) 6 0 0 31 1 (1.1%) 5 (5.6%)

Average 1.9 4.9 (5.2%) 5.3 1.6 0.3 25.9 3.4 (3.1%) 8.3 (8.2%)
In parenthesis, a. percentage values with respect to the total number of queries that retrieved a buggy code artifact.

the overall MRR/MAP performance from Table III. We can see
higher proportions of Q∗→{10,20} queries for LB than for the
other data sets (i.e., 35.6% and 40% when Lucene and Lobster
are used, respectively), which explain the high MRR/MAP
values in such cases.

The Q20 queries that deteriorate to Q30 or deteriorate in
the same category (i.e., Q20→{30,20}) are undesirable. Table
VI shows low proportions of such queries across approaches
and data sets, i.e., 3.1% on average. We aggregate the number
of Q

20→30+ and Q20→{30,20} queries (i.e., Q20→∗). These
queries are the ones that most impact the overall MRR/MAP
performance from Table III. We can see lower proportions
of these queries compared to Q∗→{10,20} queries (i.e., the
most desirable cases), across approaches and data sets, which
explains the overall MRR/MAP improvements. On average,
8.2% of the Q20 queries are deteriorated. We now analyze the
worst deterioration cases, that is, when Q20 queries become
Q30+ (i.e., Q

20→30+). Table VI shows that the highest pro-
portion of Q

20→30+ queries is achieved by Lucene on D4J,
LB, and BRT (i.e., 13.3%, 6.9%, and 7.3%, respectively).
The proportions of the remaining approaches and data sets
fall between 1.1% and 4.5%, except for Lobster on LB, with
zero Q

20→30+ queries. Summarizing across techniques and
data sets, we found that, on average, 5.2% Q20 queries are
deteriorated into Q30+, i.e., 11% of deteriorated queries. The
results indicate that, on average, most of the deteriorated
queries (i.e., 89%) are the least offensive type.

We manually inspected the initial and reduced queries,
and the expected buggy code documents for the 34 Q

20→30+
cases, which correspond to 30 unique queries (the overlap
comes from the BRT data). We found three reasons for the
deteriorations. The first (and main) reason is that important
shared terms between the queries and the buggy code
documents were removed from the initial queries (i.e.,
found in 3 D4J, 1 QQ, 8 LB, and 8 BRT queries – 20

queries total). This happened when the terms appeared in
sentences not describing OB. Then, the removal of the
terms led to deterioration. For example, in the case of
the bug report LANG-4327, the term “handling” appears
in the title, which does not describe OB. This term
appears in the Javadoc comment of the buggy method
StringUtils:containsIgnoreCase(String,
String): “... Checks if String contains ... handling
<code>null</code> ...”. By removing the term, the ranking
of the buggy method deteriorated. The second reason was
observed in queries from the Eclipse system only (i.e., four
BRT queries), which were generated from bug reports that
contained stack traces. We observed that each one of such
bug reports contained only one short OB sentence and a
long stack trace (along with other non-OB content), which
contained the buggy files (or the names of the implemented
classes) in some of its entries. For instance, for Eclipse
946338, the reduced query comes from the bug report’s title:
“Concurrent Modification Exception whilst editing Ant file”.
Only the terms “ant” and “file” appear in the vocabulary
of the buggy file AntElementNode.java, which occurs
in the third entry of the stack trace: “at ... AntElementNode
... AntElementNode.java:450)”. In this case, the removal of
the stack trace and the few shared query terms lead to the
deterioration. Finally, the third reason found is that non-OB
sentences contained the name of the buggy artifacts (i.e.,
found in 1 D4J and 5 LB queries – 6 queries total), as in the
case of PIG-33109, in which several of its non-OB sentences
contain the term LOSplitOutput (i.e., the buggy class).
Overall, we observed that the removed, yet important terms
may appear in natural language sentences, stack traces, or
code snippets. One way to improve our reformulation strategy

7https://issues.apache.org/jira/browse/LANG-432
8https://bugs.eclipse.org/bugs/show_bug.cgi?id=94633
9https://issues.apache.org/jira/browse/PIG-3310

is by identifying and including code snippets in the query
along with the OB terms. Another situation was observed in
the manually inspected bug reports. Some important terms in
OB sentences also occurred in non-OB sentences. However,
when the latter ones were removed to reduce the queries,
the frequency of such terms in the new query decreased.
This may contribute to the deterioration of our reformulation
strategy. As future work, we plan to boost such terms in the
reduced query, by increasing their frequency.

In conclusion, while Lucene obtains the highest MRR/MAP
improvements across data sets, it also seems to be the most
sensitive to query reduction, with higher absolute cost in
terms of deterioration. The significant improvements (in some
cases) offset the deterioration. As noted before, BRTracer and
BugLocator achieve less MRR/MAP improvements than the
other techniques but exhibit fewest offensive deteriorations.

V. THREATS TO VALIDITY

We briefly discuss the threats that could affect the validity
of our study. The main threat to construct validity is the
subjectivity introduced in the construction of the labeled data
set of bug reports (see Section III-B). To minimize subjectivity,
we ensured that each bug report was coded by two coders
independently. We also defined common coding criteria and
trained the coders on them via interactive tutorials, which
included examples and discussion of ambiguous cases. We
also assessed coding reliability by measuring the inter-coder
agreement using well-known metrics (see Section III-B).

In order to mitigate threats to the conclusion validity of
our results, we compared the performance of the reduced
and initial queries using standard measures (i.e., effectiveness,
MRR, and MAP), widely used in concept/feature location
research [19] and in the evaluation of other TRBL approaches
[40, 57, 59, 63]. As a further analysis, we evaluated the number
of queries improved and deteriorated, and the relative mag-
nitude of improvement and deterioration to perform a fine-
grained analysis of the gain achieved by reducing the initial
queries. Finally, we also grouped the queries in four cate-
gories (high-quality and low-quality, with low-quality further
divided into three sub-categories) and analyzed the transition
of queries among categories after reduction. Similar categories
were defined in prior work on query reformulation [25].

The choice of context and TRBL approaches impacts the
internal validity of our conclusions. The context of the study
is represented by three data sets previously used in TRBL
studies [39, 40, 59] and one used in software testing [28].
Such data sets have different granularity levels (i.e., method-,
class-, and file-level) and correspond to distinct Java software
systems. While we observed variation in results across data
sets and TRBL approaches, the common denominator in
all treatments was the query reduction mechanism, which
we consider the main factor in the observed improvements.
Another threat to internal validity concerns the bug report
sampling. To identify low-quality queries, we relied on the
rankings generated by Lucene on those queries, and selected
a random sample of (the corresponding) bug reports that was

large enough to allow manual OB identification. Some queries,
generated from this subset, turned out not being low-quality
when retrieved using the other TRBL approaches (i.e., Lobster,
BugLocator, and BRTracer). This means that when evaluating
our query reduction technique with these approaches, we used
only queries that were low-quality for both Lucene and the
respective approach, which indicates that some (other) low-
quality queries for each approach may have been missed.

In order to strengthen external validity, we used 451 queries
from bug reports from 78 versions of 21 different software
systems, which are from different domains and sizes. While
our set of bug reports is not small, a larger set of reports would
have strengthened the results. Finally, we used four TRBL
techniques, namely, Lucene [26], Lobster [40], BugLocator
[63], and BRTracer [59]. The results may or may not vary
when using different TRBL approaches.

VI. CONCLUSIONS AND FUTURE WORK

We hypothesized that reducing bug reports to their Observed
Behavior (OB) content can improve TR-based bug localization
(TRBL) when the bug report forms a low-quality query. An
empirical study on 451 such low-quality queries provided
evidence in support of our conjecture. We observed that
our query reformulation technique is robust to the corpus
granularity and works best for the lowest quality queries,
yet it achieves significant improvements across other types of
low-quality queries. As with any query reformulation strategy,
there is a trade-off between queries that improve and those
that do not. We found that the trade-off is in favor of the
improved queries, as most of the ones that deteriorate are of
the lowest quality to begin with. Indirectly, we found that two
of the approaches we experimented with (i.e., BRTracer and
BugLocator) are less sensitive to noisy queries than the other
two (i.e., Lucene and Lobster), while all benefit from the OB-
based query reduction strategy. In conclusion, we consider the
OB-based query reformulation strategy effective in improving
TRBL, especially considering that it requires no additional
information (than what is already in a bug report) and it
demands minimal effort from the developer (i.e., simply select
the sentences describing the OB).

As for future work, we will investigate ways to further
improve our query reformulation technique. Specifically, we
will investigate boosting OB query terms that occur frequently
in other parts of the bug report and including terms found
in code snippets. We also plan to closely investigate other
natural language descriptions contained in bug reports (e.g.,
the expected behavior and the steps to reproduce the bug),
and ways to automatically detect such contents to reformulate
low-quality queries [8]. Finally, expanding the evaluation on
more data sets, using more TRBL approaches, and conducting
studies with end users is also planned.

ACKNOWLEDGMENTS

This research was supported in part by the grant CCF-
1526118 from the US National Science Foundation.

REFERENCES

[1] “https://lucene.apache.org/,” 2017.
[2] N. Ali, A. Sabane, Y.-G. Gueheneuc, and G. Antoniol, “Improving bug

location using binary class relationships,” in Proceedings of the Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM’12), 2012, pp. 174–183.

[3] V. Arnaoudova, S. Haiduc, A. Marcus, and G. Antoniol, “The use of
text retrieval and natural language processing in software engineering,”
in Companion Proceedings of the International Conference on Software
Engineering (ICSE’16), 2016, pp. 898–899.

[4] S. K. Bajracharya and C. V. Lopes, “Analyzing and mining a code search
engine usage log,” Empirical Software Engineering, vol. 17, no. 4-5, pp.
424–466, 2012.

[5] B. Bassett and N. A. Kraft, “Structural information based term weighting
in text retrieval for feature location,” in Proceedings of the International
Conference on Program Comprehension (ICPC’13), 2013, pp. 133–141.

[6] C. Carpineto and G. Romano, “A survey of automatic query expansion
in information retrieval,” Computing Surveys, vol. 44, no. 1, p. 1, 2012.

[7] O. Chaparro, “Improving bug reporting, duplicate detection, and local-
ization,” in Proceedings of the International Conference on Software
Engineering (ICSE’17), 2017, pp. 421–424.

[8] O. Chaparro, J. M. Florez, and A. Marcus, “On the vocabulary agreement
in software issue descriptions,” in Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME’16), 2016,
pp. 448–452.

[9] ——, “Replication package,” 2017. [Online]. Available: https://seers.
utdallas.edu/projects/ob-query-reformulation

[10] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus,
G. Bavota, and V. Ng, “Detecting missing information in bug descrip-
tions,” in Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE’17), 2017, (to appear).

[11] O. Chaparro and A. Marcus, “On the Reduction of Verbose Queries in
Text Retrieval Based Software Maintenance,” in Companion Proceedings
of the International Conference on Software Engineering (ICSE’16),
2016, pp. 716–718.

[12] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[13] K. Damevski, D. Shepherd, and L. Pollock, “A field study of how devel-
opers locate features in source code,” Empirical Software Engineering,
vol. 21, no. 2, pp. 724–747, 2016.

[14] S. Davies and M. Roper, “What’s in a Bug Report?” in Proceedings
of the International Symposium on Empirical Software Engineering and
Measurement (ESEM’14), 2014, pp. 26:1–26:10.

[15] S. Davies, M. Roper, and M. Wood, “Using bug report similarity to
enhance bug localisation,” in Proceedings of the Working Conference
on Reverse Engineering (WCRE’12), 2012, pp. 125–134.

[16] A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk, “Information
retrieval methods for automated traceability recovery,” in Software and
Systems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman, Eds.
Springer, 2012, pp. 71–98.

[17] T. Dietrich, J. Cleland-Huang, and Y. Shin, “Learning effective query
transformations for enhanced requirements trace retrieval,” in Proceed-
ings of the International Conference on Automated Software Engineering
(ASE’13), 2013, pp. 586–591.

[18] T. Dilshener, M. Wermelinger, and Y. Yu, “Locating bugs without
looking back,” in Proceedings of the International Conference on Mining
Software Repositories (MSR’16), 2016, pp. 286–290.

[19] B. Dit, “Monitoring the searching and browsing behavior of developers
in eclipse during concept location,” M.Sc. Thesis, Wayne State Univer-
sity, 2009.

[20] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: A taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2012.

[21] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of
relevance feedback in ir-based concept location,” in Proceedings of the
International Conference on Software Maintenance (ICSM’09), 2009,
pp. 351–360.

[22] X. Ge, D. C. Shepherd, K. Damevski, and E. Murphy-Hill, “Design and
evaluation of a multi-recommendation system for local code search,”
Journal of Visual Languages & Computing, 2016.

[23] M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards mining
replacement queries for hard-to-retrieve traces,” in Proceedings of the
International Conference on Automated Software Engineering (ASE’10),
2010, pp. 245–254.

[24] J. Guo, M. Gibiec, and J. Cleland-Huang, “Tackling the term-mismatch
problem in automated trace retrieval,” Empirical Software Engineering,
pp. 1–40, 2016.

[25] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval in soft-
ware engineering,” in Proceedings of the International Conference on
Software Engineering (ICSE’13), 2013, pp. 842–851.

[26] E. Hatcher and O. Gospodnetic, Lucene in Action. Manning Publica-
tions, 2004.

[27] E. Hill, M. Roldan-Vega, J. A. Fails, and G. Mallet, “Nl-based query
refinement and contextualized code search results: A user study,” in
Proceedings of the Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE’14), 2014, pp. 34–43.

[28] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Proceed-
ings of the International Symposium on Software Testing and Analysis
(ISSTA’14). ACM, 2014, pp. 437–440.

[29] K. Kevic and T. Fritz, “Automatic search term identification for change
tasks,” in Companion Proceedings of the International Conference on
Software Engineering (ICSE’14), 2014, pp. 468–471.

[30] K. Krippendorff, Content Analysis: An Introduction to Its Methodology,
2nd ed. Sage, 2004.

[31] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: Better together,” in Proceedings of the
Joint Meeting on Foundations of Software Engineering (ESEC/FSE’15),
2015, pp. 579–590.

[32] O. A. L. Lemos, A. C. d. Paula, H. Sajnani, and C. V. Lopes, “Can the
use of types and query expansion help improve large-scale code search?”
in Proceedings of the International Working Conference on Source Code
Analysis and Manipulation (SCAM’15), 2015, pp. 41–50.

[33] Z. Li, T. Wang, Y. Zhang, Y. Zhan, and G. Yin, “Query reformulation
by leveraging crowd wisdom for scenario-based software search,” in
Proceedings of the Asia-Pacific Symposium on Internetware (Internet-
ware’16), 2016, pp. 36–44.

[34] X. A. Lu and R. B. Keefer, “Query expansion/reduction and its impact
on retrieval effectiveness,” NIST Special Publication, pp. 231–231, 1995.

[35] F. Lv, H. Zhang, J. g. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow:
Effective code search based on api understanding and extended boolean
model (e),” in Proceedings of the International Conference on Automated
Software Engineering (ASE’15), 2015, pp. 260–270.

[36] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL’14), 2014, pp. 55–60.

[37] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in Proceedings
of the Working Conference on Reverse Engineering (WCRE’04), 2004,
pp. 214–223.

[38] A. Marcus and S. Haiduc, “Text retrieval approaches for concept
location in source code,” in Software Engineering: International Summer
Schools, ISSSE 2009-2011, Salerno, Italy. Revised Tutorial Lectures, ser.
Lecture Notes in Computer Science. Springer, 2013, vol. 7171, pp.
126–158.

[39] C. Mills, G. Bavota, S. Haiduc, R. Oliveto, A. Marcus, and A. De Lucia,
“Predicting query quality for applications of text retrieval to software
engineering tasks,” Transactions on Software Engineering and Method-
ology, vol. 26, no. 1, pp. 3:1–3:45, 2017.

[40] L. Moreno, J. Treadway, A. Marcus, and W. Shen, “On the use of stack
traces to improve text retrieval-based bug localization,” in Proceedings
of the Conference on Software Maintenance and Evolution (ICSME’14),
2014, pp. 151–160.

[41] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen, “A topic-based approach for narrowing the search space of
buggy files from a bug report,” in Proceedings of the International
Conference On Automated Software Engineering (ASE’11), 2011, pp.
263–272.

[42] B. D. Nichols, “Augmented bug localization using past bug informa-
tion,” in Proceedings of the Annual Southeast Regional Conference
(ACMSE’10), 2010, pp. 1–6.

[43] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion based
on crowd knowledge for code search,” IEEE Transactions on Services
Computing, vol. 9, no. 5, pp. 771–783, 2016.

[44] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[45] M. M. Rahman and C. K. Roy, “Quickar: Automatic query reformulation
for concept location using crowdsourced knowledge,” in Proceedings
of the International Conference on Automated Software Engineering
(ASE’16), 2016, pp. 220–225.

[46] ——, “Strict: Information retrieval based search term identification for
concept location,” in Proceeding of the Conference on Software Analysis,
Evolution, and Reengineering (SANER’17), 2017, pp. 79–90.

[47] S. Rao and A. Kak, “Retrieval from software libraries for bug local-
ization: a comparative study of generic and composite text models,” in
Proceedings of the Working Conference on Mining software repositories
(MSR’11), 2011, pp. 43–52.

[48] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails, “Conquer: A tool for
nl-based query refinement and contextualizing code search results.” in
Proceedings of the International Conference on Software Maintenance
(ICSM’13), 2013, pp. 512–515.

[49] R. Saha, M. Lease, S. Khurshid, and D. Perry, “Improving bug local-
ization using structured information retrieval,” in Proceedings of the
International Conference on Automated Software Engineering (ASE’13),
2013, pp. 345–355.

[50] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on Software Engineering, vol. 25, no. 4,
pp. 557–572, 1999.

[51] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker, “Using
natural language program analysis to locate and understand action-
oriented concerns,” in Proceedings of the International Conference on
Aspect-oriented Software Development (AOSD’07), 2007, pp. 212–224.

[52] B. Sisman and A. Kak, “Incorporating version histories in information
retrieval based bug localization,” in Proceedings of the Working Confer-
ence on Mining Software Repositories (MSR’12), 2012, pp. 50–59.

[53] B. Sisman and A. C. Kak, “Assisting code search with automatic
query reformulation for bug localization,” in Proceedings of the Working
Conference on Mining Software Repositories (MSR’13), 2013, pp. 309–
318.

[54] J. Starke, C. Luce, and J. Sillito, “Searching and skimming: An
exploratory study,” in Proceedings of the International Conference on

Software Maintenance (ICSM’09), 2009, pp. 157–166.
[55] A. J. Viera, J. M. Garrett et al., “Understanding interobserver agreement:

The kappa statistic,” Family medicine, vol. 37, no. 5, pp. 360–363, 2005.
[56] S. Wang, D. Lo, and J. Lawall, “Compositional vector space models

for improved bug localization,” in Proceedings of the Conference on
Software Maintenance and Evolution (ICSME’14), 2014, pp. 171–180.

[57] S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in Proceedings
of the 22nd International Conference on Program Comprehension
(ICPC’14), 2014, pp. 53–63.

[58] ——, “Amalgam+: Composing rich information sources for accurate
bug localization,” Journal of Software: Evolution and Process, vol. 28,
no. 10, pp. 921–942, 2016.

[59] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis,” in Proceedings of the Conference on Software
Maintenance and Evolution (ICSME’14), 2014, pp. 181–190.

[60] X. Ye, R. Bunescu, and C. Liu, “Mapping bug reports to relevant files:
A ranking model, a fine-grained benchmark, and feature evaluation,”
IEEE Transactions on Software Engineering, vol. 42, no. 4, pp. 379–
402, 2016.

[61] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word em-
beddings to document similarities for improved information retrieval in
software engineering,” in Proceedings of the International Conference
on Software Engineering (ICSE’16), 2016, pp. 404–415.

[62] K. C. Youm, J. Ahn, and E. Lee, “Improved bug localization based
on code change histories and bug reports,” Information and Software
Technology, vol. 82, pp. 177–192, 2017.

[63] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in Proceedings of the International Conference on Software
Engineering (ICSE’12), 2012, pp. 14–24.

[64] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What Makes a Good Bug Report?” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 618–643, 2010.

